Syllabus

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Physics
1.3 Department	Department of Physics – Hungarian Line of Study
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Computational Physics

2. Information regarding the discipline

2.1 Name of the discipline (en)			Digital Signal Processing				
2.2 Course coordinator			Lázár Zsolt Iosif				
2.3 Seminar coordinator			Lázár Zsolt losif				
2.4. Year of study	1	2.5 Semester	2	2.6. Type of evaluation	Е	2.7 Type of discipline	DA

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2		
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28		
Time allotment:							
Learning using manual, course support, bibliography, course notes							
Additional documentation (in libra	aries,	on electronic platforms	, field	documentation)	20		
Preparation for seminars/labs, homework, papers, portfolios and essays					27		
Tutorship							
Evaluations							
Other activities:							
3.7 Total individual study hours 69							
3.8 Total hours per semester 125							
3.9 Number of ECTS credits 5							

4. Prerequisites (if necessary)

4.1. curriculum	 Mathematical analysis Algebra
4.2. competencies	 Calculus including functions, series, complex numbers Programming basics

5. Conditions (if necessary)

5.1. for the course	white/blackboard, projector, computer
5.2. for the seminar /lab	white/blackboard, projector, computer
activities	

6. Specific competencies acquired

of opeenie ee	
	C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems
	C1.5 Providing theoretical background for the characteristics of the designed systems
petencies	C3.1 Identifying classes of problems and solving methods that are specific to computing systems
	C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results
com	C3.3 Applying solution patterns using specific engineering tools and methods
Professional	C3.4 Comparatively and experimentaly evaluation of the alternative solutions for performance optimization
	C6.1 Describing the basic concepts for representation and characterization of signals and the basic concepts of artificial intelligence
	C6.2 Appropriate use of methods for signal analysis and fundamental artificial intelligence algorithms
	C6.3 Use of simulation and programming environments to process signals and model solutions to problem classes
sal ncie	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation
Transver: competei	CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Acquiring the skills for processing signals, time series and images both		
discipline	offline and online, including the ability to design and implement systems		
	optimized for a wide range of specific use cases.		
7.2 Specific objective of the	Students should be able to:		
discipline	1. characterize different types of signals and systems.		
	2. Use the available theoretical and programming tools to design and		
	implement different types of filters. Should understand the possibilities and		
	limitations of the available alternatives.		
	3. Have an overview of the classical and current tools for linear,		
	nonlinear and statistical analysis of time series.		
	4. Adapt the presented techniques to the different types of real signals		
	including but not limited to biological signals, economic time series, images,		
	etc.		
	5. Apply machine learning technologies for extracting useful		
	information from a broad range of data sets.		

8.1 Co	urse	Teaching methods	Remarks
1.	Signals and systems: Definitions, representations	Projected slides complemented	
	and types of signals. Systems. Signal processing.	by blackboard calculations.	
	DSP applications.		
2.	Sequences and systems: properties, types, testing		
	methods, visual representations. LTI systems, FIR		
	and IIR filters. Convolution sums. Causality and		
	stability.		
3.	Continuous-time LTI systems: Convolution integral.		
	Dirac delta and Heaviside step functions and their		
	properties. Fourier series. Fourier transform (FT).		
4.	Sampling and reconstruction: Amplitude		
	modulation. Sampling by the Dirac comb. Aliasing.		
	Reconstruction. Nyquist limit and anti-aliasing		
	filters.		
5.	Discrete Fourier transform and the Fast Fourier		
	Transform. Zero padding. FFT based convolution.		
	Deconvolution. Spectral estimation: leakage,		
	scalloping, the effect of windowing. Spectral		
	density estimation: the Bartlett-Welch method.		
6.	Laplace transforms: properties, applications.		
7.	Function representation of sequences: polynomial		
	representation. Z-transform: properties and		
	applications. Transfer function: applications and		
	examples.		
8.	FIR/IIR filters and the z-domain. Poles and zeros in		
	the s-plane and the z-plane. The frequency		
	response of continuous systems and discrete		
	systems.		
9.	The design of Infinite Impulse Response (IIR)		
	filters: filter characteristics. Direct IIR filter design.		
	IIR filter design via analogue filters: bilinear		
	transformation, frequency pre-warping, impulse		
	invariant method, pole-zero matching. Classic		
	analogue filters. FIR filter design and applications.		
10.	Introduction to time series analysis: overview of		
	type series types, analysis methods, scope. Linear		
	methods: Fourier analysis, short time Fourier		
	transform (STFT)		
11.	Wavelet transform (WT): Continuous WT :		
	definitions, properties, theorems, families.		
	Comparison with STFT. Discreet WT: wavelet and		
	scaling functions. Applications.		
12.	Random signal processing and applications.		
13.	Nonlinear time series analysis and applications		
14.	Connectivity measures, advanced time series		
	analysis methods and applications.		
Bibliog	graphy		

 R. Meddins, Introduction to Digital Signal Processing, Elsevier (2000) D.G. Manolakis, Applied Digital Signal Processing, V.K. Ingle, Cambridge University Press (2011) N. Bhatnagar, Introduction to Wavelet Transforms, CRC Press (2020) P.J.V Fleet, Discrete Wavelet Transformations, Wiley (2019) H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (2002) A. G. Müller, G. Guida, Introduction to Machine Learning with Dathery, O(Dailly, (2010)) 					
Sanei 9	Saeid FEG Signal Processing and Machine Learning With	/ilev (2021)			
8.2 Se	minar / laboratory	Teaching methods	Remarks		
1.	Introduction to (numeric) Python programming: basics of the language, interactive mode, numeric array manipulation, data I/O.	Programming.			
2.	Characterizing sequences. Unit and impulse sequences. The convolution sum.	Sequences are characterized at the blackboard based on their mathematical properties. The rest are programming tasks (frontal &individual supervised work).			
3.	Examples of Fourier series and Fourier transforms. Using the FFT algorithm.	Programming			
4.	Numerical demonstration of sampling and reconstruction, aliasing.	Programming			
5.	Numerical demonstration of the properties of the discrete Fourier transform (leakage, scalloping, the effect of windowing). Estimating the power spectral density. Applications on sound time series.	Programming			
6.	Laplace transform problems and exercises.	Theoretical work.			
7.	Bode plots. Plotting the p-z diagrams.	Programming.			
8.	Designing IIR filters. Problems and exercises.	Theoretical work combined with programming.			
9.	Designing and applying IIR and FIR filters. Problems and exercises.	Theoretical work combined with programming.			
10.	Working with short time Fourier transforms and wavelet transforms.	Theoretical work combined with programming.			
11.	Random signal processing exercises.	Programming with applications on biological signals			
12.	Nonlinear time series analysis exercises.	Programming with applications on biological signals			
13.	Student project presentations.	Presentations			
14.	Student project presentations.	Presentations			
Bibliog	Bibliography				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with courses of similar content from other foreign academic centers. To adapt to the demands of the labor market, the content of the discipline has been harmonized with the requirements of the pre-university education, research institutes and the business environment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	End of year examination	Written theoretic and practical exam	40			
10.5 Seminar/lab activities	Presentation of a chosen topics	Evaluation of the presentation	15			
	Homeworks	Assessing the level of completion and quality of the homework.	20			
	Personal/group project	Evaluation of the presentation	25			
10.6 Minimum performance standards						
50% of overall assessment of homeworks, 50% achieved at the exam. Homework assignments will be turned in every week. Over the deadline submissions are accepted but penalized.						

Date

Signature of course coordinator

ore

Signature of laboratory coordinator

Date of approval

04.05.2023

Signature of the head of department

11.05.2023

.....