SYLLABUS

1.1 Higher education institution	Babeș-Bolyai University
1.2 Faculty	Physics
1.3 Department	Physics
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme /	Common course for all master programmes / Physicist
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline			Advanced atomic and molecular physics					
2.2 Course coordinator Ladislau Nagy / Vasile Chiş								
2.3 Seminar coordinator			La	ndis	lau Nagy / Vasile C	hiș		
2.4. Year of	1	2.5		1	2.6. Type of	Ε	2.7 Type of	Fundamental
study		Semeste	er		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3 seminar/laboratory	1
		course			
3.4 Total hours in the	52	Of which: 3.5	28	3.6 seminar/laboratory	14
curriculum		course			
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field					16
documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					4
Evaluations					
Other activities:					
3.7 Total individual study hours 68					

3.8 Total hours per semester	120
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	• quantum mechanics, basic atomic and molecular physics
4.2. competencies	• quantum mechanics, basic atomic and molecular physics

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	•

6. Specific competencies acquired

	• Using in-depth knowledge of physics, mathematics, and programming in various multi- and
ies	inter-disciplinary fields.
enc	• Applying atomic and molecular physics to understand of complex scientific phenomena.
ıpet	• Making effective use of in-depth knowledge of physics and mathematics in solving real
com	problems in atomic and molecular physics
ial c	• Using advanced information technology and electronic communication in order to analyse,
sior	model, simulate, and aggregate data from various branches of physics or other related fields.
fest	• Solving advanced problems of atomic and molecular physics by means of field-related
Pro	mathematical and computer instruments (analytical, numerical, or statistical tools).
	• Communicating complex scientific ideas, experiments or outcomes of a scientific project.
	• Implementing the values and ethics of the scientific research profession, carrying out
	professional tasks in a responsible manner in autonomous conditions, as well as making
	decisions based on assessment and self assessment.
ies	• Carrying out teamwork activities and assuming specific roles at various hierarchical levels,
enc	demonstrating initiative and entrepreneurial spirit, as well as leadership in promoting
pet	dialogue, cooperation, positive attitudes, mutual respect, diversity, and multiculturalism and
nom	a constant preoccupation for continuous self improvement.
al c	• Objective self evaluation of professional and continuous training needs to enable labour
vers	market insertion and adaptability to changing market demands, as well as for personal and
sur	professional development to ensure effective use of multilingual abilities and IT ${\mathscr S}$
Tra	communication knowledge.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of	• The students should acquire basic knowledge about the quantum-					
the discipline	mechanical treatment of the atoms and molecules.					
7.2 Specific objective of	• They should be able to use the variational and perturbational					
the discipline	methods in order to discuss the structure, energy and wavefunctions					
	of the multielectron atoms, the relativistic effects (spin-orbit					
	interaction), and the Zeeman and Stark effects. Students should have					
	the basic knowledge also on group theory, molecular symmetry,					
	group representation, projection operators, direct products and the					
	application of these concepts for analysing the hybridization of					
	atomic orbitals, identifying the symmetry species of normal modes					
	of vibration, electronic states of molecules, and calculation of					
	molecular wavefunctions.					

8. 0	Content						
8.3	l Course	Teaching methods	Remarks				
1.	The hydrogen atom. Nonrelativistic	Presentation,					
	treatment.	interactive					
		methods					
2.	Relativistic treatment. Perturbational						
	approximation of spin-orbit interaction. Fine						
	structure. The Lamb shift. Hyperfine						
	structure						
3.	The helium atom. Ortho and parahelium						
	-						
4.	Calculating the energy levels and						
	wavefunctions of the helium using the						
	variational and perturbational methods. The						
	Hartree method.						
5.	Multielectron atoms. The Hartree-Fock						
	method.						
6.	The atoms in magnetic field. The normal and						
	anomal Zeeman effect. The Paschen-Back						
	effect.						
7.	The atoms in electric field. The Stark effect						
	for the hydrogen (linear) and for						
	multielectron atoms (quadratic)						
8.	Molecular symmetry. Groups – fundamental						
	properties. Classes. Properties of conjugate						
	elements						
9.	Symmetry point groups. Symmetry and						
	physical-chemical properties. Group						
	representation						
10	Bases of representations. Types of						
	representations. Equivalent representations						
11.	Characters of representations and their						
	properties. Reducible and irreducible						
	representations. Reduction of reducible						
	representations						
12	Character tables. Correlation tables. Descent						
	symmetry. Representations of continuous						
	groups						
13	Projection operators. Symmetry-adapted						
	combinations of atomic orbitals						
14.	Direct products of representations. Vanishing						
	integrals.						
Bi	bliography						
1.	H. Haken, H.C. Wolf, The Physics of atoms and	Quanta, Ed. Springer	r-Verbag, Berlin, New				
Y	York, 1996						

2. W. Demtroder, Atoms, Molecules and Photons, Springer, 2006

3. B. M. Bransden, C. J. Joachain, Fizica atomului și moleculei. Ed. Tehnică, București, 1998

4. C. J. Ballhausen, H.B. Gray, Molecular Orbital Theory, Ed. W. A. Benjamin Inc., New York, 1965

5. V. Chiş, O. Cozar, L. David, Simetrie moleculară, Ed. Napoca Star, Cluj-Napoca, 2007

6. A. Hernanz, Metodos teoricos de la quimica fisica, vol. 2, Ed. R. G. Blanca, Madrid, 1991 7. D.A. McQuarrie, J.D. Simon, Physical Chemistry, A Molecular Approach, University Science Books, Sausalito, 1997

8. Atkins's Physical Chemistry, 11-th edition, Peter Atkins, Julio de Paula, James Keeler, Oxford University Press, 2017.

9. P.W. Atkins, Molecular Quantum Mechanics 5-th edition, Oxford University Press, 2011

8.2 Seminar / Laboratory	Teaching methods	Remarks
1. The hydrogen atom	Problem solving	
2. Multielectron atoms	Problem solving	
3. The atom in magnetic field	Problem solving	
4. Symmetry point groups; classes; equivalent	Problem solving	
atoms; chemical properties of molecules		
5. Symmetry species for normal modes;	Problem solving	
Hybridization schemes of atomic orbitals		
6. Projection operators; symmetry-adapted	Problem solving	
linear combinations of atomic orbitals		
7. Direct products; Determining new bases for	Problem solving	
representations; Vanishing integrals; Selection		
rules		

Bibliography

1. H. Haken, H.C. Wolf, The Physics of atoms and Quanta, Ed. Springer-Verbag, Berlin, New York, 1996

2. W. Demtroder, Atoms, Molecules and Photons, Springer, 2006

3. B. M. Bransden, C. J. Joachain, Fizica atomului și moleculei. Ed. Tehnică, București, 1998

4. V. Chiş, O. Cozar, L. David, Simetrie moleculară, Ed. Napoca Star, Cluj-Napoca, 2007

5. A. Hernanz, Metodos teoricos de la quimica fisica, vol. 2, Ed. R. G. Blanca, Madrid, 1991

6. D.A. McQuarrie, J.D. Simon, Physical Chemistry, A Molecular Approach, University Science Books, Sausalito, 1997

7. Atkins's Physical Chemistry, 11-th edition, Peter Atkins, Julio de Paula, James Keeler, Oxford University Press, 2017.

P.W. Atkins, Molecular Quantum Mechanics 5-th edition, Oxford University Press, 2011
 P.W. Atkins, Solutions Manual for Molecular Quantum Mechanics, Oxford University Press, 1983.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Course content is consistent with master classes in atomic and molecular in other universities at home and abroad. To adapt to the requirements of the labor market, the content was adjusted to the specific requirements of master level education, research institutes and businesses media.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Knowledge,	Oral exam	25			
	understanding and					
	capacity of application					
	of atomic structure					
	(atomic physics).					
	Molecular physics	Written exam	50			
10.5 Seminar/lab	Homework, activity	Problem solving	25			
activities	(atomic physics)					
10.6 Minimum performance standards						
➢ At least grade 5 (from a scale of 1 to 10) for all evaluations						
\rightarrow						

Signature of course coordinator Date/ 30.06.2023

Signature of seminar coordinator

Date of approval

Signature of the head of department

.....

.....