SYLLABUS

1. morning on Programme				
1.1 Higher education	Babeş-Bolyai University			
institution				
1.2 Faculty	Physics			
1.3 Department	Physics			
1.4 Field of study	Physics			
1.5 Study cycle	Master			
1.6 Study programme /	Computational physics			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	dis	cipline	Nu	umerical computations in atomic physics				
2.2 Course coor	dina	ator		Ladislau Nagy				
2.3 Seminar coo	ordi	nator		Sándor Borbély				
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Speciality	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					10
Evaluations					
Other activities:					
3.7 Total individual study hours		84			

5.7 Total marviadal study nouis	04
3.8 Total hours per semester	140
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	• quantum mechanics, atomic physics, numerical methods, programming in C (or Fortran) and Python

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired Using in-depth knowledge of physics, mathematics, and programming in various multi- and inter-disciplinary fields. Applying atomic physics to understand of complex scientific phenomena. Specific competences Making effective use of in-depth knowledge of physics, mathematics in solving real problems in atomic physics Using advanced information technology and electronic communication in order to analyze, model, simulate, and aggregate data from various branches of physics or other related fields. Solving advanced problems of atomic physics by means of field-related mathematical and computer instruments (analytical, numerical, or statistical tools). Communicating complex scientific ideas, experiments or outcomes of a scientific project. Efficient use of high-performance computing infrastructure for solving atomic physics problems. Accomplishment of professional tasks in an effective and responsible manner, in compliance • **Transversal competences** with the field-specific legislation and code of ethics. Implementation of effective interdisciplinary teamwork methods at various hierarchical levels. Effective use of information sources, as well as communication and professional-assisted training resources in both mother tongue and English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The students should acquire basic knowledge about numerical methods used in atomic physics. The students should acquire basis skills in using high- performance computing infrastructure.
7.2 Specific objective of the discipline	 The students should become familiar with the approximation methods used in atomic physics and other fields, such as the variational method, the stationery and time dependent perturbational methods. The students should become familiar with the ab initio methods used for the direct numerical solution of the time independent and time dependent Schrödinger equation. The students should form their skills for programming the applications of these methods. They should be able to solve problems and perform numerical calculations by computer individually The student should be able use efficient parallelization techniques to solve numerically model, which are frequently used in atomic physics.

Teaching methods	Remarks
Explication,	
problematization, multimedia projection, computer exemplification.	
r	
	Teaching methods Explication, problematization, multimedia projection, computer exemplification.

Bibliography

- 1. Bransden and Joachain, The physics of atoms and molecules, Editura Tehnică, București, 1998.
- L. Nagy, Numerikus es kozelito modszerek az atomfizikaban (Numerical and approximate methods in atomic physics), Scientia Cluj, 2002
- L. Nagy, Two-electron processes in fast collisions with charged particles, Nucl. Instr. Meth. B, 124 (1997), 271-280.
- 4. L. Nagy, Multi-electron processes in atomic collisions Theory, Nucl. Instr. Meth B154 (1999) 23-130.
- 5. L. Ixaru, Metode numerice pentru ecuatii diferentiale cu aplicatii, Ed. Academiei, Bucuresti, 1979
- 6. T. Beu, Calcul numeric in C, Ed. Albastra, Cluj, 2000
- 7. Haken and Wolf, The physics of atoms and quanta, Springer Verlag, 1994
- 8. C. J. Joachainm N. J. Kylstra, R. M. Potvliege, Atoms in Intense Laser Fields, Cambridge University Press, 2012.

8.2 Laboratory	Teaching methods	Remarks
 Tutorial on the use of computational clusters. Login, software selection/compilation, job submission and management. Parallelization paradigms. 	Multimedia presentations followed by hands on exercises.	

2. Introduction into MPI parallelization.	Individual	
3. Advanced features of MPI parallelization	programing tasks.	
4. Implementation of basic numerical methods using MPI parallelization.		
5. The PETSC MPI parallel linear algebra package.		
6. The Slepc MPI parallel eigensolver package		
7. The use of PETSC and Slepc packages for the implementation of the numerical methods used for the solution of Schrödinger equation.		
In the second part: each student receives an individual set of problem to solve (one related to the approximate methods and one related to the direct solution of the Schrödinger equation). He/she studies the theoretical background, performs the analytical calculations, writes the computer code for the numerical part and elaborates a report on the studied problems. The presentation should follow the structure of a scientific paper.		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

10. Evaluation

•

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowlidge, understanding	Oral exam	50
	and capacity of application		
	of numerical methods in		
	atomic physics		
10.5 Seminar/lab activities	Individual work	Written report	50
		-	
10.6 Minimum performanc	e standards		
55%			

Date	Signature of course coordinator	Signature of seminar coordinator
26.06.2023	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Date of approval	Signature o	f the head of department