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Abstract 

 

In this work, the magnetic properties of PrCo3 were determined and investigated through 

electronic structure calculations using the Abinit software package. This thesis is composed of 

five chapters. The first chapter presents the fundamentals of solid-state physics and magnetism in 

matter. The second chapter goes more in depth and presents the theory behind the intermetallic 

compounds and at the end, it focuses on PrCo3, which is of interest. The third chapter talks about 

the fundamentals behind density functional theory and also about the techniques to be further 

used in the PrCo3 studies. Finally, the last chapter contains the results, and the results’ discussion 

explanations. The fourth chapter is then followed by conclusions, which is the fifth and last one, 

and references. The computational aspect was using Abinit’s functions to calculate different 

parameters using the density functional theory formalism. After that, the convergence studies 

were performed as a function of plane-wave cutoff energy and k-point number to test the results’ 

numerical accuracy. After that, the lattice parameters and magnetic ground state configurations 

were determined using the converged values in Abinit. The most stable magnetic configuration 

was found to be the ferromagnetic one. Moreover, the density of states data plot showed the 

origin of the magnetic behavior in PrCo3 being attributed to the Co 3d and Pr 4f shells and also 

showing a majority of spin up and a minority of spin down. The results were accurate in 

comparison with the experimental values.  
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Introduction 

 

The purpose of this paper is to find out the structural and magnetic parameters of the PrCo3 

using DFT-type computational methods. All the calculations were done using Abinit, which is a 

software suite used for calculations of this kind.  

There are five chapters, as the last one contains the conclusions.  Starting with the first 

chapter, the theoretical introductions of solid state physics are presented, and also some elements 

of magnetism. This chapter contains certain information about the crystalline structure, talking 

about lattices and vectors, then about the magnetic moment and its origins, the magnetic 

ordering, the mean-field theory, and the band magnetism.  

The second chapter remains theoretical but explores a more specific topic, the intermetallic 

compounds. Continuing from the crystalline structures, it goes through the magnetic properties 

of the general types of compounds, covering the interactions, to specifically presenting the PrCo3 

compound, which is of interest.  

The third chapter presents the theory behind the DFT formalism, which represents the basis 

of the computational methods that were used. It talks about the first approach of Hohenberg and 

Kohn, which developed the first theorems. After presenting the Hohenberg-Kohn theories, we 

moved on to the Levy-Lieb formulation, followed by the Kohn-Sham auxiliary system. The next 

part was about functionals for exchange and correlation, and they were LSDA and GGA, and 

pseudopotentials with PAWs and LDA+U approximation. 

The fourth chapter contains the results and the process of discovering the structural and 

magnetic parameters. It presents the structure of the PrCo3 cell and its parameters, followed by 

total energy and energy cutoff for different k-points charts, the cutoff energy variation, and the 

convergence energy for six grids. Next is the discussion about the nonmagnetic and 

ferromagnetic systems, with particular data and graphics. The last part of the chapter is about 

DOS and the spin magnetic moments values.   
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1. Fundamentals of solid state physics and magnetism  

1.1. Crystalline structure 

Matter as we know it exists in three states, depending on the behavior and arrangement of 

the composite particles, and these are solid, liquid, and gas. From these, solids can be described 

as amorphous or crystalline, taking into consideration their geometry. The amorphous solids 

have no order in the lattice structure and appear irregular and chaotic. On the other hand, 

crystalline solids have a well-defined and repetitive lattice. This orderly arrangement gives the 

last solids rigidity, high melting points and consistent intermolecular forces between many more.  

A monocrystalline solid has a single crystal lattice, giving them infinite periodicity, and 

can be anisotropic. Polycrystalline solids are made of numerous crystals having different 

orientations, having restricted periodicity. 

A crystal is formed by the lattice, which represents a set of repetitive points to which a 

group of atoms called the basis is attached. The lattice is defined in a threedimensional space by 

the following translation vectors: a1, a2, a3. Having r as the initial point of view, the crystal 

appears identical when translated by an integral multiple of the a`s to a new geometric point r` 

[1]. Using u1, u2, and u3 as arbitrary integers, the mathematical equivalent is in expression (1.1) 

[1].  

 

r`= r + u1a1 + u2a2 + u3a3                                                            (1.1) 

 

The lattice is defined by the r’ points. A lattice is primitive when looked at from two different r` 

points the structure looks the same [1].  

 The vectors ai are considered primitive if the volume determined by a1∙a2 x a3 is the 

smallest one possible. These vectors define the crystal axes. Knowing the axes, we can choose 

the basis of the crystal structure in such a way that it can describe the periodic arrangements of 

the atoms in space. It must be the same for every identical structure. The position of an atom j of 

the basis with respect to the lattice is (1.2) [1].  

 

rj= xja1 + yja2 + zja3                                                                 (1.2)   

 

The origin, called the associated lattice point, is chosen so it satisfies: 0  ≤  xj ,yj, zj ≤ 1           [1]. 
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Using the primitive axes a1, a2, a3 as defining elements for a parallelepiped we obtain the 

primitive cell, or the Wigner-Seitz cell, which is a minimum volume cell. This cell has one 

lattice point, and through the translation process, it fills all the space in the lattice.  

 In three-dimensional space, the crystal lattices have 14 forms. The Bravais lattice is a 

type of lattice that has each point surrounded by identical points. The cubic system has 3 lattices: 

simple cubic (sc), body-centered (bcc), and face-centered cubic (fcc) – Figure 1.1. 

 

 
Figure 1.1. The classification of Bravais lattices [2]. 

1.2. The magnetism of matter 

A magnetic moment noted m is the equivalent of a current loop. Having A as the area of 

the loop (in m2) and I as the circulating current (in A), m will be measured in A∙ m2  [3]. 

m = I A                                                                         (1.3) 

In atoms, the intrinsic magnetic moments are associated with the spin of each constituent 

electron and the orbital motion, giving the angular momentum. In solids, the electronic 

contributions are the highest to the magnetic moments.  
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The relation between the magnetic moment and the angular momentum l (l = 𝑚𝑒r x v) is: 

m = - 
𝑒

2 𝑚𝑒 
l = γl                                                                 (1.4) 

where the γ symbol is the gyromagnetic ratio. The minus symbol in front of the gyromagnetic 

ratio is because of the opposite orientation of m and l, due to the negative charge of the electron 

[3]. 

The Bohr magneton, μB = 
𝑒ћ

2 𝑚𝑒 
 , is the unit for the electronic magnetism, and it has the 

following value: 9.274 × 10−24 A m2 [3]. The magnetic moment m that is associated with the 

electron spin is not half as expected, but almost one Bohr magneton. The field of the magnetic 

moment has the exact same form as one of an electric dipole p = qδd , which is formed of 

positive +q and negative -q charges separated by a small distance δd [3]. That’s why the 

magnetic moment may be regarded as a magnetic dipole, and its associated field as the magnetic 

dipole field [3]. 

The orbital angular momentum is quantized in units of ћ so that the z-component of the 

magnetic moment m – (1.5) [3]. 

mz = - 
𝑒

2 𝑚𝑒 
 ml ћ , where mz = 0, ±1, ± 2, etc.                                     (1.5) 

In equation (1.5), ml is an orbital magnetic quantum number. The g-factor N is the demagnetizing 

factor, or the dimensionless magnetic moment. It describes the magnetic moment m and the 

angular momentum of a particle in a weak magnetic field.   

The alignment of the magnetic moments of every constituent atom of a material gives its 

magnetic properties. This can be parallel or antiparallel. A ferromagnet has a parallel spin 
 

 

 

Figure 1.2. Different materials spin orientation [4]. 
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alignment below TC, which is the Curie temperature. This can be seen in Figure 1.2. The 

magnetization occurs spontaneously even if there is no magnetic field applied beforehand [3]. 

The antiferromagnet has antiparallel alignment where the atomic moments are composed of two 

but in opposition spins, having the total magnetic moment equal to 0 [3]. This happens below TN 

which is the Neel temperature. The ferrimagnet has inequivalent but parallel spins, which do not 

cancel, having a net spontaneous magnetization [3]. This also happens below TC. There are also 

another two situations, the first one in which there are no atomic magnetic moments. These 

materials are called diamagnetic. The second one is in which the total magnetic moment is zero, 

but because of the random distribution of the atomic magnetic moments, due to the thermal 

energy. These materials are known as paramagnetic. 

 The effective field Hi has its origin in the exchange interactions. In materials that have 

magnetic order, their dipole moments interact with each other through exchange interactions [3]. 

These interactions occur between two nearby electrons. Given fact that the electrons are 

indistinguishable, this effect is due to the wave function Ψ, which is the product of space and 

spin functions (1.6), antisymmetric in this case [3]. 

Ψ = Φs (1, 2) χa(1, 2)                                                                 (1.6) 

Taking that into consideration, the exchange of two electrons gives the same electron density [3]: 

| Ψ(1, 2) |2 = | Ψ(2, 1) |2                                                                  (1.7) 

But electrons are fermions, so the only solution is that Ψ is antisymmetric [3]. 

Ψ(1, 2) = -Ψ(2, 1)                                                                   (1.8) 

Considering the case of two electrons, Ψ1 and Ψ2 represent the spatial components of the 

individual wave functions of the first and second electron, and Ψ1 (r1) and Ψ2 (r2)  the solutions 

of Schrödinger’s equation for each atom [3]. The symmetric and antisymmetric spin functions 

are the spin triplet and singlet states, as follows [3]. 

If S = 1; 

MS = 1, 0, −1   

χs = |↑1, ↑2 ⟩;  (1/ √2)[|↑1, ↓2⟩ + |↓1, ↑2⟩];  |↓1,↓2⟩ 

If S = 0;  

MS = 0  

χa = (1/ √2)[↑1, ↓2⟩ − |↓1, ↑2⟩] 

When the two electrons are in a spin triplet state, there are almost no chances of finding them at 

the same point of space because electrons with parallel spins avoid one another [3]. But in the 

spin singlet state case, the electrons have antiparallel spins, and there is a probability of finding 

them in the same place, because the spatial part of the wave function is symmetric under electron 
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exchanges [3]. J is the exchange constant and has units of energy [3]. Dividing it by kB can be 

expressed in kelvins [3]. The Heisenberg Hamiltonian of the system involved in the exchange 

interactions is expressed with the use of J and the atomic spins S1 and S2 [3].   

H = -2J 𝑺𝟏̂ ∙ 𝑺𝟐̂                                                          (1.9) 

Here, 𝑺𝟏̂ and 𝑺𝟐̂ are dimensionless spin operators [3]. Depending on the behavior of J, one can 

determine the type of interaction. If J>0 this means that the interaction is a ferromagnetic one, 

which tends to align the two spins parallel [3]. An antiferromagnetic interaction is indicated by a 

negative exchange constant J<0, which tends to align the spins antiparallel [3]. The 

generalization of the (1.9) formula for a lattice is to a sum over all the pairs of atoms on lattice 

sites i and j. 

H = -2∑  𝑱𝒊𝒋  𝑺𝒊  ∙ 𝑺𝒋

 

𝑖>𝑗
                                                         (1.10)  

The interatomic exchange coupling described by the Heisenberg Hamiltonian equation (1.10) 

can be either ferromagnetic or antiferromagnetic [3]. 

 The mean field theory, or the modern theory of ferromagnetism, is Weiss’s molecular 

field theory, which was based on the classical paramagnetism developed by Langevin [3]. The 

idea was that exists an internal ‚molecular field’ proportional to the magnetization of the 

ferromagnet [3]. This proportionality is expressed by the constant nw and added to the internal 

contribution of the externally applied field- (1.11) [3]. 

Hi = nw M + H                                                             (1.11) 

The magnetization is given by the Brillouin function (⟨mz⟩ = m0BJ(x)) with M0= nm0 = ngμB J, 

where n is the number of magnetic atoms per unit volume. In the limit J and to tanh x it reduces 

to the Langevin function when J=1/2 and g= 2 (in ⟨mz⟩ = gμB J tanh x ) [3]. 

   M = M0 BJ(x)                                                            (1.12) 

This is the magnetization M, but now x can be written as in (1.13) [3]. 

  x =  μ0m0(nwM + H) /kBT                                              (1.13) 

When the external field is zero, M becomes the spontaneous magnetization Ms: 

Ms/M0 = BJ(x0)                                                         (1.14) 

  x0 =  μ0m0nwMs /kBT                                                   (1.15) 

In terms of the Curie constant C, the expression becomes [3]: 
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Ms/M0 = [T(J+1)/3JCnw]x0                                          (1.16) 

The solution to the two variants of formulas above, (1.15) and (1.6), is graphically represented in 

Figure 1.3. found below.  

 

Figure 1.3. Ms/M0 for different situations regarding T and TC [3]. 

The graphical solution of (1.15) and (1.16) for J=1/2 was used for finding the spontaneous 

magnetization Ms when T< TC. The equation (1.16) is represented for T=TC and also for T>TC. 

The dotted line is the effect of an external field that is to offset the equation (1.16) [3]. 

 

Figure 1.4. The spontaneous magnetization as a function of temperature calculated from the molecular field theory 

and based on the Brillouin function for different values of J. The limit J=∞ is based on the Langevin function [3]. 

 

(

1
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1
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TC is used for determining nw, because TC = nwC [3]. Weiss’s molecular field theory was the first 

ever mean field theory of a phase transition [3]. The moments are in disorder above and at TC, 

because this is where the 2J+1 degenerate MJ levels are equally populated. Here, the magnetic 

entropy is Rln(2J+1) per mole, taking into consideration that R=NAkB is the gas constant [3]. 

Especially below the Curie temperature there is a specific heat of magnetic origins, as energy is 

absorbed to disorder the moments when the heat gets to the system [3]. At TC appears a 

discontinuity in the specific heat. In Figure 1.4. the spontaneous magnetization as a function of 

temperature can be seen. 

 The free atoms are separated by large distances and the electrons occupy well-defined 

energy levels according to Pauli’s exclusion principle, whereas in solids the atoms are in close 

proximity, and the electron clouds overlap [5]. If there are four electrons that would theoretically 

be at each energy level then the energy levels split to be occupied [5]. 

 

Figure 1.5. Energy levels and their splitting [5]. 
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 In transition elements, the 1s, 2s and 2p levels split less because they are close to the 

nucleus, but on the other hand, the higher levels like 3d and 4s split more, being farther from the 

nucleus-Figure 1.5 [5]. The more electrons there are, the more prone to splitting the level is and 

the electrons become delocalized. When the splitting occurs, due to the small proximity of the 

levels, they can be approximated into an energy band [5].  

 An important matter in the band magnetism problem is the density of states, or DOS in 

abbreviation. The density of states represents the number of different states at a certain energy 

level that the electrons have permission to occupy [6]. The specific heat, paramagnetic 

susceptibility, and other transport phenomena of conductive solids depend on DOS [6]. The 

calculations of the DOS determine the spacing between the energy bands in semiconductors [6]. 

DOS has various forms depending on the number of dimensions where the calculations are made 

and on the way of application of the boundary conditions [1]. These boundary conditions dictate 

the allowed values for the wavevector k [1]. So, when the dimension is one, the DOS, written 

with D(ω), or the number of modes per unit frequency range for a given polarization is-(1.17) 

[1]. 

𝐷1(𝜔)𝑑𝜔 =
𝐿

𝜋

𝑑𝑘

𝑑𝜔
𝑑𝜔 =

𝐿

𝜋
 ∙

𝑑𝜔

𝑑𝜔 𝑑𝑘⁄
                                            (1.17) 

For the following values of k [1]. 

k = 0, ±
2𝜋

𝐿
, ±

4𝜋

𝐿
 , ±

6𝜋

𝐿
, … , ±

𝑁𝜋

𝐿
                                        (1.18) 

For periodic boundary conditions, the number of modes per unit range of k for the case where -

π/a≤k≤ π/a is L/2π, and 0 otherwise [1]. In three dimensions, the periodic boundary conditions 

are applied over N3 primitive cells within a cube of side L, k being determined by the condition 

(1.19) [1]. 

exp[i(kxx+kyy+kzz)]= exp[i(kx(x+L)+ky(y+L)+kz(z+L))]                         (1.19) 

Where  

kx,ky,kz = 0, ±
2𝜋

𝐿
, ±

4𝜋

𝐿
 , ±

6𝜋

𝐿
, … , ±

𝑁𝜋

𝐿
                                       (1.20) 

So there is one value for k allowed per volume (
2𝜋

𝐿
)3 in K-space, or allowed values for k per unit 

volume for each polarization and branch [1]. 

(
𝐿

2𝜋
)3  = 

𝑉

(2𝜋)3
                                                                 (1.21) 
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The volume of the specimen is V = 𝐿3. [1] The total number N of modes with the wavevector 

less than k is found from the previous equation (1.21) and it is (
𝐿

2𝜋
)3  times the volume of a 

sphere of radius k, as it follows, for each polarization type [6]. 

N = (
𝐿

2𝜋
)3 ∙ (

4𝜋𝑘3

3
)                                                          (1.22) 

The resulting density of states for each given polarization is (1.23) [6]. 

D(ω) = 
𝑑𝑁

𝑑𝜔
 = ( 

𝑉𝑘2

2𝜋2
) ∙ (

𝑑𝑘

𝑑𝜔
)                                              (1.23) 

Now going back to the energy bands, the 3d band has a much larger density due to the fact that 

there are five 3d levels per atom, each with a capacity of ten electrons, whereas one 4s with two 

electrons [6]. Pauli’s exclusion principle requires that each energy level in the free atom is split 

into 1019 levels in the solid [6].  

 

Figure 1.6. Density of states in different materials, where N(E) is the density of energy levels at given energy [6]. 

 

Considering Figure 1.6., the area under the curve represents the total available number of energy 

levels in a band, and the Fermi level shows the topmost filled energy level [6]. The 3d band 

splits into two distinct sections depending on the spin(spin up and spin down) [6]. An electron 
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may reverse its spin through exchange interactions (Stoner criterion) [6]. The exchange force 

acts like a dam allowing the spin imbalance, which results in a magnetic moment, but this 

happens only if the levels are in proximity [6]. 
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2. Intermetallic compounds 

2.1. Definition 

Considering two alloyed metals A and B, one can define three possibilities [7]. In the first 

one, A and B are present as separate phases, because they may not mix in the solid state, and will 

be present if the heat of mixing is distinctly positive [7]. In the second case, the A and B metals 

may form a solid solution over a specific range of compositions, which is not that different from 

a liquid mixture, however crystalline [7]. And the third and last one, the alloying of the two 

metals may lead to the formation of intermetallic compounds [7]. These compounds are 

characterized by well-defined stoichiometric compositions such as A3B, AB, AB2, AB5 and even 

A6B23 [7]. Ideally, the A and B’s atoms are arranged in the crystallographic unit cell at precise 

positions, not randomly, being different for A and B atoms [7]. 

 In most cases, the physical properties of the alloy don’t coincide with the physical 

properties of the composing elements [7]. As an example, the starting materials are metallic 

conductors and the formed intermetallic compound is a semiconductor [7]. Another possibility is 

that non-magnetic parent materials give rise to a magnetic intermetallic compound [7]. A 

requirement for the existence of the intermetallic compounds in the binary system of the metals 

A and B is a negative heat of formation ∆H, which is given by equation (2.1) [7]. 

∆H = f(c)[-Pe(∆φ*)2 + Q0(∆nws
1/3 )2]                                                (2.1) 

In equation (2.1), e is the elementary charge, P and Q0 are constants that have about the same 

value for any combination of two given metals, and f(c) represents the concentration dependence 

of ∆H [7]. For A and B of about the same volume, the function is symmetrical around the 

equiatomic composition, but if the two metals differ largely in size, the minimum or maximum in 

∆H is shifted towards the richer in smaller atoms composition [7]. The φ* parameter is not that 

different from the work function of pure metals, and the last parameter, nws, represents the 

electron density at the boundary of the Wigner-Seitz cell [7]. The intermetallic compounds of 

interest are between rare-earth metals R and 3d transition metals M.  
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2.2.  Crystalline structure 

 The crystal structure of various R-M compounds is given in Table 2.1. Most structures 

are related and originate from the hexagonal lattice of the CaCu5 type [7]. The unit cell 

Table 2.1. Intermetallic binary R-M crystals structures [7]. 

 

of the CaCu5 type is represented in Figure 2.1. There, one can see two types of layers: the lowest 

layer has both M and R atoms, but in the next one only M atoms are present [7]. 

 

 

Figure 2.1. Structural relationships between various structure types [7] 
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In Figure 2.1 there are 3 types of structures. In Figure 2.1 a) segment is depicted the atomic 

arrangement of the R and M atoms in the basal plane of the CaCu5 type structure [7]. Here, 

ABCD indicates the basal plane of the unit cell, where a is the unit cell edge [7]. In the b) section 

of Figure 2.1 is represented the unit cell of the CaCu5 type with the Co 2(c) sites in the basal 

plane and the Co 3(g) sites in the intermediate plane [7]. The Figure 2.1 c) part schematically 

shows the replacement of M atoms by R atoms in the CaCu5 type structure leading to the atomic 

arrangements in the RM3 compounds [7]. In the top or basal plane of each second RM5 unit cell 

one of the two M atoms is replaced by an R atom followed by a layer shift and some minor 

rearrangements of the atoms [7]. This leads to an RM3 unit cell having the same unit cell edge in 

the a direction but a c axis four times as long [7].  

 

2.3. General magnetic properties 

 The magnetic interactions that occur in the R-M compounds include (i) the R-R 

interaction, (ii) the M-M interaction and (iii) the R-M interaction [7]. The R-R interaction, 

between the magnetic moments of the lanthanide atoms is the weakest one, due to the small 

spatial extent of the 4f wavefunction, and has to proceed indirectly due to the fact that there is 

virtually no overlap [7]. Due to this, one of the possible paths of interaction represents the spin 

polarization of the s-conduction electrons [7]. Each one of the localized 4f moments produces a 

conduction-electron spin polarization not uniform in space, which will be felt by the elsewhere 

located 4f moments, obliging them to orient accordingly [7]. The polarization is oscillatory in 

character and its absolute value decreases with increasing distance, leading to parallel and 

antiparallel couplings between the localized moments [7].  

 The M-M interaction is much stronger, being a consequence of the much larger spatial 

extent of the 3d wavefunctions (when compared to the 4f ones), implying that the wavefunctions 

of the neighboring atoms have a strong overlap [7]. This leads to the formation of 3d-electron 

energy bands rather than to 3d levels, and it is also possible for the 3d electrons to move through 

the whole lattice just like the conduction electrons [7]. The strong exchange interaction between 

3d electrons may lead to a state in which the number of spin-up and spin-down electrons is 

unequal, as in the case of the s-conduction electrons, but can show a preference for the spin-up 

direction [7]. One can also describe this situation by saying that the 3d sub-band with spin-up 

electrons is more filled than the spin-down sub-band [7]. Figure 2.2. shows schematically the 

three possibilities that exist.  
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Figure 2.2. Representation of the dependence on energy of the density of states of 3d 

electrons with spin-up N(E) ↑ and spin-down N(E) ↓ [7]. 

 

In Figure 2.2, the Fermi energy EF is indicated by oblique lines and is the upper energy 

limit. This means that all the 3d band segments exceeding the Fermi energy remain unoccupied 

[7]. In Figure 2.2 a) the Fermi energy is lower than the top and the effective exchange interaction 

between the 3d electrons was too small to produce a relative shift of the sub-bands [7]. In the b) 

section of Figure 2.2, the interaction is strong enough to give rise to a relative shift of the sub-

bands, and the net moment is obtained from the difference ∑E (N(E) ↑ - N(E) ↓) [7]. In this 

particular case only one of the 3d sub-bands is unsaturated, but it is possible to have a net 

magnetic moment with both of them unsaturated, as in Figure 2.2 c) situation [7].  

 And finally, the last interaction, the R-M one is intermediate in terms of strength when 

compared to the R-R and M-M one, because it occurs between the polarized 5d shells of the rare-

earth and the 3d shells of the transition metal [7]. The saturation moments of the R-M 

intermetallic compounds in which both R and M carry a magnetic moment can be interpreted as 

being the results of an antiparallel coupling between the R and M sublattices in the case where R 

is a heavy rare-earth element, and a parallel coupling if R is one of the light rare-earth elements 

[7]. Below the Curie temperature, the R sublattice becomes gradually more ordered antiparallel 

to the M sublattice, but at a given temperature (Tcomp) the magnetizations of both sublattices 

cancel [7]. 

 

2.4.  The PrCo3 intermetallic compound  

The intermetallic compound PrCo3 is an alloy between a rare-earth element R- 

Praseodymium (Pr), and a 3d transition metal M- Cobalt (Co). These types of compounds 

possess remarkable magnetic properties due to a combination of the localized magnetism of the 
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rare-earths elements and the strolling magnetism of 3d transition metals, because the 4f shells 

generate large magnetic moments and a strong magnetocrystalline anisotropy, while the Curie 

temperatures are mainly determined by the 3d-3d exchange interactions [8]. PrCo3 has a 

rhombohedral PuNi3-type crystalline structure (space group R3̅m or number 166), as shown in 

the Figure 2.3 [8,9]. The lattice parameters of the PrCo3 compound are a = 5.069Å and c = 

24.795Å, and the interatomic distances are shown in Table 2.2 [10]. It has a wide application as 

permanent magnets [10]. The PrCo3 compound is formed following a peritectic reaction at 1211 

K [11] and is ferromagnetic with a parallel alignment of the Pr and Co magnetic sublattices [8]. 

This compound has a magnetic moment of 3.8 μB/f.u. and the TC equal to 349K and is an 

uniaxial ferromagnet [8]. It has an easy magnetization direction along the c-axis and exhibits 

large anisotropic magnetostriction around TC and at low temperatures [8].  

 The magnetocaloric effect in the PrCo3 system was observed strictly for Pr1-x Cex Co3, not 

in pure PrCo3, and showed moderate magnetic entropy change values and also a decrease of the 

TC, or the magnetic ordering temperature, the origin of ferromagnetism, when Ce was introduced 

[8]. 

 

Figure 2.3. PrCo3 structure. Pr atoms occupy sites 3a and 6c, and Co atoms occupy the 3b, 6c and 18h sites [9]. 
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3. The DFT Formalism 

Density functional theory, or DFT, is a theory developed by Hohenberg and Kohn in 

1964 and by Kohn and Sham in 1965 to calculate the electronic structure of atoms, molecules 

and condensed matter, its goal being to understand the material properties using the fundamental 

laws of quantum mechanics [12]. The idea behind DFT is that any property of a system of 

interacting particles can be envisioned as a functional of the ground state density n0(r), which is 

one scalar function of position n0(r) [13]. This function of position determines all the information 

in the many-body wavefunctions for the ground state and all excited states [13]. DFT is 

considered a primary tool for the calculation of electronic structure in condensed matter, being a 

theory of correlated many-body systems [13]. 

 

3.1. The Hohenberg-Kohn Theorems 

 Hohenberg and Kohn’s approach to DFT is an exact theory of many body systems, which 

applies to any system of interacting particles in an external potential Vext(r), including any 

problem of electrons and fixed nuclei [13]. With r being the position, the Hamiltonian of the 

system can be written as (3.1) [13]. 

 

                            𝐻̂ =  − 
ℏ2

2𝑚𝑒
 ∑ ∇𝑖

2 + ∑ 𝑉𝑒𝑥𝑡(𝑟𝑖) +  
1

2
∑

𝑒2

|𝑟𝑖− 𝑟𝑗|𝑖≠𝑗𝑖  𝑖                                   (3.1) 

Schematically, Hohenberg–Kohn theorem is represented in Figure 3.1 [13]. 

 

 

Figure 3.1. Schematic representation of the Hohenberg-Kohn theorem [13]. 

 

In Figure 3.1, the smaller arrows indicate the usual solution of the Schrödinger equation where 

the potential Vext(r) determines all the states of the system Ψi({r}), including the ground state 

Ψ0({r}) and ground state density n0(r). The longer arrow labeled “HK” denotes the Hohenberg-

Kohn theorem [13].  
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Density functional theory is based on Hohenberg’s and Kohn’s first proven theorems, 

which are [13]:  

• “Theorem I: For any system of interacting particles in an external potential Vext(r), the 

potential is determined uniquely, except for a constant, by the ground state particle 

density n0(r) [13].”  

• “Corollary I: Since the Hamiltonian is thus fully determined, except for a constant shift of 

the energy, it follows that the many body wavefunctions for all states (ground and 

excited) are determined. Therefore, all properties of the system are completely 

determined given only the ground state n0(r) [13].”  

• “Theorem II: A universal functional for the energy E[n] in terms of the density n(r) can 

be defined, valid for any external potential Vext(r). For any particular Vext(r), the exact 

ground state energy of the system is the global minimum value of this functional, and the 

density n(r) that minimizes the functional is the exact ground state density n0(r) [13].”  

• “Corollary II: The functional E[n] alone is sufficient to determine the exact ground state 

energy and density. In general, excited states of the electrons must be determined by 

other means. Nevertheless, the work of Mermin shows that thermal equilibrium 

properties such as specific heat are determined directly by the free-energy functional of 

the density [13].”  

 

3.2. The Levy–Lieb formulation 

Levy and Lieb gave an alternative definition of a functional by defining a two-step 

minimalization procedure beginning with the general expression for the energy in terms of the 

many body wavefunction Ψ [13]. Also, by minimizing the energy with respect to all the variables 

in Ψ, the ground state is found [13]. However, suppose one first considers the energy only for the 

class of many-body wavefunctions Ψ  that have the same density n(r), and for any wavefunction, 

the total energy can be written as (3.2) [13]. 

           𝐸 =  ⟨Ψ|𝑇̂|Ψ⟩ + ⟨Ψ|𝑉̂𝑖𝑛𝑡|Ψ⟩ +  ∫ 𝑑3𝑟 𝑉𝑒𝑥𝑡(𝑟) 𝑛(𝑟)                                         (3.2) 

If the energy is minimized over the class of wavefunctions with the same density n(r), then the 

uniquely defined lowest energy for that density is (3.3-3.4) [13]. 

              𝐸𝐿𝐿[𝑛] =  min
Ψ→𝑛(𝑟)

[⟨Ψ|𝑇̂|Ψ⟩ + ⟨Ψ|𝑉̂𝑖𝑛𝑡|Ψ⟩] + ∫ 𝑑3𝑟 𝑉𝑒𝑥𝑡(𝑟) 𝑛(𝑟) + 𝐸𝐼𝐼              (3.3) 

                      𝐸𝐿𝐿[𝑛] = 𝐹𝐿𝐿[𝑛] + ∫ 𝑑3𝑟 𝑉𝑒𝑥𝑡(𝑟) 𝑛(𝑟) + 𝐸𝐼𝐼                                             (3.4) 
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where the Levy-Lieb functional of the density is defined as (3.5) [13]. 

                                       𝐹𝐿𝐿[𝑛] =  min
Ψ→𝑛(𝑟)

⟨Ψ|𝑇̂ + 𝑉̂𝑖𝑛𝑡|Ψ⟩                                               (3.5) 

In the equations (3.3, 3.4), ELL[n] is a functional of the density, and the ground state ia found by 

minimizing ELL[n] [13]. The Levy–Lieb formulation is more than just a reformulation of the 

Hohenberg–Kohn functional, because first, (3.5) clarifies the meaning of the functional and 

provides a way to make an operational definition: the minimum of the sum of kinetic plus 

interaction energies for all possible wavefunctions having the given density n(r) [13]. 

 The challenge posed by the Hohenberg–Kohn theorems is how to make use of the 

reformulation of many-body theory in terms of functionals of the density, because the theorems 

are in terms of unknown functionals of the density, and it is easy to show that these must be non-

local functionals, depending simultaneously upon n(r) at different positions r, which are difficult 

to cast in any simple form [13].  

 DFT does not provide a way to understand the properties of a material just by looking at 

the form of the density, but the key point is that it is an allowed density of a quantum mechanical 

system [13]. The difficulty, and also the central problem in the Kohn–Sham approach to density 

functional theory, can be illustrated by considering a case where the exact solution can be found 

– N non-interacting electrons in an external potential. In that case the exact Hohenberg–Kohn 

functional is nothing other than the kinetic energy [13]. The solution to this problem leads to the 

Kohn-Sham approach. 

 

3.3. The Kohn-Sham auxiliary system 

Kohn’s and Sham’s approach by replacing the original many-body problem with an 

auxiliary independent-particle problem lead to exact calculations of their properties [13].  As a 

self-consistent method, the Kohn–Sham idea involves independent particles but an interacting 

density, using the exchange–correlation energy functional Exc[n] [13]. Kohn and Sham assume 

that the ground state density of the original interacting system is equal to that of some chosen 

non-interacting system, which leads to independent particle equations for the non-interacting 

system that can be considered exactly soluble with all the many body terms incorporated into an 

exchange-correlation functional of the density [13]. The Kohn–Sham construction of an auxiliary 

system is based on two assumptions [13]: 

1. The exact ground state density can be represented by the ground state density of an 

auxiliary system of non-interacting particles; it carries the name “non-interacting-V-

representability” [13]. 
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2. The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an effective 

local potential 𝑉𝑒𝑓𝑓
𝜎 (𝑟) acting on an electron of spin σ at point r. It is assumed that the 

external potential 𝑉̂𝑒𝑥𝑡 is spin independent, here spin-orbit interactions are ignored. 

However, the auxiliary effective potential 𝑉𝑒𝑓𝑓
𝜎 (𝑟) must depend upon spin in order to give 

the correct density for each spin [13].  

The Kohn-Sham approach can also be schematically visualized in Figure 3.2. 

 

Figure 3.2. Schematic representation of the Kohn-Sham approximation [13]. 

The notation HK0 denotes the Hohenberg-Kohn theorem applied to the non-interacting problem. 

The arrow labeled KS provides the connection in both directions between the many body and 

independent particle systems, so that the arrows connect any point to any other point. So, 

theoretically, the solution of the independent particle Kohn-Sham problem determines all 

properties of the full many body system [13]. The calculations are done on the auxiliary 

independent-particle system, which is defined by the auxiliary hamiltonian (and using Hartree 

atomic units: ℏ =  𝑚𝑒 = 𝑒 =  
4𝜋

𝜖0
= 1) [13]. 

                                                  𝐻̂𝑎𝑢𝑥
𝜎 =  − 

1

2
 ∇2 +  𝑉𝜎(𝑟)                                                 (3.6) 

For a system of  𝑁 =  𝑁↑ + 𝑁↓ independent electrons obeying this Hamiltonian, the ground 

state has one electron in each 𝑁𝜎 orbitals 𝜓𝑖
𝜎(𝑟) with the lowest eigenvalues 𝜖𝑖

𝜎 of the 

Hamiltonian [13]. The density of the auxiliary system is given by sums of squares of the orbitals 

of each spin, resulting in (3.7) [13].  

                                𝑛(𝑟) =  ∑ 𝑛(𝑟, 𝜎) =  ∑ ∑ |𝜓𝑖
𝜎(𝑟)|2𝑁𝜎

𝑖=1𝜎𝜎                                            (3.7) 

The independent particle kinetic energy, written as Ts, is given by (3.8) [13]. 

                    𝑇𝑠 =  − 
1

2
 ∑ ∑ ⟨𝜓𝑖

𝜎|∇2|𝜓𝑖
𝜎⟩𝑁𝜎

𝑖=1𝜎 =  
1

2
 ∑ ∑ ∫ 𝑑3𝑟|∇𝜓𝑖

𝜎(𝑟)|2𝑁𝜎

𝑖=1𝜎                     (3.8) 
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The classical Coulomb interaction energy of the electron density n(r) interacting with itself is 

defined as (3.9) [13]. 

                                𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] =
1

2
 ∫ 𝑑3𝑟 𝑑3𝑟′  

𝑛(𝑟) 𝑛(𝑟′)

|𝑟−𝑟′|
                                             (3.9) 

The Kohn-Sham approach to the full interacting many-body problem is to rewrite the 

Hohenberg-Kohn expression for the ground state energy functional as in (3.10) [13]. 

                 𝐸𝐾𝑆 =  𝑇𝑠[𝑛] + ∫ 𝑑𝑟 𝑉𝑒𝑥𝑡(𝑟) 𝑛(𝑟) +  𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] + 𝐸𝐼𝐼 + 𝐸𝑥𝑐[𝑛]                 (3.10) 

In the equation (3.10), 𝑉𝑒𝑥𝑡(𝑟) is the external potential due to the nuclei and any other external 

fields, independent of spin, and 𝐸𝐼𝐼 is the interaction between the said nuclei [13]. All many body 

effects of exchange and correlation are grouped into Exc (the exchange correlation energy) [13]. 

Moreover, Exc can be written in terms of the Hohenberg-Kohn functional as in (3.11) [13]. 

                                 𝐸𝑥𝑐[𝑛] =  𝐹𝐻𝐾[𝑛] −  ( 𝑇𝑠[𝑛] +  𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛])                                  (3.11) 

And also in a much more revealing form-(3.12) [13]. 

                                 𝐸𝑥𝑐[𝑛] =  〈𝑇̂〉 −  𝑇𝑠[𝑛] + 〈𝑉̂𝑖𝑛𝑡〉 −  𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛]                                (3.12) 

Here [n] represents a functional of the density n(r,σ) which depends upon both positions in space 

r and spin σ [13]. The solutions of the auxiliary system are obtained by solving the Kohn-Sham 

equations-(3.13) [13]. 

(𝐻𝐾𝑆
𝜎 − 𝜀𝑖

𝜎) 𝜓𝑖
𝜎(𝑟) = 0                 (3.13) 

In the equation (3.13), 𝜖𝑖 represents the eigenvalues and HKS is the effective Hamiltonian (in 

Hartree atomic units) [13]. 

                                           𝐻𝐾𝑆
𝜎 (𝑟) =  −

1

2
 ∇2 + 𝑉𝐾𝑆

𝜎 (𝑟)                                                 (3.14) 

With:  

                                       𝑉𝐾𝑆
𝜎 (𝑟) =  𝑉𝑒𝑥𝑡(𝑟) + 

𝛿𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒

𝛿𝑛(𝑟,𝜎)
+  

𝛿𝐸𝑥𝑐

𝛿𝑛(𝑟,𝜎)
                                    (3.15) 

                                   𝑉𝐾𝑆
𝜎 (𝑟) =  𝑉𝑒𝑥𝑡(𝑟) +  𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝑟) +  𝑉𝑥𝑐

𝜎(𝑟)                                 (3.16) 

The Kohn-Sham equations must be solved subject to the condition that the effective potential 

𝑉𝑒𝑓𝑓
𝜎 (𝑟) and the density 𝑛(𝑟, 𝜎) are consistent [13]. A self-consistent solution requires a 

numerical procedure where Veff and n are successively changed, and once Exc and Vxc are chosen, 

the system can be solved self consistently [13]. This process is shown through a loop in Figure 

3.3 [13]. 
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Figure 3.3. Schematic representation of the self-consistent loop for the solution of Kohn-Sham equations. One must 

iterate two such loops simultaneously for the two spins, with the potential for each spin a functional of the density of 

both spins [13]. 

 

3.4. Functionals for exchange and correlation. The local spin density approximation 

The crucial quantity in the Kohn–Sham approach is the exchange–correlation energy 

which is expressed as a functional of the density Exc[n] [13]. As already seen before, the Kohn–

Sham approach is two-fold: first, the construction of an auxiliary system leads to tractable 

independent-particle equations that hold the hope of solving interacting many-body problems 
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[13]. Second, and more important, by explicitly separating the independent-particle kinetic 

energy and the long-range Hartree terms, the remaining exchange–correlation functional Exc[n] 

can be reasonably approximated as a local or nearly local functional of the density [13]. 

 Kohn and Sham pointed out that solids can often be considered as close to the limit of the 

homogeneous electron gas, and in that limit, it is known that the effects of exchange and 

correlation are local in character, and they proposed making the local density approximation 

(LDA), or more generally, the local spin density approximation (LSDA), in which the exchange–

correlation energy is an integral over all space with the exchange–correlation energy density at 

each point assumed to be the same as in a homogeneous electron gas with that density [13]. Then 

(3.17) [13]. 

𝐸𝑥𝑐
𝐿𝑆𝐷𝐴[𝑛↑, 𝑛↓] = ∫ 𝑑3𝑟 𝑛(𝑟)𝜀𝑥𝑐

ℎ𝑜𝑚 (𝑛↑(𝑟), 𝑛↓(𝑟)) = 

=  ∫ 𝑑3𝑟 𝑛(𝑟)[𝜀𝑥
ℎ𝑜𝑚 (𝑛↑(𝑟), 𝑛↓(𝑟)) + 𝜀𝑐

ℎ𝑜𝑚 (𝑛↑(𝑟), 𝑛↓(𝑟))]  (3.17) 

The LSDA can be formulated in terms of either two spin densities 𝑛↑(𝑟) and 𝑛↓(𝑟), or the total 

density 𝑛(𝑟) and the fractional spin polarization [13]. 

𝜉(r) =
𝑛↑(r)−𝑛↓(𝑟)

𝑛(r)
                  (3.18) 

So, the exchange energy is written as [13] 

𝜀𝑥(𝑛, 𝜉) = 𝜀𝑥(𝑛, 0) + [𝜀𝑥(𝑛, 1) − 𝜀𝑥(𝑛, 0)]𝑓𝑥(𝜉)         (3.19) 

Where [13] 

𝑓𝑥(𝜉) =
1

2

(1+𝜉)4 3⁄ +(1−𝜉)4 3⁄ −2

21 3⁄ −1
                                  (3.20) 

𝜀𝑥
𝜎 =

𝐸𝑥
𝜎

𝑁𝜎
= −

3

4
(

6

𝜋
𝑛𝜎)1 3⁄                  (3.21) 

                             𝛿𝐸𝑥𝑐[𝑛] =  ∑ ∫ 𝑑𝑟 [𝜖𝑥𝑐
ℎ𝑜𝑚 + 𝑛

𝜕𝜖𝑥𝑐
ℎ𝑜𝑚

𝜕𝑛𝜎
]𝜎

𝑟,𝜎
 𝛿𝑛(𝑟, 𝜎)                             (3.22)                            

The Kohn-Sham potential due to correlation and exchange is given by (3,23) [13]. 

𝑉𝑥𝑐
𝜎(𝑟) = [𝜀𝑥𝑐

ℎ𝑜𝑚 +
𝛿𝜀𝑥𝑐

ℎ𝑜𝑚

𝛿𝑛𝜎 ]𝑟 ,𝜎    (3.23) 

The potential in (3.23) involves only ordinary derivatives of 𝜖𝑥𝑐
ℎ𝑜𝑚(𝑛↑, 𝑛↓) [13]. In the last 

equation, the subscript r,σ means the quantities n square brackets are evaluated for 𝑛𝜎 = 𝑛(𝑟, 𝜎) 

[13]. The simplicity of the LDA exchange terms is due to 𝜖𝑥𝑐
ℎ𝑜𝑚(𝑛𝜎) scaling (𝑛𝜎)1 3⁄ , and 

knowing this, one can write (3.24) [13]. 
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                                                   𝑉𝑥𝑐
𝜎(𝑟) =

4

3
 𝜖𝑥𝑐

ℎ𝑜𝑚(𝑛(𝑟, 𝜎))                                            (3.24) 

Moreover, the most widely used forms are due to Perdew & Zunger, and Vosko, Wilkes, and 

Nussair (VWN) [13]. The correlation potential is further given by (3.25) [13]. 

                                                 𝑉𝑐(𝑟𝑠) =  𝜖𝑐(𝑟𝑠) −  
𝑟𝑠

3
 
𝑑𝜖𝑐(𝑟𝑠)

𝑑𝑟𝑠
                                            (3.25) 

3.5. Generalized-gradient approximations (GGAs) 

From LSDA were derived various Generalised-gradient approximations (GGAs) [13]. A 

functional of the magnitude of the gradient of the density |∇𝑛𝜎|, as well as the value n at each 

point is the first step in moving beyond the local approximation, and this approach had a 

beginning in Kohn and Sham’s paper as GEA (gradient expansion approximation) [13]. GEA 

had several limitations, and these limitations begin with the fact that it does not lead to consistent 

improvements when compared to LSDA, and that it violates certain conditions, such as the sum 

rules, which do not lead to good results [13]. Mainly, the gradients in real materials are very 

large and the expansion breaks down [13]. Furthermore, we can define the functional as a 

generalized form of (3.17) [13]. 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛↑, 𝑛↓] =  ∫ 𝑑3𝑟 𝑛(𝑟) 𝜖𝑥𝑐(𝑛↑, 𝑛↓, |∇𝑛↑|, |∇𝑛↓|, … )= 

                             = ∫ 𝑑3𝑟 𝑛(𝑟) 𝜖𝑥
ℎ𝑜𝑚(𝑛) 𝐹𝑥𝑐(𝑛↑, 𝑛↓, |∇𝑛↑|, |∇𝑛↓|, … )                            (3.26) 

where 𝐹𝑥𝑐 is dimensionless and 𝜖𝑥
ℎ𝑜𝑚(𝑛) is the exchange energy of the unpolarized gas [13].  

In the case of exchange, it is simple to show that there is a “spin-scaling relation”, using 

𝐸𝑥[𝑛] as the exchange energy for an unpolarized system of density n(r) [13]. 

                                         𝐸𝑥[𝑛↑, 𝑛↓] =
1

2
 [𝐸𝑥[2𝑛↑] + 𝐸𝑥[2𝑛↓]]                                       (3.27) 

Therefore, for the exchange we only consider the spin-unpolarized 𝐹𝑥(𝑛, |∇𝑛|) [13]. It is more 

convenient  to work in terms of dimensionless reduced density gradients of the mth order that 

can be defined by (3.28) [13]. 

                                         𝑠𝑚 =
|∇𝑚𝑛|

(2𝑘𝐹)𝑛
=

|∇𝑚𝑛|

2𝑚(3𝜋2)𝑚 3⁄ (𝑛)(1+𝑚 3) ⁄                                          (3.28) 

With 𝑘𝐹 = 3(2𝜋 3)⁄ 1 3⁄
𝑟𝑠

−1, 𝑠𝑚 is proportional to the mth-order fractional variation in density 

normalized to the average distance between electrons rs [13]. The form of the explicit expression 

for the first gradients is (3.29) [13]. 
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                                           𝑠1  ≡ 𝑠 =
|∇𝑛|

(2𝑘𝐹)𝑛
=

|∇𝑟𝑠|

2(2𝜋 3⁄ )1 3⁄ 𝑟𝑠
                                              (3.29) 

The lowest order terms in the expansion of 𝐹𝑥 have been calculated analytically and were found 

out as being (3.30) [13]. 

                                         𝐹𝑥 = 1 +  
10

81
𝑠1

2 +
146

2025
𝑠2

2 + ⋯                                                 (3.30) 

 

Figure 3.4. Exchange enhancement factor 𝐹𝑥 as a function of the dimensionless density gradient s for various GGAs 

[13]. 

 

The factors Fx of the widely used forms: Becke (B88); Perdew and Wang (PW91); Perdew, 

Burke and Enzerhof (PBE) are compared and represented in Figure 3.4. [13]. Most other 

approximations lead to an 𝐹𝑥 that falls between B88 and PBE, hence the qualitative results 

obtained by the application of other functionals can be appreciated from the behavior of these 

functionals [13]. The GGA can be derived into two regions: (i) small, where s is within the 

interval 0 < 𝑠 <̃  3; (ii) large, where s is 𝑠 >̃  3 [13]. Finding the change 𝛿𝐸𝑥𝑐[𝑛] to linear 

order in 𝛿𝑛 and 𝛿∇𝑛 =  ∇𝛿𝑛 leads to the identification of the potential in the GGA [13]. Its form 

can be observed in (3.31) [13]. 

                𝛿𝐸𝑥𝑐[𝑛] =  ∑ ∫ 𝑑𝑟 [𝜖𝑥𝑐 + 𝑛
𝜕𝜖𝑥𝑐

𝜕𝑛𝜎 + 𝑛
𝜕𝜖𝑥𝑐

𝜕∇𝑛𝜎 ∇]
𝑟,𝜎

 𝛿𝑛(𝑟, 𝜎) 𝜎                              (3.31) 

The term in the square brackets might be considered to be the potential, although, due to the last 

term being a differential operator, the potential does not have the form of a local potential [13]. 
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Furthermore, there are three approaches to the last term: finding a local 𝑉𝑥𝑐
𝜎 (𝑟) by partial 

integration of the last term in the square brackets, or using the operator from (3.31) directly 

through modifying the Kohn-Sham equations; and finally, treating Exc strictly as a function of the 

density [13].  The first approach shows (3.32) [13]. 

                                     𝑉𝑥𝑐
𝜎(𝑟) = [𝜖𝑥𝑐 + 𝑛

𝜕𝜖𝑥𝑐

𝜕𝑛𝜎 − ∇ (𝑛
𝜕𝜖𝑥𝑐

𝜕∇𝑛𝜎)]
𝑟,𝜎

                                      (3.32) 

Even though it has the disadvantage that it requires higher derivatives of the density, which leads 

to pathological potentials and numerical difficulties, it is still the most commonly used form 

[13]. For the second approach, we take advantage of the fact that the density can be written in 

terms of the wave functions 𝜓𝑖; the matrix elements of the operator can be written as (3.33) [13]. 

                          ⟨𝜓𝑖|𝑉̂𝑥𝑐|𝜓𝑖⟩ =  ∫[𝑉̃𝑥𝑐𝜓𝑗
∗𝜓𝑖 + 𝜓𝑗

∗𝑉𝑥𝑐 ∙ ∇𝜓𝑖 + (𝑉𝑥𝑐 ∙ ∇𝜓𝑗
∗)𝜓𝑖]                   (3.33) 

In the equation (3.33), 𝑉̃𝑥𝑐 =  𝜖𝑥𝑐 + 𝑛(𝜕𝜖𝑥𝑐 𝜕𝑛) ⁄ and 𝑉𝑥𝑐 =  𝑛(𝜕𝜖𝑥𝑐 𝜕∇𝑛) ⁄ ; this form is 

numerically more stable but it has a higher computational cost due to the inclusion of the 

additional vector operator in the Kohn-Sham equation [13]. Using the final approach, 𝑉𝑥𝑐
𝜎 (𝑟𝑚) 

can be found by varying n(rm,σ) in the expression for Exc and using the chain rule on (3.31) [13]  

                     𝑉𝑥𝑐
𝜎(𝑟𝑚) = [𝜖𝑥𝑐 + 𝑛

𝜕𝜖𝑥𝑐

𝜕𝑛
]

𝑟𝑚,𝜎
+  ∑ [𝑛

𝜕𝜖𝑥𝑐

𝜕|∇𝑛|
 

∇𝑛

|∇𝑛|
]

𝑟
𝑚′,𝜎

 𝐶𝑚′−𝑚𝑚′                    (3.34) 

This form reduces the numerical problems in (3.32) without a vector operator like in (3.33) [13]. 

Specifying the derivative on the appropriate basis can lead to the method being extended to other 

bases [13]. 

 

3.6.  Pseudopotentials 

 Theoretically, a pseudopotential is just replacing one problem with another [13]. By 

doing so, the first application in the electronic structure is to replace the strong Coulomb 

potential of the nucleus and the effects of the tightly bound core electrons with an effective ionic 

potential acting on the valence electrons [13]. The core states remain almost unchanged, which is 

why a pseudopotential can be generated in an atomic calculation and then used to compute the 

properties of valence electrons in molecules or solids [13]. Also, due to pseudopotentials not 

being unique we have a degree of freedom in choosing the form such that the calculations and 

the interpretation of the resulting electronic structures are simplified [13]. The key step in 

making accurate, transferable pseudopotentials is the requirement of “norm-conservation” [13].  
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 A pseudopotential can be generated in an atomic calculation and after that used to 

compute properties of valence electrons in molecules or solids, since the core states remain 

almost unchanged [13]. Furthermore, the fact that pseudopotentials are not unique allows the 

freedom to choose forms that simplify the calculations and the interpretation of the resulting 

electronic structure [13]. The advent of “ab initio norm-conserving” and “ultrasoft” 

pseudopotentials has led to accurate calculations that are the basis for much of the current 

research and development of new methods in electronic structure [13].  

 Scattering plays an essential role in interesting physical properties of electronic systems 

and basic electronic structure theory [13]. Scattering due to defects leads to such basic 

phenomena as resistivity in metals and is the basis for pseudopotential theory and all the methods 

that involve augmentation [13]. The scattering properties of a localized spherical potential at any 

energy ε can be formulated in terms of the phase shift ηl(ε), which determines the cross-section 

and all properties of the wavefunction outside the localized region [13]. 

 The basic element is the scattering from a single center, schematically represented in 

Figure 3.5.,  which will be considered here only in the spherical approximation, although the 

formulation can be extended to general symmetries [13]. 

 

 

Figure 3.5. Schematic illustration of scattering of a plane wave by a spherical potential [13]. 

 

The potential is localized, and it applies to a neutral atom, or some charged ions, and to the 

problem of a single muffin-tin potential, where the potential is explicitly set to a constant outside 

the muffin-tin sphere of radius S, and since the problem is inherently spherical, scattering of 

plane waves is described by first transforming to spherical functions [13]. 

e iq·r = 4π ∑   
𝐿 il jl(qr) 𝑌𝐿

∗ (𝑞̂ˆ) YL (𝑟̂)                                            (3.35) 
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In the equation (3.35), jl(qr) are spherical Bessel functions and YL (𝑟̂) ≡ Yl,m(θ,φ) denotes a 

spherical harmonic with {l, m} ≡ L [13]. Since there is no dependence upon the angle around the 

axis defined 𝑟̂, this can also be written as a function of r and θ [13]. 

 eiq·r = eiqrcos(θ) = ∑   
𝑙 (2l + 1) il jl(qr) Pl[cos(θ)]                               (3.36) 

And Pl(x) are the Legendre polynomials [13]. Using spherical symmetry, the scattering can be 

classified in terms of wavefunctions of angular momentum L ≡ {l, m} [13]. 

ψL(r) = il ψl(r) YL(θ,φ) = il r−1 φl(r)YL(θ,φ)                                     (3.37) 

Inside the region, where the potential is non-zero, radial function ψl(r) or φl(r) can be found by 

numerical integration of the radial Schrödinger equation [13]. Outside the region at large r, the 

solution must be a linear combination of regular and irregular solutions, i.e. spherical Bessel and 

Neumann functions jl(κr) and nl(κr), where κ2 = 𝜀 [13]. 

ψ𝑙
>(𝜀 , r) = Cl [jl(κr) – tan ηl(ε) nl(κr)]                                          (3.38) 

The energy-dependent phase shifts ηl(ε) are determined by the condition that ψ𝑙
> (ε, S) must 

match the inner solution ψl(ε, S) in value and slope at the chosen radius S, and in terms of the 

dimensionless logarithmic derivative of the inner solution [13], 

Dl(ε,r) ≡ r ψ𝑙
′(r) / ψl(r) = r 

𝑑

𝑑𝑟
 ln ψl(r)                                              (3.39) 

leading to the (3.40) result [13]. 

tan ηl(ε) = 
S 

𝑑

𝑑𝑟
 jl(κr)|S − Dl(ε) jl(κ S)

S 
𝑑

𝑑𝑟
 nl(κr)|S − Dl(ε) nl(κ S)

                                                 (3.40) 

The scattering cross-section for a single site at positive energies can be expressed in terms of the 

phase shift, and using asymptotic forms of the Bessel and Neumann functions at positive 

energies ε =  k2/2, the wave function, the equation (3.38), at large radius approaches (3.41) [13] 

ψ𝑙
> (ε, r) → 

Cl

kr
 sin [kr + ηl(ε) – 

lπ

2
                                             (3.41) 

which shows that each ηl is a phase shift for a partial wave [13]. The full scattered function can 

be written as [13] 

ψ𝑙
>(ε, r) → eiq·r + (i∙eiqr)/qr ∙∑ (2𝑙 + 1) 

𝑙  eiηl sin(ηl)Pl[cos(θ)]                  (3.42) 

and the scattering cross-section is then given by the scattered flux per unit solid angle [13], 
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dσ

𝑑𝛺
  = 

1

𝑞∙𝑞
 | ∑ (2𝑙 + 1) 

𝑙 eiηl sin(ηl)Pl[cos(θ)] |2                              (3.43) 

and the total cross-section by [13] 

σtotal = 2π ∫  sin(θ) dθ 
dσ

𝑑𝛺
 = 4π / q2 ∑  (2𝑙 + 1) 

𝑙  sin2(ηl)                      (3.44) 

 

3.7. Projector augmented waves (PAWs) 

The projector augmented wave method is a general but modern approach to the solution 

of the electronic structure through modern techniques for the calculation of total energies, forces 

and stress [13]. The PAW approach introduces projectors and auxiliary localized functions and it 

also defines a functional for the total energy that further involves auxiliary functions. [24] 

Moreover, PAW uses advances in algorithms to efficiently solve the generalized eigenvalue 

problem [13], 

                                      [−
1

2
∇2 +  𝑉𝑙𝑜𝑐𝑎𝑙 +  𝛿𝑉̂𝑁𝐿

𝑈𝑆 −  𝜀𝑖𝑆̂]  𝜓̃𝑖 = 0                                  (3.45) 

where 𝛿𝑉̂𝑁𝐿
𝑈𝑆 is given by the sum over ions [13], 

                              𝛿𝑉̂𝑁𝐿
𝑈𝑆 =  ∑ 𝐷𝑠,𝑠′  |𝛽𝑠⟩⟨𝛽𝑠′|𝑠,𝑠′                                                  (3.46) 

where 𝐷𝑠,𝑠′  is defined as [13], 

                                                 𝐷𝑠,𝑠′ =  𝐵𝑠,𝑠′ + 𝜀𝑠′  ∆𝑄𝑠,𝑠′                                                  (3.47) 

and ∆𝑄𝑠,𝑠′ is further defined as (3.48) [13]. 

                                                    ∆𝑄𝑠,𝑠′ =  ∫ 𝑑𝑟 ∆𝑄𝑠,𝑠′(𝑟) 
𝑅𝑐

0
                                           (3.48) 

The formulas (3.45-3.48) are used in Ultrasoft pseudopotentials, which reach the goal of accurate 

calculations through transformations that are comprised of a smooth function and an auxiliary 

function [13]. Ultrasoft pseudopotentials are discussed briefly with the PAW approximation due 

to the fact that they both introduce projectors and auxiliary localized functions [13]. Moving 

forward, the difference is that the PAW approach keeps the full all-electron wavefunction [13]. 

All the integrals are further evaluated as a combination of integrals of smooth functions 

extending throughout space plus localized contributions because these are evaluated through a 

radial integration over muffin-tin spheres [13]. This is due to the full wavefunction varying 

rapidly near the nucleus [13]. Starting with the PAW method for an atom, one can define a 
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smooth part of a valence wavefunction 𝜓̃𝑖
𝑣(𝑟) and a linear transformation  𝜓𝑣 =  Τ𝜓̃𝑣, where the 

latter relates the set of all-electron valence functions 𝜓̃𝑗
𝑣(𝑟) to the smooth functions 𝜓̃𝑖

𝑣(𝑟) [13].  

The transformation is unity in all cases apart from the case when we have a sphere centered on 

the nucleus, Τ = 1 +  Τ0 [13]. In addition, for simplicity purposes, the superscript 𝑣 as well as 

the labels i, j are omitted assuming that 𝜓𝑠 are valence states [13]. Going further on, through the 

adoption of the Dirac notation, the expansion of each smooth function |𝜓̃⟩ can be written in 

partial waves m within each sphere resulting (3.49) [13], 

                                                          |𝜓̃⟩ =  ∑ 𝑐𝑚𝑚 |𝜓̃𝑚⟩                                              (3.49) 

with the corresponding all-electron (3.50) function [13]. 

                                                  |𝜓⟩ = Τ|𝜓̃⟩ = ∑ 𝑐𝑚𝑚 |𝜓𝑚⟩                                             (3.50) 

Thus, the full wavefunction in all space can be written as (3.51) [13]. 

                                            |𝜓⟩ = |𝜓̃⟩ + ∑ 𝑐𝑚𝑚 {|𝜓𝑚⟩ − |𝜓̃𝑚⟩}                                      (3.51)      

If the transformation Τ is required to be linear, then the coefficients must be given by a 

projection in each sphere for some set of projection operators 𝑝 [13]. 

                                                         𝑐𝑚 =  ⟨𝑝𝑚|𝜓̃⟩                                                           (3.52) 

The one-center expansion ∑ |𝜓̃𝑚⟩⟨𝑝𝑚|𝜓̃⟩𝑚  of the smooth function 𝜓̃ equals 𝜓̃ itself, if the 

projection operators satisfy the biorthogonality condition [13]. 

                                                    ⟨𝑝𝑚|𝜓̃𝑚′⟩ =  𝛿𝑚𝑚′                                                         (3.53) 

Similar to pseudopotentials, there are several possible choices for the projector operators; 

however, the difference from pseudopotentials is that the transformation Τ still involves the full 

all-electron wavefunction [13]. 

                                          Τ = 1 + ∑ {|𝜓𝑚⟩ − |𝜓̃𝑚⟩} ⟨𝑝𝑚| 𝑚                                           (3.54) 

The general form of the PAW equations can be formed in terms of the transformation (3.54) 

[13]. One can derive all-electron results by applying the expressions to all the electron states; this 

is due to the possibility of the expressions being applicable to core and valence states equally 

[13]. Moreover, one can introduce a transformed operator 𝐴̃ in the original all-electron problem 

which operates on the smooth part of the wavefunctions [13]. 

            𝐴̃ =  𝑇†𝐴 ̂Τ = 𝐴 ̂ + ∑ |𝑝̃𝑚⟩𝑚𝑚′ {⟨𝜓𝑚|𝐴̂|𝜓𝑚′⟩ −  ⟨𝜓̃𝑚|𝐴̂|𝜓̃𝑚′⟩} ⟨𝑝̃𝑚′|                  (3.55) 
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One can see that it is very similar to a pseudopotential operator [13]. In addition, one can add 

any operator of the form below to the right side of (3.55) without any change in the expectation 

values [13].     

                                      𝐵̂ −  ∑ |𝑝𝑚⟩𝑚𝑚′ ⟨𝜓̃𝑚|𝐵̂|𝜓̃𝑚′⟩ ⟨𝑝𝑚′|                                            (3.56) 

The expressions for physical quantities in the PAW approach follow from (3.54) and (3.55), and 

the density can further be given as an example taking the (3.57) form [13], 

                                          𝑛(𝑟) = 𝑛̃(𝑟) + 𝑛1(𝑟) − 𝑛̃1(𝑟)                                               (3.57)  

which can be written in terms of eigenstates labeled i with occupations 𝑓𝑖 as [13] 

                                                  𝑛̃(𝑟) = ∑ 𝑓𝑖 |𝜓̃𝑖(𝑟)|2
𝑖                                                       (3.58) 

                           𝑛1(𝑟) =  ∑ 𝑓𝑖  ∑ ⟨𝜓̃𝑖|𝜓̃𝑚⟩𝜓𝑚
∗ (𝑟)𝜓𝑚′(𝑟)⟨𝜓̃𝑚′|𝜓̃𝑖⟩𝑚𝑚′𝑖                          (3.59) 

and  

                             𝑛1(𝑟) =  ∑ 𝑓𝑖  ∑ ⟨𝜓̃𝑖|𝜓̃𝑚⟩𝜓̃𝑚
∗ (𝑟)𝜓̃𝑚′(𝑟)⟨𝜓̃𝑚′|𝜓̃𝑖⟩𝑚𝑚′𝑖                         (3.60) 

The last two terms in equation (3.60) are localized around each atom and the integrals can be 

done in spherical coordinates without problems from the string variations near the nucleus [13]. 

Also, when discussing PAW in molecules and condensed matter, the (3.58-3.60) expressions are 

still applicable [13]. However, it is of greatest importance to give the form of the total energy, 

which results from the basic Kohn-Sham equations and expressions for forces and more [13]. 

The total energy can be written in a similar manner to the density, as a sum of three terms [13], 

                                          𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸̃𝑡𝑜𝑡𝑎𝑙 + 𝐸𝑡𝑜𝑡𝑎𝑙
1 + 𝐸̃𝑡𝑜𝑡𝑎𝑙

1                                            (3.61) 

where the energy due to the smooth functions evaluated in Fourier space or a grid that extends 

throughout space is denoted as 𝐸̃, the same terms evaluated only in the spheres on radial grids is 

denoted as 𝐸̃1, and the energy in the spheres with the full functions is denoted as 𝐸1 [13]. The 

classic Coulomb terms are given directly by the density, but nevertheless, they can be rearranged 

in different ways to improve the Coulomb sums’ convergence [13]. An additional density is 

added in the PAW approach in 𝑛̃(𝑟) and 𝑛̃1(𝑟) such that the multi-pole moments of the terms 

𝑛1(𝑟) − 𝑛̃1(𝑟) in (3.57) disappear [13]. Hence, the electrostatic potential resultant from these 

terms disappears, as well outside the augmentation spheres around each atom [13].  

Similarly to the total energy and the density, Exc is also divided into three terms with each 

involving the total density evaluated in different regions [13]. Furthermore, the Kohn-Sham 
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equations can be derived straightforwardly through the functional derivatives of the total energy 

[13]. To conclude, the large inter-atomic terms do not enter the derivatives and forces can be 

derived by derivatives of the structure constant [13]. In conclusion, the PAW method permits 

accurate calculations with a smaller set of planewaves [13].  

 

3.8. The LDA+U approximation 

 

The LDA+U approximation is an upgrade made to cover the insufficiencies of the LDA 

when describing materials with localized 4f orbitals and strongly interacting electrons (transition 

metal oxides). For this to be done, it couples LDA with an additional orbital dependent 

interaction, a Hubbard-like “U” interaction [14]. 

 The electrons are separated into two subsystems: 

• Localized d or f electrons; 

• Delocalized s or p electrons. 

The generalized LDA+U functional is given by equation (3.62) [14]. 

𝐸𝐿𝐷𝐴+𝑈[𝑛(𝑟)] = 𝐸𝐿𝐷𝐴[𝑛(𝑟)] + 𝐸𝑈[𝑛𝑚
𝐼,𝜎] − 𝐸𝐷𝐶[𝑛𝐼,𝜎]  (3.62) 

In (3.62) 𝐸𝐿𝐷𝐴 is the LSDA energy term,  𝑛(𝑟) is the energy density and 𝑛𝑚
𝐼,𝜎

 is the atomic orbital 

occupation with spin 𝜎 for the correlated atom 𝐼 [14]. 

𝐸𝑈[𝑛(𝑟)] =
1

2
∑ [⟨𝑚, 𝑚′′|𝑉𝑒𝑒|𝑚′, 𝑚′′′⟩𝑛

𝑚𝑚′
𝐼,𝜎 𝑛

𝑚′′𝑚′′′
𝐼,−𝜎

{𝑚},𝐼,𝜎 + (⟨𝑚, 𝑚′′|𝑉𝑒𝑒|𝑚′, 𝑚′′′⟩ −

⟨𝑚, 𝑚′′|𝑉𝑒𝑒|𝑚′′′, 𝑚′⟩)𝑛
𝑚𝑚′
𝐼,𝜎 𝑛

𝑚′′𝑚′′′
𝐼,−𝜎

    (3.63) 

In equation (3.63) 𝑉𝑒𝑒 meets the screened Coulomb interactions between the localized 

electrons [14].  

Next, 𝐸𝑈 can be expressed in terms of 𝑈 and 𝐽 as follows in (3.64-3.65) [14]. 

𝑈 =
1

(2𝑙+1)2
∑ ⟨𝑚, 𝑚′|𝑉𝑒𝑒|𝑚, 𝑚′⟩𝑚,𝑚′     (3.64) 

𝐽 =
1

2𝑙(2𝑙+1)
∑ ⟨𝑚, 𝑚′|𝑉𝑒𝑒|𝑚, 𝑚′⟩𝑚,𝑚′     (3.65) 

𝐸𝐷𝐶 is a double counting term that has the function of removing the same amount of Coulomb 

repulsion from the LDA part of the Hamiltonian. It is not uniquely defined and can be assessed 
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using the following schemes: the Around Mean Field (AMF) scheme [15] or the Fully-Localised 

Limit (FLL) scheme, which is better adapted for strongly correlated materials [16]. 

 For 𝐸𝐷𝐶 the following form was proposed by Anisimov in 1997 [14] 

𝐸𝐷𝐶[𝑛𝜎] =
1

2
𝑈𝑁(𝑁 − 1) −

1

2
𝐽(𝑁↑(𝑁↑ − 1) + 𝑁↓(𝑁↓ − 1)  (3.66) 

where 𝑁𝜎 = 𝑇𝑟(𝑛𝑚𝑚′
𝜎 ) and  𝑁 = 𝑁↑ + 𝑁↓ 

𝑛𝑚𝑚′
𝜎 = −

1

𝜋
∫ 𝐼𝑚𝐺𝑖𝑛𝑙𝑚,𝑖𝑛𝑙𝑚′

𝜎 (𝐸)𝑑𝐸
𝐸𝐹

 
       (3.67) 

where 𝐺𝑖𝑛𝑙𝑚,𝑖𝑛𝑙𝑚′
𝜎  are the elements of the Green function matrix in the localized 

representation [14]. 

 The Hamiltonian, 𝐻̂, will have an additional effective single particle potential [14] 

𝐻̂ = 𝐻̂𝐿𝑆𝐷𝐴 + ∑ |𝑖𝑛𝑙𝑚𝜎〈𝑉𝑚𝑚′
𝜎 〉𝑖𝑛𝑙𝑚′|𝑚𝑚′          (3.68) 

where [14] 

𝑉𝑚𝑚′
𝜎 = ∑{⟨𝑚, 𝑚′|𝑉𝑒𝑒|𝑚′, 𝑚′′′⟩𝑛𝑚′′𝑚′′′

−𝜎 − (⟨𝑚, 𝑚′|𝑉𝑒𝑒|𝑚′, 𝑚′′′⟩ −

⟨𝑚, 𝑚′|𝑉𝑒𝑒|𝑚′′′, 𝑚′⟩)𝑛𝑚′′𝑚′′′
𝜎 } − 𝑈(𝑁 −

1

2
) + 𝐽(𝑁𝜎 −

1

2
)  (3.69) 
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4. Results and discussions  

The PrCo3 cell can either be represented as a rhombohedral cell or as a hexagonal unit 

cell [17]. The primitive rhombohedral cell that was used is three times smaller than the normal 

one, because the symmetries allowed the cell minimization.   

 

 

Figure 4.1. PrCo3 primitive cell structure. 

 

The cell visualization in Figure 4.1. is obtained using the VESTA program [18]. In this cell, 

there are 3 atoms of Pr and 9 of Co, having their positions in Table 4.1. These positions were 

used in the input file. 

                                               Table 4.1. Pr and Co atoms’ positions in the PrCo3 cell 

Pr 0.000000000 0.000000000 0.000000000 

Pr 0.141399994 0.141399994 0.141399994 

Pr 0.858600020 0.858600020 0.858600020 

Co 0.500000000 0.500000000 0.500000000 

Co 0.333333343 0.333333343 0.333333343 

Co 0.666666627 0.666666627 0.666666627 

Co 0.583333313 0.082500003 0.583333313 

Co 0.416666687 0.917500019 0.416666687 

Co 0.583333313 0.583333313 0.082500003 

Co 0.416666687 0.416666687 0.917500019 

Co 0.082500003 0.583333313 0.583333313 

Co 0.917500019 0.416666687 0.416666687 
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For the PrCo3
 compound was used symmetric Monkhorst-Pack grids shifted by (0.5, 0.5, 0.5),  

having 1, 2, 5, 6, 10, 12 and 28 k-points in the Brillouin zone.   

The electronic structure calculations were performed using the Abinit software [19-21]. 

Abinit is able to calculate observable properties of materials making use of the density functional 

theory by using pseudopotentials and a plane wave basis set, and basically solving the Kohn-

Sham equations [22] using the PAW (Projector-Augmented Wave) method discussed before 

[23]. The exchange and correlation calculations were done using the Perdew-Burke-Ernzherof 

(PBE) Generalized Gradient Approximation (GGA) functional [24,25]. The DFT+U approach 

was employed by using the Full Localized Limit, or FLL, double counting correction [27] in 

order to accurately describe the Pr 4f electrons [26]. Next is the procedure for the Pr 4f shells. 

The literature suggested that for U and J values, where U is the screened Coulomb interaction, 

and J is the screened exchange interaction to use U=7 eV and J= 0.9 eV [28]. The PAW datasets 

that were used in the calculations were extracted from the JTH PAW atomic datasets tables 

having the version 1.1 [29]. 

The calculations had for input data the parameters from a rhombohedral PrCo3 unit cell. 

After the data from the input files was used to make the calculations, the relevant data to our 

study was extracted from the output files.  After extracting the values, the next step was to 

represent the results in the graph plotted in Figure 4.2  to be able to continue our study.  
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Figure 4.2. The variation of the cutoff energy with respect to the total energy for different k-points grids. 

  

By performing ground state calculations and plotting the energy for different k-points 

grids we can find the ideal grid and cutoff energy. By analyzing Figure 4.2. we can tell that the 

energy has a local minimum point of around 25 Ha, but it continues to decrease to a global 

minimum. It can be seen that the plots for 2 k-points and 12 k-points were the most off compared 

to the other sets, and were not taken into consideration for the future convergence studies. The 

convergence studies were performed in function of the plane-wave cutoff energy and the number 

of k-points. 

The convergence criterion was that the total energy variation to be less than 1 mHa. For a 

better visualization of the energy, the energy variation for the 2, 6, 10 and 16 k-points was 

plotted in Figure 4.3., and starting at the value of 32 Ha, the criterion is met. The problem of 

choosing the best value appears with the need to take a margin of error, not to be on the limit of 

1 mHa, but at the same time not to have too much computational time. The more k-points there 

are, the calculation time increases drastically. The margin of error part has been studied in detail 

in Figure 4.3. Taking that into consideration, the most suitable value was 36 Ha. 
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Figure 4.3. The energy difference for different values of the cutoff energy. 

After finding the ideal energy cutoff value at 36 Ha, the next step is plotting the convergence 

energy which was extracted for every k-point grid with respect to the k points. This was done in 

Figure 4.4. 

 

Figure 4.4. Detail of the convergence energy at different k-points grids at a value of the cutoff energy of 36 Ha. 
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By looking at the difference between the convergence energies, one can see that there is no 

difference between 16 k-points and 28 k-points, so the one with the least computational time 

needed will be chosen, and that would be the 16 k-points grid. The grids with smaller k-points 

need even less time to complete the calculations, but before 16 k-points the energy fluctuates, 

and with a smaller number of points, the less accurate the results are. These differences in energy 

appear when the integrations are done on the Brillouin zone.  

 Moving forward, based on the parameters obtained before, self-consistency studies were 

performed. For these to be done, the volume was needed. The problem presents itself in two 

ways: the system can be treated as nonmagnetic or as ferromagnetic. Each of them will be 

analyzed individually. 

 Let us treat the nonmagnetic system first. The total energies obtained before were divided 

by the number of atoms in the cell, which was 12. The energies were varied for different 

volumes, meaning that the cell was being modified, because the primitive cell volume is 

dependent on the lattice parameter. Stretching and pulling the cell gave us different volumes and 

energies, and after plotting the curve, the nonlinear fit will give us the nonmagnetic lattice  

 

 

Figure 4.5. Total energy variation with respect to volume and the function’s nonlinear fit (Nonmagnetic). 

 

parameter. The nonlinear fit was performed using the Birch-Murnaghan equation of state, which 

is expressed in (4.1) [30]. 
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𝐸(𝑉) =  𝐸0 + 
9𝑉0𝐵0

16
{[(

𝑉0

𝑉
)

2

3
− 1]

3

𝐵0
′ + [(

𝑉0

𝑉
)

2

3
− 1]

2

[6 − 4 (
𝑉0

𝑉
)

2

3
]}                      (4.1.) 

In this equation, B0 is the bulk modulus-which is unknown, B0’ is the derivative of the bulk 

modulus, V is the deformed volume, V0 is the reference volume [30]. The bulk modulus is 

obtained from the fit. Figure 4.5. shows the graphic and its fit. The lattice parameters were varied 

through different magnetic states using the equation (4.1) of state so it could be seen which state 

provided the greatest stability.  Resulting from the fit was the nonmagnetic lattice parameter, a, 

and it was 8.697 Å, which can be approximated to 8.7 Å. 

Now let us treat the ferromagnetic system, and see how it performs under the same 

operations done in the nonmagnetic one. The results can be seen in Figure 4.6. The lattice 

parameter was calculated using the same methods. In this case, the general lattice parameter was 

8.75 Å.  

 

 

Figure 4.6. Total energy variation with respect to volume and the function’s nonlinear fit (Ferromagnetic). 
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Figure 4.7. Nonmagnetic and Magnetic total energy dependence on volume with the fit. 

 

For a better visualization of the two dependencies, the graphs were overlapped, and the result is 

Figure 4.7. Comparing the two, one can affirm that the total energy in the ferromagnetic system 

is lower than in the nonmagnetic one. This means that the ferromagnetic case is the ground state 

and it is more stable. Moving on, using the convergence parameters and the minimum volume 

for the ferromagnetic state, we performed a self-consistent calculation to determine the magnetic 

moments and the density of states (DOS).  

For this, the magnetic moments for each atom of the total of 12 atoms were extracted in 

Table 4.2. In the hexagonal cell, the Pr atoms occupy the 3a and 6c positions, while the Co atoms 

3b, 6c, and the18h ones. In the PrCo3 cell, there are two classes of Pr and three of Co, and each 

atom has a different vicinity (different crystallographic sites) indicated by the notation in 

parentheses. These notations 3b, 6c and 18h represent the positions of the atoms. 

 
Table 4.2.  Experimental and calculated spontaneous magnetization values MS, spin magnetic  

moment values MPr and MCo corresponding to the magnetic moments of Pr and Co respectively. 

MPr (3a) 

(μB/at) 

MPr (6c) 

(μB/at) 

MCo (3b) 

(μB/at) 

MCo (6c) 

(μB/at) 

MCo (18h) 

(μB/at) 

< MPr> 

(μB/at) 

< MCo> 

(μB/at) 

MS 

(μB/f.u.) 

2.42 2.42 1.24 0.92 0.92 2.42 0.96 5.29 [17] 

1.86 1.81 1.04 1.50 1.29 1.83 1.31 5.75 
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The first row in Table 4.2 containes the experimental values for the spontaneous 

magnetization values MS, spin magnetic moment values MPr and MCo for Pr and Co atoms 

situated in various crystallographic sites. Also,  < MPr> , < MCo> are present, which indicate the 

average values of the component atoms. The second row contains the calculated values 

(extracted from the self-consistent calculations) using the ferromagnetic system as the ground 

state. The experimental values are generated from neutron diffraction experiments. Both Pr 

magnetic moments, as being compared in Table 4.1., appear to be smaller in comparison to the 

experimental ones. Talking about the Co magnetic moments, the Co (3b) moment is smaller than 

the experimental values, but the Co (6c) and Co (18h) moments are larger.  

The calculated moments MPr (3a) and MPr (6c) are not the same, but close in value, 

although the experimental ones are identical and greater in value. This was expected because the 

4f shells are localized orbitals and close to the atom nucleus and are unaffected by the 

movements of the electrons from the outer shells. The total magnetic moment is the result of the 

vectorial sum between the spin moment and the orbital moment. The difference of approximately 

0.6 μB/at between the average experimental magnetic moment of Pr and the calculated one is a 

result of the fact that the Abinit code does not have access to the orbital moment. If this moment 

would be available, the error would be much smaller, therefore the result would be more accurate 

with the experiment. The code is currently under development and would be improved in the 

future. In the Co case, the values are closer to the experimental ones, although having a 0.4 μB/at  

 

Figure 4.8. The total density of states plot for Pr and Co using the PAW-GGA method. 
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difference. These can occur due to the lack of the spin-orbit implementations, which affects the 

magnetic moments, and therefore the average magnetic moment of the Co. The total magnetic 

moment is close too, the errors propagation being already discussed. 

Next, the total density of states, or DOS, was plotted for both Pr and Co and in both spin 

channels in Figure 4.8. This was done to observe their different behaviors and for further 

comparations. The line at the zero mark represents the Fermi level. After this mark the states are 

free. By looking at the graph in Figure 4.8 one can see that the Pr densities (green) reach an all-

time peak around -3.5 eV.  The spin up is greater than the spin down, which is almost inexistent, 

and there are localized states, because the peak distribution is narrow (in comparison with Co).  

In the Co case, the spin down states are shifted to greater states (to the right- it is called the 

exchange splitting) but if compared, the spin up states are more than the spin down states. This 

behavior indicates a magnetic moment on Co (Co orbitals are shared and Co is ferromagnetic).  

The equilibrium lattice parameter for the magnetic system theoretically was obtained to be 

8.75Å. Following the experimental method, the lattice parameter is 8.742 Å [7]. The difference 

between the two values is negligible, meaning that the calculations were correct. 
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5. Conclusions 

The purpose of this work was to computationally determine the electronic structure and 

the magnetic properties of PrCo3 using Abinit’s DFT- derivated software packages. The first step 

was to execute the convergence studies in order to determine the ideal cutoff energies and the k-

point grids to be further used in order to ensure both computational accuracy and efficient use of 

computational resources. These calculations were performed on 1, 2, 5, 6, 10, 16 and 28 k-points 

grids. After plotting for each grid the energy cutoff and the total energy, some extractions were 

made. The most suitable value for the cutoff energy was 36 Ha, and the grid was the one that had 

16 k-points.  

After that, the self-consistency studies were carried on for two systems- a nonmagnetic 

system and a ferromagnetic one. The plotted graphics were fitted using the Birch-Murnaghan 

equation of state. After all the calculations and approximations, the lattice parameter for the 

nonmagnetic system was found to be 8.7Å, and the parameter for the ferromagnetic one 8.75Å. It 

was revealed that the ground state, the most stable configuration, was the ferromagnetic one.  

From plotting the densities of states it was also shown that PrCo3 has a metallic character, 

having a magnetic moment on Co, which is ferromagnetic. The magnetic moments were 

consistent with experimental data, the differences and errors appearing during the calculation 

process, due to the approximations or due to the used method and Abinit’s shortages. Abinit is 

constantly improving though. Moreover, the equilibrium lattice parameter for the ferromagnetic 

system was incredibly close to the value calculated using experimental data- the theoretically-

obtained one was 8.75Å, and the experimental one was 8.742Å. That being said, by using DFT 

computational computing, one can accurately analyze the properties and the structure and 

behaviors of not only PrCo3, but also other 3d transition metals. 
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