SYLLABUS

1. Information regarding the program

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Physics
1.3 Department Doctoral School of Physics	
1.4 Field of study	Physics
1.5 Study cycle	Doctorate
1.6 Study program / Qualification	Doctoral training/PhD in Physics

2. Course data

2.1 Name of discipline			Ge	General research methods and methodology of scientific			
			W	writing			
2.2 Teacher responsible for			Pr	Prof. dr. Simion Aștilean, Prof. dr. Neda Zoltan, Prof. dr. Radu			
lectures	lectures Fechete, Prof. dr. Coriolan Tiuşan						
2.3 Teacher responsible for			Pr	Prof. dr. Simion Aștilean, Prof. dr. Neda Zoltan, Prof. dr. Radu			
seminars			Fe	chete, Prof. dr. Coriolar	ı Tiuşan		
2.4 Year of I 2.5		I	2.6 Type of	Exam	2.7 Course	DO	
study		Semester		evaluation		framework	

3. Estimated total time of teaching activities (hours per semester)

_		•	_		
3.1 Hours per week	1.5	Out of which:	1	3.3 Seminars /	0.5
		3.2 Lectures		Laboratory classes	
3.4 Total hours in the curriculum	36	Out of which:	12	3.6 Seminars /	6
		3.5 Lectures		Laboratory classes	
Allocation of study time:					42
Study supported by textbooks, other course materials, recommended bibliography and					14
personal student notes					
Additional learning activities in the library, on specialized online platforms and in the field					6
Preparation of seminars/laboratory classes, topics, papers, portfolios and essays				10	
Tutoring				8	
Examinations				4	
Other activities: -					-

3.9 Total individual study hours	42
3.10 Total hours per semester	60
3.11 Number of ECTS credits	5

4. Prerequisites (if necessary)

	• • • • • • • • • • • • • • • • • • • •
4.1 Curriculum	
4.2 Competences	

5. Conditions (where applicable)

5.1 Conducting lectures	Course hall, appropriate board, projector, internet connexion.
	For online teaching specific platforms: MsTeams, Zoom, Skype
	will be used.

5.2 Conducting	Course hall, appropriate board, projector, internet connexion.
seminars/laboratory classes	For online teaching specific platforms: MsTeams, Zoom, Skype
	will be used.

6. Specific competences acquired

Professional	1. Knowledge of scientific research methodologies. 2. Knowledge of methodologies for writing scientific papers. 3. Knowledge of the major implications of ethics in scientific research. 4. Ability to communicate scientific ideas.
Transversal	1. Ability to use scientific research methodologies in other related fields. 2. Using methodologies for developing scientific papers in new contexts. 3. Use of knowledge in debates on current issues of ethics and academic integrity.

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the	1. Knowledge and assimilation of scientific research		
discipline	methodologies and elaboration of scientific papers in the		
	specific area of Physics.		
	2. Development of critical thinking, scientific communication		
	skills, logical argumentation, and cross-disciplinary thinking		
7.2 Specific objectives	- To know the specific aspects of scientific research activities in		
	the field of Physics.		
	- To know the stages of elaboration and development of some		
	scientific research activities.		
	- To know the main Scientometric indicators and to know how		
	to access the main databases of the scientific literature.		
	- To strengthen the ethical responsibility of doctoral students.		
	- To know and assimilate the methodology of elaborating		
	scientific papers (thesis, memoirs, papers, oral presentations,		
	posters).		
	- To know and assimilate the methodology of elaborating		
	scientific research projects.		
	- To assimilate competences regarding the rigorous, clear and		
	attractive graphic presentation of the research results		
	(scientific dissemination issues).		
	- To contribute to the broadening of the horizon of knowledge		
	and scientific culture of doctoral students.		

8. Content

8.1 Lectures	Teaching methods	Comments
Introduction to the field of Scientometry. Scientometric indicators. Impact factor. Hirsch Index. Other classifications.	Frontal lecture	2 hours
Accessing specific databases of scientific literature and bibliographic resources (En-formation, Scopus, ISI Web of Knowledge, etc.)	Frontal lecture Case studies	2 hours
Methodology of scientific articles writing (scientific writing): the structure and content of the manuscript, the ethics of the co-author, the Acknowledgements, the Cover Letter, the different stages of publishing and revising a scientific article.	Frontal lecture Problematisation. Case study.	2 hours
Strategies for publishing in top journals, the open-access journal policy, use of graphic illustrations, graphical / video-abstract, popularization and visibility of published articles.	Frontal lecture Problematisation. Case study.	2 hours
Specific issues of scientific research in the field of Physics. Defining and developing an original and relevant research topic in Physics.	Frontal lecture Problematisation. Case study.	2 hours
General methodology of writing a research project. Content: novelty, context, impact, structure, description, implementation, risk factors. Scientific research methods and implementation in a Ph.D. Thesis. Structure and content of a Ph.D. thesis manuscript. Methodologies for processing and graphical presentation of results in a doctoral thesis.	Frontal lecture Problematisation. Case study.	2 hours

Bibliography

- 1. David B. Resnik: *The Ethics of Science: An Introduction*, Philosphical Issues in Science (Routledge, 1998)
- 2. Michael Alley: The Craft of Scientific Writing (3rd Edition, Springer, 1998).
- 3. Science Rules: *A Historical Introduction to Scientific Methods*, Ed. Peter Achinstein, (Johns Hopkins University Press, 2004).
- 4. Writing Science: *How to Write Papers That Get Cited and Proposals That Get Funded*, (Oxford University Press; 1 edition, 2011).
- 5. Kerans ME, de Jager M. 2010. Handling plagiarism at the editor's desk. *European Science Editing* 36(3): 62-66. http://www.ease.org.uk/sites/default/files/ese_aug10.pdf
- 6. Bernhard Blümich, NMR Imaging Of Materials (Oxford University Press, 2013.

8.2 Seminars / laboratory classes	Teaching methods	Comments
Critical aspects regarding the inflation of irrelevant scientific production, the inflation of irrelevant scientific publications, ethical issues in scientific publications.	Case study. Debates.	2 h
Methods of disseminating research results in the scientific community and in society (publications, workshops, web pages)	Debates	2 h
Case study: Elements of complex scientific graphics in two- and three-dimensional format Case study: Presentation of the development of a topical research field	Case study	2 h
Bibliography		
Didiogi apily		

- 1. David B. Resnik: *The Ethics of Science: An Introduction*, Philosphical Issues in Science (Routledge, 1998)
- 2. Michael Alley: *The Craft of Scientific Writing* (3rd Edition, Springer, 1998).
- 3. Science Rules: *A Historical Introduction to Scientific Methods*, Ed. Peter Achinstein, (Johns Hopkins University Press, 2004).
- 4. Writing Science: *How to Write Papers That Get Cited and Proposals That Get Funded*, (Oxford University Press; 1 edition, 2011).
- 5. Kerans ME, de Jager M. 2010. Handling plagiarism at the editor's desk. *European Science Editing* 36(3): 62-66, http://www.ease.org.uk/sites/default/files/ese_aug10.pdf
- 6. Bernhard Blümich, NMR Imaging Of Materials (Oxford University Press, 2013,

9. Aligning the contents of the discipline with the expectations of the epistemic community, representatives, professional associations and standard employers operating in the program field

The content of the course is similar to the ones from other Western and Romanian universities. The course content intends to endeavor the students with specific skills that meet employment request in research institutions, universities, professional associations, etc: (i) deep knowledge of research methodology in Physics area and related fields, (ii) ability to access the scientific information using specific databases, (iii) perform methodologic analysis and develop critical thinking, (iv) develop the ability to write scientific papers, generate innovative ideas and find transdisciplinary solutions.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Weight in		
		methods	the final grade		
10.4 Lectures	Lostomos A		75%		
10.4 Lectures	Assessment of knowledge	(report)	7 3 70		
10.5 Seminars /	A stivity dyning comings	Discussions, answers	30%		
laboratory classes	Activity during seminars	to questions	30%		
10.6 Minimum performance standard					
Correct assessment of methods and models to be used to solve a particular problem.					

Proper use of computational techniques and available hardware and software resources.

Signature of course coordinator	Signature of seminar	
	coordinator	
Prof. dr. Simion Aștilean	Prof. dr. Simion Aștilean	
Prof. dr. Neda Zoltan	Prof. dr. Neda Zoltan	
Prof. dr. Coriolan Tiușan	Prof. dr. Coriolan Tiușan	
Prof. dr. Radu Fechete	Prof. dr. Radu Fechete	
Date		Signature
		Head of department
21.09.2025		Prof. dr. Vasile Chiș