SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Physics
1.3 Department	Department of solid state physics and advanced technologies
1.4 Field of study	Physics
1.5 Study cycle	Master of Science
1.6 Study programme /	MSc./Solid State Physics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Ab initio computational methods in solids							
2.2							
2.3 Laboratory coordinator			Dia	na Benea, Scientif	ic res	earcher Dr.	
2.4. Year of MSc. 2 2.5 Semester II 2.6. Type of C 2.7 Type of DC						DC	
study				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	0	3.3	3
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	0	3.6	42
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					32
Additional documentation (in libraries, on electronic platforms, field documentation)					64
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship				7	
Evaluations				3	
Other activities:					

3.7 Total individual study hours	126
3.8 Total hours per semester	126
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1. curriculum	Solid State and semiconductor Physics		
	Quantum Physics		
	Statistical Physics		
4.2. competencies	Knowledge related to computer operation, use of programs		
	for editing and for graphical representation		

5. Conditions (if necessary)

5.1. for the labs	•
-------------------	---

5.2.	for the seminar /lab
activ	vities

- Computer + beamer for practical demonstrations
- Seminar hall with computers + programs installed

6. Specific competencies acquired

nal ies	The use of theoretical concept of the solid-state physics.
essior	• The use of computer codes to determine the properties of solids
Professional competencies	• Critical/constructive analysis of the results by using advanced models/theories.
Transversal competencies	Search and identification of the advanced formation opportunities and effective exploitation of learning techniques for the own development.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	This discipline uses the knowledge aquired in the (Advanced) Solid State Physics and (based on the theoretical ab initio methods) allows to determine main electronic and magnetic properties of solids. It will develop the basic knowledge underlining the relationship between the crystal structure and the electronic properties of solids. The laboratory work will provide the basis for the theoretical description of solids, allowing the comparison with the main experimental methods used in our laboratory.		
7.2 Specific objective of the discipline	 the students will be able to initiate modern research work, by combining the theoretical and experimental methods of investigation in the solid state physics. the students will be able to characterize the solids from electronic and magnetic points of view. the students will also be able to find the correlations between the chemical/crystal structure and the electronic properties of solids. 		

8. Content

8.2 Seminar/Laboratory	Teaching methods	Remarks
Each student will learn to use the SPRKKR program and the		
XBAND interface to perform band structure calculations for the		
themes described in the lectures. The laboratory consist in band		
structure calculations for the proposed subjects.		
Linux tutorial (commands, editing programs, programs for		6 hours
graphical representation)		

Introduction. Density functional theory. Principles. Kohn-	Demonstration, didactic modelling, e-	3 hours
Sham equations. Local density approximation. Electronic structure of solids. One electron model.	learning	6 hours
Multiple scattering theory (Korringa-Kohn-Rostocker).		0 220 022
Green functions. Calculation of observables. Self-		
consistent calculations for metals and alloys (for ex. Fe,		
FeCo and Fe _{0.5} Co _{0.5})		
Self-consistent calculations for compounds with many		3 hours
atoms in the unit cell (for ex. Mn ₂ VAl and CrAs)		
Density of states. Density of states calculations for		3 hours
selected systems.		
Dispersion relation. Bloch spectral functions Dispersion		3 hours
relation calculations for selected systems, along different		
paths. Bloch spectral function calculations for the alloys		
Photoemission. Calculation of the valence-band		6 hours
photoemission spectra for several metals and alloys.		
Heisenberg model for exchange coupling. Calculation of		3 hours
the exchange-coupling parameters for several magnetic		
materials. Stability of spin structures.		
X-ray absorption (XAS). X-ray circular dichroism in		3 hours
absorption spectra. Calculation of the XAS spectra for		
several metals and alloys.		
Equilibrium lattice constants. Magnetic moments vs.		6 hours
lattice constants dependence. Atomic substitutions and		
prefferential site occupation.		

Bibliography

- 1. C. Kittel, Introduction to Solid State Physics (7ed., Wiley, 1996)
- 2. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders, 1976.
- 3. SPRKKR manual H. Ebert , LMU Munich 2017 (http://ebert.cup.uni-muenchen.de)
- 4. Structura electronica de benzi cu aplicatii in solide, D. Benea 2014 (lucrari de laborator).
- 5. P. Strange, Relativistic Quantum Mechanics (Cambridge University Press, 1998).
- 6. H. Ebert, J. Minar, and D. Kodderitzsch, Rep. Prog. Phys. **74**, 096501 (2011).
- 7. A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J.Magn.Magn. Materials 67, 65 (1987).
- 8. Introduction to photoemission spectroscopy, M. Singh, Univ. Wuerzburg, https://www.cond-mat.de/events/correl14/manuscripts/sing.pdf
- 9. <u>James E Penner-Hahn</u>, , X-Ray Absorption Spectroscopy, Willey 2005

https://doi.org/10.1038/npg.els.0002984

 C.S. Schnohr and M.C. Ridgway, X-Ray Absorption Spectroscopy of Semiconductors, Springer Series in Optical Sciences 190, DOI 10.1007/978-3-662-44362-0_1

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course is congruent to the similar matter studied in representative European and national universities. In order to better adapt to the work market requirements, the content of the course was related with the main trends from this field in the regional scientific research, industry and business environment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Courses	-	-	-
10.5 Seminar/lab activities	-ability to use the computer programs to generate the requested solids properties -correct interpretation of the results	Colloquium consists of computational projects (selected tasks). Time for solving the tasks: 3 h	80 %
	criteria related to the dutifulness, the interest for individual study.	Active presence at labs	20 %

10.6 Minimum performance standards

➤ basic elements of theory/computational skills are requested. A candidate shall be declared to have passed the examination in a subject of study only if he/she secures not less than 50% of the total marks.

Date	Signature of discipline coordinator	Signature of seminar coordinator
15.07.2019	Sheuce	Shewe
Date of approval	Signature of the head of department	