SYLLABUS

1. Information regarding the program

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Physics
1.3 Department	Doctoral School of Physics
1.4 Field of study	Physics
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training/PhD in Physics

2. Course data

2.1 Name of discipline			Spectroscopic methods for environmental monitoring,				
			ph	pharmaceutical characterization and bioprocessing / Metode			
			sp	spectroscopice pentru monitorizarea mediului, studiul			
			medicamentelor și bioprocesare				
2.2 Teacher resp	ons	ible for	Prof. dr. Monica Baia, CS I dr. Alina Magdaş, Prof. dr.				
lectures			Simona Pinzaru				
2.3 Teacher resp	ons	ible for	Prof. dr. Monica Baia, CS I dr. Alina Magdaş, Prof. dr.				
seminars			Simona Pinzaru				
2.4 Year of	I	2.5 Semester	Ι	2.6 Type of	E	2.7 Course	DS
study				evaluation		framework	

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	3	Out of which:	2	3.3 Seminars /	1
		3.2 Lectures		Laboratory classes	
3.4 Total hours in the curriculum	36	Out of which:	24	3.6 Seminars /	12
				Laboratory classes	
		3.5 Lectures		,	
Allocation of study time:					89
Study supported by textbooks, other course materials, recommended bibliography and				34	
personal student notes					
Additional learning activities in the library, on specialized online platforms and in the field				24	
Preparation of seminars/laboratory classes, topics, papers, portfolios and essays				15	
Tutoring				12	
Examinations				4	
Other activities: -				_	

3.9 Total individual study hours	89
3.10 Total hours per semester	125
3.11 Number of ECTS credits	10

4. Prerequisites (if necessary)

4.1 Curriculum	Atomic and molecular physics, Quantum mechanics, Optics, Spectroscopy
	and Lasers,
4.2 Competences	- experimental skills for molecular characterization of environmental,
	pharmaceutical, biological samples
	- skills in using spectroscopy techniques and technology for developing
	target applications in pharmaceutical field, environmental control and
	monitoring, molecular exploring, food control, authentication, biomaterials
	engineering, plastisphere; data analysis, metabolomics, bioeconomy

5. Conditions (where applicable)

5.1 Conducting lectures	Course hall, appropriate board, projector, dedicated	
U	software, computer	
5.2 Conducting	Course hall, appropriate board, projector, dedicated	
seminars/laboratory classes	software, computer network	

6. Specific competences acquired

- Competencies to formulate hypotheses and interpretations based on scientific arguments, measurements and experimental data specific to spectroscopic methods applied environmental monitoring, pharmaceutical characterization and bioprocessing
- - Practical skills in using high performance equipment.
- The ability to obtain and interpret experimental data correlated with current knowledge in the field;
- The capacity for scientific synthesis and academic writing of research results
- Ability to plan and organize. Interdisciplinary way of thinking
- ability of molecular characterization of real-world samples.
- Abilities to develop quantitative analyses in complex samples, build molecular models and use AI based data processing
- Correlation of experimental data with theoretical models
- -discrimination and authentications of pharmaceutical, food and beverage products
- Communicating complex scientific ideas, the conclusions of experiments or the results of a scientific project.
- Ability to obtain and support scientifically argued results; ability to develop scientific papers.
- ability to develop specific applications in demand to new regulations or business- specific. -translating science to market

Professional competences

Transversal competencies

- Competences in using high performance spectroscopy technology for developing market-demanded applications
- Application of nanotechnology and spectroscopy methods in multidisciplinary projects
- Effective work in multidisciplinary team on different hierarchical levels, fulfilling specific roles within a team, showing initiative and entrepreneurial leadership based on dialogue, cooperation positive attitudes, mutual respect, diversity and multiculturalism and continuous improvement of the own activities.
- -Effective use of information sources, scientific communication and professional training resources, both in Romanian and English.

7. Course objectives (based on the acquired competencies grid)

7.1 The general	- Acquiring advanced experimental and theoretical knowledge of	
objective of the	spectroscopic methods suitable for environmental monitoring,	
discipline	pharmaceutical characterization and bioprocessing	
	- Learning spectroscopic technology to develop specific applications in	
	answer to market demand and current regulations	
7.2 Specific objectives	- Knowledge of different spectroscopic methods theory and their	
	practical use for different interdisciplinary applications related to	
	environmental monitoring, pharmaceutical characterization and	
	bioprocessing	
	- Acquiring the ability to use advanced experimental methods in	
	interdisciplinary applications	
	- Familiarization of doctoral students with the most used spectroscopic	
	methods, their advantages and limitations	
	- Encourage interdisciplinary research .	
	- Learning the principles, methods and experimental techniques	
	operating in environmental conditions, handling real- world samples	
	including those from extreme conditions.	
	- Developing and validating specific analytic applications	

8. Content

8.1 Lectures	Teaching methods	Comment
		s
1. Raman and surface-enhanced Raman spectroscopy- tools	Interactive lecture,	2 hours
for various applications - theoretical considerations	Directed discussion,	
2. Raman and SERS investigations of pharmaceuticals	debate, Case-based	2 hours
3. Round-robin experiments– a step from Raman	learning, Just-in-	2 hours
spectroscopy lab towards analytical applications	time teaching	
4. Spectroscopic methods used for environmental		2 hours
applications (e.g. investigations of different dual/multi-		
functional materials)		

	T	Т
5. Development and validation of analytical methods.		2 hours
Determination of performance parameters and		
measurement uncertainty.		
6. General principles of mass spectrometry.		2 hours
7. Applications of mass spectrometry in environmental		2 hours
studies and food safety.		
8. Metabolomic and AI-based omics approaches in food		2 hours
safety. Perspectives and constraints.		
9. Surface-enhanced Raman spectroscopy - a versatile tool		2 hours
for environmental applications: case study -salt water		
bodies		
10. Development of multidisciplinary detection, monitoring		2 hours
and/or biosensing applications based on optical		
spectroscopy techniques and technologies (Raman, IR,		
UV-VIS, SERS, resonant Raman, resonant SERS)		
11. Process control based on Raman spectroscopy and		2 hours
complementary methods		
12. Spectroscopy solutions for plastisphere		2 hours
8.2 Seminars / laboratory classes	Teaching methods	Comment
		s
1. Vibrational analysis (Raman, IR, SERS) of some	Problem based	2 hours
pharmaceutical and biomedical compounds	learning, Project	
2. Interlaboratory study on SERS-case study	based learning,	1 hour
3. Spectroscopic methods tackling specific features of some	Inquiry guided	1 hour
photocatalysts (e.g. self-cleaning SERs substrates)	learning,	
4. Case study: wines authentication	Experiential	1 hour
5. Improvements of wine recognition models based on fused	learning	1 hour
spectroscopic data		

Bibliography

Spectroscopy Solutions

bioeconomy

dependencies

6. Case study: Food products authentication (I)

7. Case study: Food products authentication (II)

11. Macro, micro and nanoplastic management:

9 Optical spectroscopy techniques addressing aquatic

microbial community, aquatic biotoxin and their control 10. Reusing biogenic materials of aquatic origin; Blue

8. Environmental water analyses using SERS: understanding

1. M. Baia, S. Astilean, T. Iliescu, Raman and SERS investigations of pharmaceuticals, Springer-Verlag GmbH, Berlin/Heidelberg, Germany, pp 214, 2008.

1 hour

1 hour

1 hour

1 hour

1 hour

1 hour

- 2. S. Fornasaro, F. Alsamad, M. Baia, L. A. E. Batista de Carvalho, C. Beleites, H. J. Byrne, A. Chiadò, M. Chis, M. Chisanga, A. Daniel, J. Dybas, G. Eppe, G. Falgayrac, K. Faulds, H. Gebavi, F. Giorgis, R. Goodacre, D. Graham, P. La Manna, S. Laing, L. Litti, F. M. Lyng, K. Malek, C. Malherbe, M. P. M. Marques, M. Meneghetti, E. Mitri, V. Mohaček-Grošev, C. Morasso, H. Muhamadali, P. Musto, C. Novara, M. Pannico, G. Penel, O. Piot, T. Rindzevicius, E A. .Rusu, M. S. Schmidt, V. Sergo, G. D. Sockalingum, V. Untereiner, R. Vanna, E. Wiercigroch, A. Bonifacio, Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study, *Analytical Chemistry* 2020 92 (5), 4053-4064, DOI: 10.1021/acs.analchem.9b05658
- 3. Rusu, E.-A.; Baia, M. Moving from Raman Spectroscopy Lab towards Analytical Applications: A Review of Interlaboratory Studies. *Instruments* **2023**, *7*, 30. https://doi.org/10.3390/instruments7040030
- 4. M. Baia, V. Danciu, Z. Pap, L. Baia, Towards Improving the Functionalities of Porous TiO₂-Au/Ag Based Materials, chapter 7 in Advanced Sensor and Detection Materials, Book Editor(s):Ashutosh Tiwari, Mustafa M. Demir, Copyright © 2014 Scrivener Publishing LLC. All rights reserved, 13 June 2014, https://doi.org/10.1002/9781118774038.ch7
- 5. Székely, I.; Kovács, Z.; Rusu, M.; Gyulavári, T.; Todea, M.; Focşan, M.; Baia, M.; Pap, Z. Tungsten Oxide Morphology-Dependent Au/TiO₂/WO₃ Heterostructures with Applications in Heterogenous Photocatalysis and Surface-Enhanced Raman Spectroscopy. *Catalysts* **2023**, *13*, 1015. https://doi.org/10.3390/catal13061015
- 6. Simona Cîntă Pînzaru, A. Fălămaş, C.A. Dehelean, Chapter 6 Raman Spectroscopy: A Key Analytical Tool for New Drugs Research and Development, Editor(s): Atta-ur-Rahman, Studies in Natural Products Chemistry, Elsevier, Volume 61, 2019, P.211-250, https://doi.org/10.1016/B978-0-444-64183-0.00006-3.
- 7. Confocal Raman Microscopy, Editors: Toporski, Jan, Dieing, Thomas, Hollricher, Olaf (Eds.), Springer Series in Surface Sciences, 2018
- 8. Atomic and Molecular Spectroscopy; Basic Concepts and Applications, Rita Kakkar, Cambridge University Press, 2015.
- 9. Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications Cap. 6. Simona Cinta Pinzaru, I.Pavel, SERS and pharmaceuticals; Wiley-VCH, 2011
- 10. S. Guo, O. Ryabchykov, N. Ali, R. Houhou, and T. Bocklitz, in Reference Module in Chemistry, Molecular Sciences, and Chemical Engineering (Elsevier, Amsterdam, The Netherlands, 2020). https://doi.org/10.1016/B978-0-12-409547-2.14600-1.
- 11. I. Marica, S. C. Pînzaru, **A** Raman spectral database of naturally aged plastics: A proof-of-concept study for waste plastic sorting *J Raman*
- Spectrosc 2023, 54(3), 305. https://doi.org/10.1002/jrs.6484
- 12. Food Authentication: Management, Analysis, and Regulation", Constantinos A. Georgiou & Georgios P. Danezis, (2017) Chichester, UK; Hoboken, NJ: John Wiley & Sons Ltd., ISBN 9781118810262).
- 13. Magdas, D.A. and Berghian-Grosan, C. (2021). Raman Spectroscopy. In Electromagnetic Technologies Food Science (eds V.M. Gómez-López and R. Bhat).
- https://doi.org/10.1002/9781119759522.ch13
- 14. Magdas, D.A., Cozar, B.I., Feher, I. et al. Testing the limits of FT-Raman spectroscopy for wine authentication: Cultivar, geographical origin, vintage and terroir effect influence. Sci Rep 9, 19954 (2019). https://doi.org/10.1038/s41598-019-56467-y

9. Aligning the contents of the discipline with the expectations of the epistemic community, representatives, professional associations and standard employers operating in the program field

The content of the discipline is in line with what is studied in other university centers in the country and abroad. In order to adapt to the requirements imposed by the labor market, the content of the discipline was harmonized with the requirements imposed by the specifics of postgraduate education, research institutes and the business environment.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Weight
		methods	in the final
			grade
10.4 Lectures	Assessment of knowledge	Written exam	-
	Assessment of knowledge	Ongoing tests	50%
10.5 Seminars /	Activity during seminars	Discussions, answers	50%
laboratory classes		to questions	
	Assessment of knowledge	Written exam	-

10.6 Minimum performance standard

Identification and proper use of the suitable investigation methods for environmental monitoring, pharmaceutical characterization and bioprocessing.

Drawing out specific information obtained by these methods.

Signature of course coordinator	Signature of seminar	
	coordinator	
Prof. dr. Monica Baia	Prof. dr. Monica Baia	
CS I dr. Alina Magdaş	CS I dr. Alina Magdaş	
Prof. dr. Simona Pinzaru	Prof. dr. Simona Pinzaru	
Date		Signature
21.09.2025		Head of department Prof. dr. Vasile Chiș