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Abstract

A model based on first-degree family relations network is used to describe the wealth

distribution in societies. The network structure is not a priori introduced in the model, it is

generated in parallel with the wealth values through simple and realistic dynamical rules. The

model has two main parameters, governing the wealth exchange in the network. Choosing their

values realistically, leads to wealth distributions in good agreement with measured data. The

cumulative wealth distribution function has an exponential behavior in the low and medium

wealth limit, and shows the Pareto-like power-law tail for the upper 5% of the society. The

obtained Pareto indexes are in good agreement with the measured ones. The generated family

networks also converge to a statistically stable topology with a simple Poissonian degree

distribution. On this family network many interesting correlations are studied, and the main

factors leading to wealth diversification and the formation of the Pareto law are identified.
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1. Introduction

Since the seminal work by Vilfredo Pareto [1], it is known that the wealth
distribution in capitalist economies shows a very peculiar and somehow universal
functional form. In the range of low income, the cumulative distribution of wealth
(the probability that the wealth of an individual is greater than a given value) may be
fitted by an exponential or log-normal decreasing function, while in the region
containing the richest part of the population, generally less than 5% of the
individuals, this distribution is well characterized by a power-law (see for example
Ref. [2] for a review). This empirical behavior has been confirmed by a number of
recent studies on the economy of several corners of the world. The available data are
coming from so far apart as Australia [3], Japan [4,5], the US [6], continental Europe
[7,8] or the UK [9]. The data are also spanning so long in time as ancient Egypt [10],
Renaissance Europe [11] or the 20th century Japan [12]. Most of these data are based
on the declaration of income of the population, which is assumed to be proportional
to the wealth. There are however some other databases obtained from different
sources like for instance the area of the houses in ancient Egypt [10], the inheritance
taxation or the capital transfer taxes [13]. The results mostly back Pareto’s conjecture
on the shape of the wealth distribution. The interesting problem that remains to be
answered is the origin of the peculiar functional trend.

The answer to this question is a long-standing problem, which even motivated
some of the initial Mandelbrot’s and Simon’s work 50 years ago. Let P4ðwÞ be the
probability of having a wealth higher than w. Pareto’s law then establishes that the
tail of P4ðwÞ decays as

P4ðwÞ ¼

Z 1

w

Pðw0Þdw0 � w�a ;

where a is the so-called Pareto index and PðwÞ the normalized wealth distribution
function. Typically, the presence of power-law distributions is a hint for the
complexity underlying a system. It is however important to notice that in spite of
what happens with most exponents in statistical physics, a may change in time
depending on the economical circumstances [5,12], making thus impossible the
definition of some sort of universal scaling in this problem. This aspect is a key
characteristic that any model on wealth distribution should be able to reproduce.

Economical models are essentially composed of a group of agents placed on a
lattice that interchange money following pre-established rules. The system will
eventually reach a stationary state where some quantities, as for instance the
distribution P4ðwÞ; may be measured. Following these ideas, Bouchaud and Mézard
[14] and Solomon and Richmond [15,16] separately proposed a very general model
for wealth distribution. This model is based on a mean field type scenario with
interactions among all the agents and on the existence of multiplicative fluctuations
acting on each agent’s wealth. Their results on the wealth distributions adjust well to
the phenomenological P4ðwÞ: Roughly, the same conclusions were obtained by
Scaffeta [17], who considered a nonlinear version of the model and from other
regular lattice-based models as those in Refs. [18,19]. This kind of models defined on
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pre-established regular lattices is however unable, by construction, to account for the
complexity of the interaction network observed in real economical systems.

In parallel to the previous efforts to characterize economical systems, the study of
complex networks has experienced a burst of activity in the last few years (see Ref.
[20] for a recent review). Social networks, in particular, are of paramount interest for
economy since everyday economical transactions actually produce a network of this
type. The topology of the economical network can indeed condition the output of
any economical model running on it. Such effect has been documented for example
in Refs. [12,21,22], in which the models described above were simulated on small-
world or scale-free networks. One of the main characteristics of social networks is
the positive correlation existing between the node degrees [23,24], i.e., the high-
connected individuals commonly tend to connect with other well-connected people.
The way of constructing this type of networks is precisely the main topic of a recent
work by Boguña and coworkers [25]. In what follows, we are going to use a
somewhat similar approach to grow our working network.

Boguña’s method is based on the existence of hidden variables characterizing each
agent state. In this work, and in the spirit of Ref. [26], we present a simple economic
model where those hidden variables are identified with the wealth of each agent. This
introduces a coupling between the dynamics of the network structure and the
evolution of the wealth distribution. Each value of the external parameters thus
determines not only the final wealth distribution but also the structure of the
underlying interchange network.

This paper is organized as follows. In Section 2 we introduce our model, in which
the agents are identified as families linked by first-degree family relationship. In
Section 3 we present computational results on this model. For a wide range of the
parameters of the model we study both the wealth distribution and the structure of
the underlying network. In Section 4 we discuss our results from several viewpoints.
In this Section the results are compared with real data on wealth distribution, the
correlation between the wealth and connectivity of the agents is studied, and the
dynamics leading to wealth diversification is investigated. Section 5 is then dedicated
to conclusions.
 R
UNCOR
2. The family-network model

In modeling the wealth distribution in societies we identify as main entities
(agents) the families. In the framework of our model, the families are nodes in a
complex network, and the links of this network are first-degree family relations.
Beside its links, each node is characterized by its ‘‘age’’, AðiÞ; and wealth, wðiÞ: The
age of a node is proportional to the simulation time-steps elapsed from its birth
(AðiÞ ¼ t� tbðiÞ; where tbðiÞ denotes the time-step when node i was born), and the
wealth is a positive real number that will change in time. We consider both the total
wealth of the system, W t; and the number of families (nodes), N, conserved. The
structure of the network is not a priori fixed, and will also change during the
evolution of the system. Initially, we start with nodes arranged on a regular
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hierarchical network (as sketched in Fig. 1) where the age of node i is simply N þ

1� i: In this manner, node 1 will be the oldest and node N the youngest one. It is
worth mentioning here that the final statistics of wealth distribution and the final
network topology are rather independent on how the initial network topology was
chosen. We verified this by choosing several other qualitatively different initial
network structures.

Initially, we also assign random wealth to each node according to a uniform
distribution on the ð0; 1Þ interval. In this manner we constructed the start-up society
with a simple network structure (family relationships) and randomly distributed
wealth values. The time evolution of the system is then chosen to be as simple as
possible, but capturing the realistic wealth exchange processes between families. For
each simulation time step, the dynamics is as follows:
(1)
OFThe oldest node (let this be j) is taken away from the system. The wealth of this
node is uniformly redistributed between its first neighbors (nodes that are linked
to it), and all its links are deleted.
(2)
PRONode j is reintroduced in the network with age AðjÞ ¼ 0: It is linked to two
randomly selected nodes (let these be k and l) that have wealth greater than a
minimal value q. The wealth q is taken away from the wealth of the selected k and
l nodes, and it is redistributed in a random and preferential manner in the society.
The preferential redistribution is realized by splitting the 2q wealth into s parts
UNCORRECTED 
1

2 3

4 6 7
......... ...

5

Fig. 1. Initial structure of the network.
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and choosing the nodes which will benefit from these parts with a probability
proportional to their actual wealth. This preferential redistribution will favor a
rich-get-richer effect. After the redistribution of the 2q amount, a p part (po1) of
the remaining wealth of nodes k and l is given as start-up wealths for node j.
After these wealth redistribution processes, the wealth of nodes k and l will thus
be w0ðkÞ ¼ ½wðkÞ � q�ð1� pÞ and w0½l� ¼ ½wðlÞ � q�ð1� pÞ; respectively. Node j will
start with wðjÞ ¼ p½wðkÞ þ wðlÞ � 2q� wealth.
(3)
 The age of all nodes is increased by unity.
UNCORRECTED P
ROOF

Let us now explain the socio-economic phenomena that are modeled by the above
dynamics. Step 1 models the inheriting process following the death of one family.
The wealth of this family is redistributed among its first-degree relatives (children).
Step 2 models the formation of a new family. In order to create a new family two
other families have to raise one child. For raising a child a minimum amount of
wealth is needed (q). This cost is paid to the society (for food, clothes, services, etc.),
and the members of the society will benefit unevenly from it. Families with bigger
wealth control more business, so they will naturally benefit more. The preferential
redistribution of the 2q wealth models this uneven profit, and it is the main
ingredient necessary to reproduce the Pareto distribution. Finally, when a new
family is born, it is linked by first-degree relations to two existing families and gets a
given part (p) of the parents wealth as start-up money. The time scale of the
simulation is governed by the time needed to change all nodes, which we call one
generation or one Monte Carlo step (MCS). By fixing N and W t; and studying the
thermodynamic limit N ! 1; the model becomes essentially a two-parameter model
(q and p), which is suitable for extended computer simulations.

Although very simple in nature, the chosen dynamics incorporates, we believe, the
main socio-economic factors that influence the redistribution of wealth between
families. As time passes, the families will be able to gather more and more wealth due
to the 2q wealth redistribution process in the society. When their wealth becomes big
enough they can create new families, and donate a part of this wealth to the new
family. This process is costly and will therefore lower their wealth. Very poor nodes
will not likely reach the q threshold and will not be able to create new families,
becoming isolated nodes. There is no clear determinism however, since the
redistribution in step 2 is realized in a random manner, and the selection of the
two nodes to which the new family links is also random. So in principle there is the
chance that nodes that start with low wealth will become very rich, or rich nodes do
not increase their wealth as expected. The actual way how the preferential
redistribution in step 2 is implemented is by dividing the 2q value in many (usual
several hundred) equal parts, and each part is assigned to a randomly chosen node,
biased proportionally with the wealth of the node. To do this biased redistribution,
the use of a BKL-type [27] Monte Carlo algorithm is very helpful. Another
possibility (leading to the same results) for doing this preferential redistribution
would be to select s nodes with the same probability, independent of their wealth,
and then to split the 2q amount between the selected nodes proportionally with their
actual wealth. It is also important to note that in realizing step 1, one can get to a
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situation where the selected node has no links (a family dies out without children).
For simplicity reasons, in this case we have also chosen to redistribute the wealth of
the node in the whole society by using the same preferential rule.

Of course, this model is a rough description of the reality and it should be viewed
only as a first ‘‘mean-field’’ approximation. In real societies, the number of families
and also the total amount of wealth should not be considered fixed. Many other
social aspects could be of interest, the actual value of q and p should vary from
family to family within quite broad distributions, the nodes must not die out
according to their age and many cultural and religious factors can influence the
dynamics of the underlying social network. In spite of all the neglected effects we will
see that this simple model is able to reproduce the observed wealth distributions and
generates reasonable first-degree family relation networks. The main advantage of
this model is that the network structure on which the wealth exchange is realized is
not a priori put in the system. The network forms and converges to a stable topology
in time, together with the wealth diversification in the system and the appearance of
the Pareto distribution.
 O
UNCORRECTED P
R

3. Results of the model

Extensive computer simulations were done to study the wealth distribution and
the generated family network for various values of the model parameters. In order to
minimize the statistical fluctuations, we averaged over 100 realizations for each
parameter’s values. The model as defined above has several parameters: N, the
number of nodes in the network, W t; the total wealth of the system, t the number of
simulation steps done to reach a given state, the number s giving the parts on which
the 2q wealth is divided, and the value of the q and p wealth exchange parameters. By
simple simulations it is easy to show that the results are independent of the chosen
value of s, provided that s is big enough (sX10 gives already stable results). In the
results that will be presented we always used s ¼ 100: We will argue in the following
that the main free parameters are q and p, since the model converges rapidly both as
a function of time and as a function of the number of nodes to a stable limiting
distribution and network structure.

It is easy to realize that the chosen value of W t will not change the nature of the
results, but it simply rescales the values of the wealth. A simple computer exercise
will also convince us that the above-defined family-network model converges in time
very quickly to a statistically invariant state both for the wealth distribution and
network structure. Results for a relatively big lattice (N ¼ 10; 000) and for realistic
p ¼ 0:3 and q ¼ 0:7 values are presented in Fig. 2. We see that roughly after 5MCS;
both the cumulative wealth distribution and the first two moments of the degree
distribution converge to their stable limit.

On the other hand, one can also check that the model has a well-defined
thermodynamic limit. As N increases, we obtain again that both the cumulative
wealth distribution and the statistical properties of the network reach a stable limit.
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Fig. 2. Time evolution of the cumulative wealth distribution function (a), average degree of the nodes (b),

and average square of the degree of the nodes (c), Simulations were done on a network with 10,000 nodes,

p ¼ 0:3 and q ¼ 0:7:
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network sizes. Simulations with p ¼ 0:3 and q ¼ 0:7:
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UCharacteristic results for this variation are presented in Fig. 3. As we can see from
the figure, for reasonably big lattices N � 10; 000; a stable limit is reached.

We will study now the influence of the p and q wealth-exchange parameters. Since
we have verified that the model converges relatively quickly to a stable limit, we will
consider in all simulations 10MCS: The number of nodes in the network will be
chosen N ¼ 10; 000; which ensures that the thermodynamic limit is approached. The
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p parameter can theoretically vary in the (0,1) interval; we consider however, a
realistic variation in the (0.1–0.3) interval. Since start, from wealth values distributed
randomly and uniformly on the (0,1) interval, the minimal q value needed to raise a
child should thus also be in the (0,1) interval, otherwise no new family could be
linked to the network. First, we present our results on the P4ðwÞ cumulative wealth
distribution curves. For two fixed values of p (p ¼ 0:1 and p ¼ 0:3) the curves are
given in Fig. 4.

The curves in Fig. 4 suggest that the good scale-free Pareto tail is obtained for q
values in the (0.7–0.9) interval, and we will thus focus in the following on this
parameter region. It is also evident that results for p ¼ 0:3 have a better trend. The
Pareto index (power-law exponent) in this region varies in the (1.7–2.5) interval,
depending on the chosen p and q values and fitting intervals. The P4ðwÞ curves have
the right shape, they show the power-law trend for the rich nodes and the
exponential behavior in the low and medium wealth limit (Fig. 5). Moreover, one
can also observe that in good agreement with the reality, roughly 5–10% of the
nodes have wealth in the Pareto regime.

The network generated by the model is a simple exponential one. Considering the
realistic q 2 (0.7–0.9) and p 2 (0.1–0.3) parameter region, in Fig. 6 we present results
obtained for the PðkÞ degree distribution (probability distribution that one node has
a given number of links). From the degree distribution we conclude that the network
is an exponential one. The most probable connectivity of a node is around 2, and we
obtained that in this parameter region hki varies between 1.8–1.9, which are
reasonable values for real first-degree family relation networks. No relevant
clusterization was observed in these networks.

It is also instructive to study different kinds of correlations in the generated
networks. First, one can study the correlation between the k connectivity of the
nodes, and mean connectivity of the neighbors hknni for nodes with k links. If there
exists a positive degree–degree correlation, i.e., if well-connected nodes tend to
connect with other well-connected ones, then hknnðkÞi must increase with k. In the
relevant parameter region results in this sense, are plotted in Fig. 7. For low values of
UNCORR
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Fig. 4. Cumulative distribution functions for different p and q values, (a) p ¼ 0:1 and (b) p ¼ 0:3:
Different curves are for different q values, as sketched on the legend of (b). The results are after 10MCS

and for N ¼ 10; 000:
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Fig. 6. The degree distribution of the obtained networks on a log-normal scale for various values of q and
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and the initial part of the curve has an exponential trend. The inset shows this initial trend on log-normal

scale
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UNC
p there are no obvious correlations, but as p increases one can observe a positive
correlation effect, hknnðkÞi increases roughly linearly with k. This means that, if the
new family gets a bigger portion of the parents’ wealth, the number of links parents
and children have are positively correlated. The effect is simply understandable,
taking into account that for higher values of p the wealth of the parents and children
should be also correlated, creating similar conditions for accepting links.

The correlation between the wealth w of one node and the average wealth of the
neighbors hwnni; should follow a similar trend. Indeed, as expected, this correlation
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UNCalso has an increasing trend as p is increased (Fig. 8a). This positive correlation effect
is more clear again for not too high wealth values, since in the high w limit there are
few nodes and the statistics is poor. A similar correlation trend can be observed if
one studies the correlation between the wealth of the nodes and the total wealth of
the neighbors. In Fig. 8 we plotted the results only for wp5; since for higher values
of w the curves are very noisy due to the poor statistics.

Finally, one can study the correlation between the wealth and connectivity of a
node, either by plotting hkðwÞi (the average number of links for nodes with wealth
around w in a given dw interval) as a function of w, or by simply calculating cðw; kÞ ¼
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CORRECTED Phw � ki � hwihki: In Figs. 9a and 9b we plot the values of cðw; kÞ as a function of time,
and in Fig. 9c we show the hkðwÞi curves. (For constructing the curves in Fig. 9c we
used boxes of size dw ¼ 0:1:) From Figs. 9 and 9b one notices again, that both the
network structure and wealth distribution approach quickly (less than 5MCS) a
statistically stable limit. It is interesting to observe that the cðw; kÞ correlation is
stronger for low p values, which makes sense since as p increases the availability of a
wealthy node to accept more links decreases. As p increases the cðw; kÞ trend suggests
that we deal with a clear anticorrelation between the wealth and number of links of a
node, which means that nodes which do not get too many links will in general
become wealthy. The trend of the hkðwÞi curves (Fig. 9c) suggests similar
conclusions, but here we can also see this correlation effect differentiated as a
function of the w value. In the low and medium wealth limit, there is a clear anti-
correlation between wealth and number of links, while for the wealthy nodes (much
fewer in number) there is a positive correlation trend. In Fig. 9c, we plotted again the
data only for wp5; since for higher wealth values the curves are rather noisy due to
poor statistics.
N
U4. Discussion and comparison with real data

Let us now analyze real wealth distribution data in societies in order to check the
quantitative agreement with our results. We use estimates for the distribution of
personal wealth in the United Kingdom (available on the Internet) [13], based on
inheritance tax, capital transfer tax and other data (the methods used for getting
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these estimates are also described in Ref. [13]). Plotting the cumulative wealth
distribution for a chosen year (2001 in our case), one gets the graph in Fig. 10
(distributions for other years are quite similar, even quantitatively).

On the data presented in Fig. 10, one can nicely identify the exponential regime for
low and medium wealth values, and the Pareto power-law distribution in the high
wealth limit. As emphasized in the introduction, the Pareto tail describes the upper
5% of the society. The UK-2001 data suggests a Pareto index a ¼ 1:78 (Fig. 10). An
immediate comparison with the distribution obtained for our family model (Fig. 5)
shows that for the reasonable q ¼ 0:7 and p ¼ 0:3 parameters the model offers a fair
description. The Pareto index for these parameters is around a ¼ 1:8; in the low and
medium wealth limit the P4ðwÞ curve is exponential, and the Pareto law is valid for
the upper 5–10% of the society. Concerning the shape of the P4ðwÞ curve, the model
thus seems to work well.

The network structure generated by the model also seems to be realistic. The
exponential nature of the network, the most probable value of the connectivity
kprob � 2; and the average connectivity hki � 1:9 are all reasonable for real first-
degree family relation networks. The correlations hknniðkÞ; hwnniðwÞ; hwntiðwÞ and
hkiðwÞ; presented in Figs. 7–9, and described in the previous section, are also
reasonable. This kind of correlations could be expected, since our model is somehow
similar to the ideas of hidden variables proposed by Boguña et al. [25], and their
model also generated correlated networks.

Within the proposed model we can also identify the wealth diversification
mechanism that finally leads to Pareto’s law. The time evolution of the cðw; kÞ
correlations (Figs. 9a and 9b), and the time evolution for the P4ðwÞ cumulative
distribution functions (Fig. 2) viewed in parallel give us important clues in this sense.
In the beginning of the dynamics there is usually a strong anti-correlation effect
UNCORRECT
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Fig. 10. Cumulative wealth distribution for the population of the United Kingdom, for the year 2001.

Results obtained using the database from Ref. [13]. The power-law tail is described by an exponent

a ¼ 1:78: The inset illustrates the initial exponential behavior of the curve, using a log-normal scale.
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(d½cðw; kÞ�=dto0) between wealth and number of links. This means that in this
regime those nodes which have fewer number of links will become wealthier. The
Pareto tail here does not exist, and this is where the strong wealth diversification
starts. After this initial transient regime, the cðw; tÞ correlation will converge to a
stable limit, and simultaneously the stable P4ðwÞ cumulative distribution function
with the Pareto tail is formed. The main mechanism leading to the strong wealth
diversification in our model is thus the initial strong anticorrelation between the
wealth and the number of links of one node.

One can also simply verify that the main necessary ingredient that will produce the
power-law tail is the preferential wealth redistribution in the system. Without the
preferential wealth redistribution of the 2q amounts, the model will not generate
power-law tails for P4ðwÞ: This rich-gets-richer effect seems to be thus the main
mechanism leading to power-law wealth distribution in the richer part of the
societies.
UNCORRECTED P
ROO

5. Conclusions

We have presented a family-network model designed to explain the cumulative
wealth distribution in societies. In our model the wealth exchange is realized on a
first-degree family relation network, and it is governed by two parameters. The
dynamics is defined through realistic rules and generates both the underlying family
network and wealth distribution. The model has a stable thermodynamic limit, and
the dynamics quickly lead to a network structure and wealth distribution which are
stable in time. Extended computer simulations show that for reasonable parameter
values both the obtained cumulative wealth distribution function and network
structure are realistic: (i) in good agreement with real measurement data we were
able to generate cumulative wealth-distribution functions with Pareto-like power-law
tails, (ii) the obtained Pareto index is close to the measured values, (iii) the
cumulative wealth distribution function for the low and medium wealth values is
exponential as found in social data, (iv) the Pareto regime is valid for the upper 5%
of the society, (v) the generated first-degree family relation network is realistic. We
observed that in our model the initial wealth diversification is realized through a
strong anticorrelation between the wealth of the nodes and their number of links. As
the main mechanism leading to the formation of the Pareto power-law tail we
identified the preferential redistribution of wealth in the society. In the generated
networks many interesting correlations have also been revealed.

In spite of its strengths the proposed model is still a rough approximation to
reality. One may argue that many important cultural, social or economic phenomena
have been neglected. We consider this model as a first, mean-field-type approxima-
tion. The novel aspect of our approach is, however, that the network structure was
not a priori introduced in the model, but it got formed during the postulated wealth
exchange dynamics. Subscribing to the ideas presented in Ref. [26], we also feel that
such type of approach should be considered for explaining many other social or
economic phenomena and complex network structures.
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[1] V. Pareto, Cours d’èconomie politique, Vol. 2, Macmillan, Paris, 1897.

[2] R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in

Finance, Cambridge University Press, Cambridge, 2001.

[3] T. Di Matteo, T. Aste, S.T. Hyde, preprint cond-mat/0310544.

[4] H. Aoyama, W. Souma, Y. Fujiwara, Physica A 324 (2003) 352.

[5] Y. Fujiwara, W. Souma, H. Aoyama, T. Kaizoji, M. Aoki, Physica A 321 (2003) 598.

[6] A.C. Silva, V.M. Yakovenko, preprint cond-mat/0406385.

[7] Y. Fujiwara, C. di Guilmi, H. Aoyama, M. Gallegati, W. Souma, Physica A 335 (2004) 197.

[8] F. Clementi, M. Gallegati, preprint, cond-mat/040806.
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