SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Physics
1.3 Department	Doctoral School of Physics
1.4 Field of study	Physics
1.5 Study cycle	Doctorate
1.6 Study programme / Qualification	Doctoral training/PhD in Physics

2. Course data

2.1 Name of the discipline Advanced experimental methods in solid state physics							
2.2 Teacher responsible for Prof. dr. Romulus Tetean, Prof. dr. Viorel Pop, Prof. dr. Iosif					Iosif		
lectures				Deac, Prof. dr. Coriolan Tiușan			
2.3 Teacher re	sp	onsible for	Prof. dr. Romulus Tetean, Prof. dr. Viorel Pop, Prof. dr. Iosif				Iosif
seminars			Deac, Prof. dr. Coriolan Tiușan				
2.4. Year of	I	2.5	1	2.6. Type of E 2.7 Course framework DS			
study		Semester		evaluation			

3. Total estimated time (hours/semester of didactic activities)

2.1 House non wools	3	Of which: 3.2		2	2.2 Comingra /	1
3.1 Hours per week	3	Of which: 3.2		۷	3.3 Seminars /	1
		Lectures			Laboratory classes	
3.4 Total hours in the curriculum	3	Of which: 3.5		24	3.6 Seminars /	12
	6	Lectures			Laboratory classes	
Time allotment:						89
Learning using manual, course support, bibliography, course notes					34	
Additional documentation (in libraries, on electronic platforms, field documentation)					24	
Preparation for seminars/labs, homework, papers, portfolios and essays					15	
Tutorship					12	
Evaluations				4		
Other activities:			-			
3.7 Total individual study hours		89				
3.8 Total hours per semester		125				

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Quantum mechanics, Solid State Physics, Statistical physics,	
	Magnetism, Material Science.	
4.2. competencies	- manipulating basic fundamental knowledge in magnetism,	
	quantum mechanics and material science.	
	- basic experimental skills for in Solid State Physics.	

10

5. Conditions (if necessary)

5.1. for the course	 Course hall with blackboard, projector and software
5.2. for the seminar /lab	 Course hall with blackboard, projector, internet access and
activities	dedicated software

6. Specif	fic competencies acquired	
	C1. Using of advanced knowledge of physics, mathematics and chemistry of solids for study	
	in Solid State Physics and Materials Science. Capacity for analysis and synthesis of physical	
S	data, the ability to model complex phenomena.	
ıcie	C2. Capitalization of physical fundamentals, of methods and tools of solid state physics and	
eter	materials science for specific production activities, expertise and monitoring. Mindset multi-	
) 	and interdisciplinary.	
COU	C3. Planning and conducting experiments to assess the uncertainty and interpretation of the	
lal	results. Use basic research laboratory equipment and industrial laboratory for conducting	
ior	research experiments. Planning and implementation independently experiments or	
ess	experimental investigations and evaluating the uncertainty of the results	
Professional competencies	C4. Communicating complex scientific ideas, conclusions or results of a scientific project	
	experiments.	
	Ability to obtain and argue scientific results, the ability to produce scientific papers and to	
	relate to the editorial board of scientific journals of the field.	
	CT1. Fulfil the professional tasks effectively and responsibly with respect for law and ethics	
	under qualified assistance.	
	Responsible execution of professional duties in terms of autonomy and decision-making	
S a	based on self-assessment.	
nci	CT2. Effective work in multidisciplinary team on different hierarchical levels.	
ete	Implementation of activities and fulfilling specific teamwork roles on different hierarchical	
du	levels, showing initiative and entrepreneurial leadership based on promoting dialogue,	
100	cooperation positive attitudes, mutual respect, diversity and multiculturalism and continuous	
sal	improvement of their activities.	
/er	CT3. Effective use of information sources and communication resources and training	
Transversal competencies	assistance, both in Romanian and in a foreign language. Objective self-evaluation of the need for continues training to labour market insertion and	
 [ra	the adaptation to dynamic requirements of labour market.	
1 .	the adaptation to dynamic requirements of labour market.	ĺ

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the discipline	Acquiring notions on the experimental and theoretical techniques and methods concerning the study of condensed			
	matter.			
7.2 Specific objectives	Acquiring the notions related to:			
	- Determining the crystal structure of different classes of			
	materials, both massive and nanostructured.			
	- Determination of thermal properties of materials.			
	- Determination of magnetic structures, of the respective			
	magnetic moments, determination of the local magnetic			
	properties			
	- Analysis of surface defects			

- Knowledge of the specific properties of surfaces and their role in practical applications
 Studying the effect of intense magnetic fields on electrical
- Studying the effect of intense magnetic fields on electrical conductivity; magnetoresistance measurement
- Determination of the Fermi surface (by De Haas van Alphen effect) and the electronic structure (XPS and ARPES),
- Measurement of magnetic susceptibility in alternating current for determining the dynamic magnetic properties, of the phase transformations, using the nonlinear components of the complex susceptibility.
- Knowledge of most common lithography techniques used in micro and nanostructuration.
- -Knowledge of various magnetometry and micromagnetic imaging techniques commonly used in characterization of low dimensional systems: thin films and nanostructures.
- Processing and interpretation of experimental results.
- Valorization of data obtained through publications.
- Analysis of possible technological applications.

8. Content

8.1 Lectures	Teaching methods	Comments
Determination of the crystalline structure with X-	Lecture,	2 hours
rays:	demonstration,	
X-ray diffraction. X-ray sources. High and small	debate, Case-based	
angle diffraction. Crystalline and non-crystalline	learning, the	
materials. Particular aspects of small dimensional	experiment	
systems.	demonstration and	
X-ray absorption spectroscopy. XANES, EXAFS.	presentations on	2 hours
EXAFS signal extraction. XPS.	the computer	
TEM, SEM		
Thermal measurements. Differential thermal		2 hours
analysis Electron diffraction. Neutron diffraction,		
mu-SR.		
Magnetic nanostructures: specific magnetic		3 hours
properties of magnetic systems with dimensions		
comparable to the characteristic lengths in		
magnetism (domain wall, exchange length, etc.)		
Production, characterizing and applications of		3 hours
magnetic nanostructures.		
AC magnetic susceptibility and the magnetic		2 hours
properties of solids. The principles of the method.		
Implementation. Calibration. Characterization of		
the magnetic order of solids by ac susceptibility		
measurements. Frequency and magnetic field		
dependence of the ac susceptibility. Non-linear ac		
susceptibility. Ac susceptibility study of		
superconducting materials.		
Experimental techniques and principles of		2 hours
structure-related phenomena. Experimental study		
of the Fermi surface in metals. Electrons in high		
magnetic fields. Quantum oscillation and the		
topology of Fermi surface. De Haas-van Alphen		

Effect. Photoemission spectroscopy. Angle	
Resolved Photo Emission Spectroscopy (ARPES).	
Transport phenomena in high magnetic fields	2 hours
(Focus on colossal magnetoresistance).	
Magnetoresistance. Introductory remarks.	
Ordinary MR, AMR, Giant MR, Tunel MR, CMR.	
Colossal Magnetoresistance. Mixed valence	
manganites. Phase diagrams. Electrons'	
interaction. Double exchange interaction. Jahn-	
Teller distortion. Polarons. Charge/orbital	
ordering. Phase separation. Examples. Cryostats	
for magneto-transport measurements.	
Elaboration and characterisation of thin film	2 hours
heterostructures by ultra-high vaccum techniques:	
sputtering, Molecular Beam Epitaxy, Laser	
Ablation, CVD/ALD techniques.	
Micro and nanosctructuration by self-assambling	2 hours
and lithography patetrining.	
Magnetometry techniques and micromagnetic	2 hours
imaging: VSM, SQUID, susceptometry, MOKE, AHE,	
torque magnetometry, XMCD, XPM, STXM, SPM,	
MFM, Lorentz microscopy, SPLEEM, SEMPA,	

Bibliography

Compulsory:

- 1. C. Kittel, Introduction to Solid State Physics (7ed., Wiley, 1996).
- 2. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders, 1976.
- 3. U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge University Press 2001.
- 4. E.Burzo, "Fizica Fenomenelor Magnetice" vol. 1-3, Editura Academiei Române 198-1987, 1255 pag.
- 5. H. Alloul, Introduction to the Physics of Electrons in Solids, Springer-Verlag Berlin Heidelberg 2
- 6. Z. L. Wang (editor), Characteriyation of Nanophase Materials, Ed. Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 2000.
- 7. F.J.Himpsel, J.E.Ortega, G.J.Mankey, R.F.Willis, Magnetic nanostructures, Advances in Phys, Vol.47, Nr. 4, 511-597, 1998.
- 8. Z.I.Wang, Elastic and Inelastic Scattering in Electron Diffraction and Imaging, Plenum Pub.Co, New York, 1995.
- 9. Coey J.M.D., Magnetism and Magnetic Materials, Cambridge University Press, New York 2010.
- 10. Alex Hubert, Rudolf Schäfer, Magnetic Domains, The Analysis of Magnetic Microstructures, Springer Berlin Heidelberg New York 2009, ISBN 978-3-540-64108-7.
- 11. J. A. Veneables, Introduction to surfaces and thin film processes, Cambridge University Press 2003, ISBN 051101273 X.
- 12. Cui B (editor), Recent Advances in Nanofabrication Techniques and Applications, Intech, 2011.

Optional:

- 1. Journals on condensed matter physics
- 2. http://xxx.lanl.gov/archive/cond-mat

8.2 Seminar / laboratory	Teaching methods	Remarks
Particular aspects of X-ray diffraction in small		2 hours
dimensional systems.	Presentations.	
Sample preparation for X-ray measurements.	Correlations	1 hour
Case studies prepared with the doctoral students,	between	2 hours
based on their individual doctoral research topics.	experimental	
New magnetic behaviors at the nanometer level.	results and	1 hours

Case studies: band structure origin and analysis in	theoretical models.	3 hours
special classes of solid-state compounds.	Discussions.	
Interpretation of the results of complex		
susceptibility measurements.		
Lithography techniques for micro and		2 hours
nanostructuration of planar and perpendicular		
spintronic devices.		
Case study: micromagnetic analysis by magnetic		1 hour
force microscopy in thin film heterostructures and		
patterned media.		

Bibliography

- 1. E.Burzo, "Fizica Fenomenelor Magnetice" vol. 1-3, Editura Academiei Române 198-1987, 1255 pag.
- 2. H. Alloul, Introduction to the Physics of Electrons in Solids, Springer-Verlag Berlin Heidelberg 2
- 3. Z. L. Wang (editor), Characteriyation of Nanophase Materials, Ed. Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 2000
- 4. F. Gömöry, Characterization of High-Temperature Superconductors by AC Susceptibility Measurements, Superconductor Science and Technology 10(8):523 · January 1999.
- 5. Handbook of Magnetism and Advanced magnetic materials, Willey: volume 1: Fundamentals and Theory; volume 2: Micromagnetism; volume 3: Novel Techniques for Characterizing and Preparing Samples; volume 4: Novel Materials; volume 5: Spintronics and Magnetoelectronics.
- 6. Chris A. Mack, Fundamental Principles of Optical Lithography The Science of MicrofabricationJohn Wiley & Sons Inc, 2007
- 7. Cui B (editor), Recent Advances in Nanofabrication Techniques and Applications, Intech, 2011.

9. Aligning the contents of the discipline with the expectations of the epistemic community, representatives, professional associations and standard employers operating in the program field

The content of the discipline is in accordance with the subjects which are studied in the same field in Romanian and foreign universities and with the specific demands of research institutes, economy and labour market.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Weight in
		methods	the final grade
10.4 Course	Understanding of the	Participation, discussions	
	physical phenomena in	and answers to questions	
	condensed matter		
	physics and capacity to		25 %
	make connexion		
	between the results		
	obtained by different		
	techniques.		
10.5 Seminar/lab	Preparation and	Direct evaluation	75%
activities	presentation on a		
	subject related to		
	advanced methods in		
	condensed matter		
	physics.The quality of		
	the presentation.		
10.6 Minimum performa	nce standards		

- > Main techniques used for characterization
- > Choosing, planning and carrying out an experimental method for a certain kind of elaboration and characterization.

Signature of course coordinator	Signature of seminar	
	coordinator	
Prof.dr. Romulus Tetean	Prof.dr. Romulus Tetean	
	Prof.dr. Viorel Pop	
Prof.dr. Viorel Pop		
Conf du Lorif Cuigana Doog	Conf du Logif Cuigous Doga	
Conf.dr. Iosif Grigore Deac	Conf.dr. Iosif Grigore Deac	
Prof.dr. Coriolan Tiusan	Prof.dr. Coriolan Tiusan	
Date	Si	ignature
	Н	ead of department
21.09.2025	P	rof. dr. Vasile Chiș