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Abstract. In stochastic finance, one traditionally considers the return as a competitive measure of an
asset, i.e., the profit generated by that asset after some fixed time span ∆t, say one week or one year. This
measures how well (or how bad) the asset performs over that given period of time. It has been established
that the distribution of returns exhibits “fat tails” indicating that large returns occur more frequently
than what is expected from standard Gaussian stochastic processes [1,2,3]. Instead of estimating this “fat
tail” distribution of returns, we propose here an alternative approach, which is outlined by addressing the
following question: What is the smallest time interval needed for an asset to cross a fixed return level of
say 10%? For a particular asset, we refer to this time as the investment horizon and the corresponding
distribution as the investment horizon distribution. This latter distribution complements that of returns
and provides new and possibly crucial information for portfolio design and risk-management, as well as
for pricing of more exotic options. By considering historical financial data, exemplified by the Dow Jones
Industrial Average, we obtain a novel set of probability distributions for the investment horizons which
can be used to estimate the optimal investment horizon for a stock or a future contract.

PACS.

Financial data have been recorded for a long time as
they represent an invaluable source of information for sta-
tistical investigations of financial markets. In the early
days of stochastic finance it was argued that the distri-
bution of returns (see definition below) of an asset should
follow a normal (Gaussian) distribution [4,5]. However, by
analysing large, and often high-frequency, financial data
sets, it has been established that these distributions on
short time scales — typically less then a month, or so
— can posses so-called “fat-tails”, i.e. distributions that
show strong deviations from that of a Gaussian [1,2,3]
with higher probabilities for large events. This is similar
to the distributions found for turbulence in air and flu-
ids which have led to comparisons between the statistics
of financial markets and that of turbulent fluids [5,6,7,8].
In turbulence, one obtains stretched exponential distribu-
tions which find their analogy in finance when considering
higher order correlations of the asset price [9,10].

In order to get a deeper understanding of the fluctua-
tion of financial markets it is important to supplement this
established information of fluctuations in the returns with
alternative measures. In the present paper, we therefore
ask the following “inverse” question: “What is the typical
time span needed to generate a fluctuation or a movement
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(in the price) of a given size” [11,12,13,14,15,16]. Given
a fixed log-return barrier, ρ, of a stock or an index as well
as a fixed investment date, the corresponding time span is
estimated for which the log-return of the stock or index for
the first time reaches the level ρ. This can also be called
the first passage time through the level (or barrier) [14,
15,16,17] ρ. As the investment date runs through the past
(price) history of the stock or index, the accumulated val-
ues of the first passage times form the probability distri-
bution function of the investment horizons for the smallest
time period needed in the past to produce a log-return of
at least magnitude ρ. The maximum of this distribution
determines the most probable investment horizon which
therefore is the optimal investment horizon for that given
stock or index.

The first passage time is important from an economic
point of view in several ways. Firstly, say an investor plans
to sell or buy a certain asset. Then, of course, he or she
is interested in doing the transaction at a point in time
that will optimize the potential profit, i.e. to sell for the
highest possible price, or, for a buyer, to buy for the low-
est price. However, the problem is that one does not know
when the price is optimal. Therefore, the best one can do,
from a statistical point of view, is to make a transaction at
a time that is probabilisticly favorable. This optimal time,
as we will see, is determined by the maximum of the first
passage time distribution, i.e. the most likely first passage
time. Secondly, for a holder of an European type option,
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either a call or a put of given strike price, the most likely
first passage time will, in much the same way as presented
above, define the optimal maturity of the option. Further-
more, for an American type call option the most likely first
passage time of the underlying asset will be useful to know
when to exercise the option. These same arguments apply
even more to exotic options used in the financial indus-
try [18]. Thirdly, the investment distribution for negative
levels of returns, provides crucial information for the im-
plementation of certain stop-loss strategies. Finally, but
not least, the first passage distribution will by itself give
invaluable, non-trivial information about the stochastic-
ity of the underlying asset price. This point has recently
been demonstrated explicitly in the (related) field of tur-
bulence [11,12].

To illustrate our procedure we consider the Dow Jones
Industrial Average (DJIA). We analyze the daily closure
of the DJIA from its beginning on May 26, 1896 to June
5, 2001 (present). This leave us with 105 years of data, or
almost 30 000 trading days. The data set to be analysed
is depicted in Fig. 1. The log-return over a time interval
∆t of an asset of price S(t), at time t, is defined as

r∆t(t) = s(t + ∆t) − s(t), (1)

where s(t) = lnS(t), i.e., the log-return is just the log-
price change of the asset. The investment horizon, τρ(t), at
time t, for a return level ρ is defined at the smallest time
interval, ∆t, that satisfies the relation r∆t(t) ≥ ρ, or in
mathematical terms [14] τρ(t) = inf {∆t > 0 | r∆t(t) ≥ ρ}.
The investment horizon distribution, p(τρ), is obtained as
the histogram of investment horizons τρ. Furthermore, we
introduce the cumulative distribution for the horizon be-
ing larger then τρ, i.e.

P (τρ) =

∫

∞

τρ

p(t) dt. (2)

It is well-known, and easy to see from Fig 1, that there
is a substantial upward drift with time in the DJIA which
is an indication of the overall growth of the world economy.
In order to reduce this drift, we have wavelet filtered [19]
the data on a scale larger then 1000 trading days, and we
will therefore in this study limit ourselves to the behavior
up-to 1000 trading days (about 4 years). This is achieved
by first transforming the log-price s(t) = lnS(t) to the
wavelet-domain, setting all wavelet coefficient correspond-
ing to scales larger then 1000 trading days to zero, and
finally transforming back to the time domain. This pro-
cedure, which results in the filtered log-price time series
s̃(t), will reduce the effect of drift as can be seen explicitly
from Fig. 1. In the following analysis we will therefore use
s(t) to denote the filtered time series, and subsequently
S(t) = exp(s(t)) for the filtered price.

To present our analysis we show in Fig. 2 the invest-
ment horizon distribution p(τρ) for a reasonably large value
of the return level, ρ = 0.05 (i.e. 5%). This figure indicates
that the obtained distribution has a very interesting and
unexpected form. It exhibits a rather well defined and pro-
nounced maximum, followed by an extended tail for very

long time horizons indicating a non-zero and important
probability of large passage times (note that the τρ-axis is
logarithmic). We expect that these long investment hori-
zons reflect periods where the market is reasonably calm
and quiet, or is going down for a long period of time be-
fore finally coming back up again. The short horizons on
the other hand – those around the maximum – are ob-
served in more volatile periods, which appears to be the
most common scenario. Indeed the maximum obtained at
τρ = τ∗

ρ is the most likely horizon, which we call the op-
timal investment horizon. This kind of distribution of the
investment horizon statistics for economical markets has,
to the best of our knowledge, not been published before.

To better understand the tail of this distribution, we
consider a rather small level of return ρ. If this level is
small enough, it is likely that the return will break through
the level after the first day, while larger horizons will be-
come more an more unlikely. However, the probability for
a large horizon will not be zero; if, say, we consider a posi-
tive (but still small) level ρ, then a period of recession will
result in a τρ(t) that might be considerably larger then
one day since it takes time to recover after a set back. For
instance, after the 1927 stock market crash, it took more
then two decades for the DJIA to regain the value it had
just before the crash. In the limit ρ → 0+ the horizon dis-
tribution p(τ0) is known in the literature as the first return
probability distribution for the underlying stochastic pro-
cess [14,15]. In Fig. 3 (lowest solid curve) the cumulative
distribution, P (τ0), for the DJIA data set is shown. It is
observed that the tail of this distribution scales as a power
law, P (τ0) ∼ τ−α0

0 , with α0 ≃ 1/2, over almost three or-
ders of magnitudes in time. This value of the exponent
can be understood as follows: If we assume, as is com-
mon in the financial literature [4,5], that the asset price,
S(t), can be well approximated by a geometrical Brown-
ian motion, then trivially it follows that s(t) = lnS(t) will
just be an ordinary Brownian motion. From the literature
it is well-known that the first-return probability distribu-
tion of a fractional Brownian motion scales like [14,15]
p(τ) ∼ τH−2, where H is the Hurst exponent, and hence
P (τ) ∼ τH−1. Since the Hurst exponent of an ordinary
Brownian motion is H = 1/2, the empirically observed

scaling (see Fig. 3) P (τ0) ∼ τ
−1/2

0 is a consequence of
the (at least close to) geometrical Brownian motion be-
havior of S(t). This argument of an unbiased geometri-
cal Brownian motion is also strengthen by observing that
P (τ0 = 1) ≃ 1/2, meaning that the log-price change over
one day raises half of the time and drops in the remain-
ing half. It should noticed that in order to observe the
power-law of exponent α0 = 1/2 for small levels, the fil-
tered data have to be used. Using the raw data would,
due to the presence of the drift, result in a slightly larger
(smaller) exponent for a positive (negative) small level ρ.

Fig. 3 also shows the cumulative distributions P (τρ) for
different choices of the return level ρ, i.e., ρ = 0.01, 0.02,
0.05, 0.10 and 0.20. From this figure it is seen that the tail
exponent, αρ, is rather insensitive to the return level. In
particular one finds that αρ ≃ 1/2 over a broad range of
values for ρ, a value that is consistent with the geometrical
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Brownian motion hypothesis of the underlying asset price
process (see Eq. (3) below). Moreover, it is observed that
as the level ρ is increased from zero, the most likely horizon
moves away form τ0 = 1 and toward larger values. In
other words — there is an optimal investment horizon,
τ∗

ρ , corresponding to, and depending on, a given level of
return ρ. Furthermore, we have checked, and found, that
there is an approximate symmetry under ρ → −ρ for the
investment distribution as long as the filtered data are
used. One therefore does not have to consider negative
levels explicitly. On the other hand, if the analysis is based
on the raw data there is a clear asymmetry.

The time needed for a general time series to reach a
certain level is in the mathematical literature known as the
first passage problem. For a Brownian motion this problem
has been solved analytically [15,16]

p(t) =
1√
π

a

t3/2
exp

(

−a2

t

)

. (3)

where a is proportional to the level ρ. For large times one
recovers, from Eq. (3), the well known distribution of first
return times to the origin p(t) ∼ t−3/2. In order to fit a
functional form to the distribution in Fig. 2 we generalize
this expression and suggest the following form

p(t) =
ν

Γ
(

α
ν

)

β2α

(t + t0)α+1
exp

{

−
(

β2

t + t0

)ν }

, (4)

which reduces to Eq. (3) in the limit when α = 1/2, β = a,
ν = 1, and t0 = 0, since Γ (1/2) =

√
π. The form (4) seems

to be a good approximation to the empirical investment
horizon distributions. The shift t0 is needed in order to fit
the optimal horizon well, and its actual value may depend
on possible short-scale drift. The full-drawn curve in Fig. 2
shows a (maximum likelihood) fit to the empirical data
with the functional form Eq. (4), and the agreement is
observed to be excellent (the fitted parameter values are
given in the caption of Fig. 2).

As the optimal horizon provides an important infor-
mation for an investor, a relevant question would now be:
How does the optimal horizon, τ∗

ρ , depend on the return
level ρ ? This dependence, as measured from the empirical
horizon distribution, is shown in Fig. 4. Intuitively, it is
clear that the optimal horizon will increase rather rapidly
as the return is increased. However, we observe that this
increase occurs in a systematic fashion

τ∗

ρ ∼ ργ , (5)

with γ ≃ 1.8, see Fig. 4. For a Brownian motion, with
a first passage distribution Eq. (3), it is straightforward
to derive that the power law exponent should be γ = 2
for the whole range of ρ. Not surprisingly, we therefore
find a deviation from standard theories for the variation
of the optimal horizon with the return level. Furthermore,
we systematically find ν > 1 when ρ 6= 0, which is also
inconsistent with the geometrical Brownian hypothesis.

In conclusion, we have obtained a new set of distri-
butions of investment horizons for returns of a prescribed

level. We have found that the (empirical) optimal invest-
ment horizon depends on the return level in a systematic
fashion, which is not consistent with the the geometrical
Brownian motion hypothesis typically assumed in theo-
retical finance [4,5]. The obtained distributions as well as
the variation of the optimal horizon can be applied if one
wants to estimate the most probable time period needed to
stay in the market if an investor aims at a specific optimal
return. Similar passage time distributions are found in tur-
bulence of fluids (where they are called inverse structure
functions). It indicates that these distribution functions
of passage times could be a general and important feature
of systems which exhibit extreme events like for exam-
ple in finance, turbulence, earthquakes, and avalanches in
granular media.
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Fig. 1. The historic daily logarithmic closure prices of the
Dow Jones Industrial Average (DJIA) over the period from
May 26, 1896 to June 5, 2001. The upper curly curve is the
raw logarithmic DJIA price s(t) = ln S(t), where S(t) is the
historic daily closure prices of the DJIA. The smooth curve
represents the drift on a scale larger then 1000 trading days.
This drift was obtained by a wavelet technique as described
in the main text. The lower curly curve represents the wavelet
filtered logarithmic DJIA data, s̃(t). Those filtered data are
just the fluctuation of s(t) around the drift.

1 10 100 1000
τρ [days]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p(
τ ρ)

 [1
0−

2 ]

Empirical pdf
Fit

10
1

10
2

10
3

τρ [days]

10
−2

10
−1

10
0

p(
τ ρ

) 
[1

0−
2 ]

Fig. 2. The probability distribution function (pdf), p(τρ), of
the investment horizons (first passage times) measured in trad-
ing days, τρ, at a level ρ = 0.05 (i.e. 5% return). The data used
to produce this figure are the wavelet filtered logarithmic re-
turns calculated from the historic daily closure prices (Fig. 1).
The open circles represents the empirical pdf (at level ρ). We
notice the pronounced maximum of this function at approxi-
mately τ∗

ρ = 15 trading days (note the log-linear scale). This
maximum represents the most probable time of producing a
return of 5%. The solid line represents a maximum likelihood
fit to the functional form (4) with parameters: α = 0.50,
β = 4.5 days1/2, ν = 2.4, and t0 = 11.2 days. The inset is
the same figure on log-log scale such that the power-law be-
havior of the tail is more easily observed.
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Fig. 3. The empirical cumulative probability distributions
(solid lines), P (τρ), vs. horizon τρ for different levels ρ = 0,
0.01, 0.02, 0.05, 0.10, and 0.20 (from bottom to top), for the
(wavelet filtered) Dow Jones Industrial Average. The dashed
line corresponds to the geometrical Brownian motion assump-
tion for the underlying price process, in which case one should
have P (τ ) ∼ τ−α with a tail index α = 1/2. For the level
ρ = 0 the geometrical Brownian motion assumption seems rea-
sonable (i.e αo ≃ 1/2), while the tail index, αρ, shows only a
weak (if any) dependence on the level ρ.
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Fig. 4. The optimal investment horizon, τ∗

ρ , as a function
of the log-return level ρ. The open circles represent the em-
pirical results obtained from the (wavelet filtered) historical
Dow Jones data. The dashed line, of slope γ = 2, corresponds
to the geometrical Brownian motion hypothesis for the un-
derlying asset price. One observes that for small levels this
hypothesis fails dramatically. However, for levels of the order
of a few percents or larger, the geometrical Brownian motion
assumption becomes more realistic, but also in this region a dis-
crepancy is observed. Empirically one finds a scaling τ∗

ρ ∼ ργ

with γ ≃ 1.8 (long dashed line).


