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Agenda

• Monte Carlo -- definition, examples
• Sampling Methods (Rejection,

Metropolis, Metropolis-Hasting, Exact
Sampling)

• Markov Chains -- definition,examples
• Stationary distribution
• Markov Chain Monte Carlo -- definition

and examples



Monte Carlo -- a bit of history
• Credit for inventing the Monte Carlo method

often goes to Stanislaw Ulam, a Polish born
mathematician who worked for John von
Neumann on the United States Manhattan
Project during World War II.

• Ulam is primarily known for designing the
hydrogen bomb with Edward Teller in 1951.

• He invented the Monte Carlo method in 1946
while pondering the probabilities of winning a
card game of solitaire.

• (Rumors: That’s why it is called Monte Carlo
(referred to the city of Monte Carlo in Monaco

     where lots of gambling  go on))



Monte Carlo Method
• Consider the game of

solitaire: what’s the chance
of winning with a properly
shuffled deck?

• Hard to compute analytically
because winning or losing
depends on a complex
procedure of reorganizing
cards

• Insight: why not just play a
few hands, and see
empirically how many do in
fact win?

• More generally, can
approximate a probability
density function using only
samples from that density

?

Lose

Lose

Win

Lose

Lose

Chance of winning is 1 in 5!



Monte Carlo principle
• Given a very large set X and a distribution p(x) over it
• We draw i.i.d. (independent and identically distributed) a

set of N samples
• We can then approximate the distribution using these

samples
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Monte Carlo Principle
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We can also use these samples to compute expectations



Examples: Buffon needles
• More than 200 years before

Metropolis coined the name
Monte Carlo method, George
Louis Leclerc, Comte de
Buffon, proposed the
following problem.

• If a needle of length l is
dropped at random on the
middle of a horizontal surface
ruled with parallel lines a
distance d >  l apart, what is
the probability that the needle
will cross one of the lines?

Buffon asked what was
the probability that the
needle would fall across
one of the lines,
marked here in green.
That outcome will occur
only if A <  l sin (theta)



Buffon’s needle continued…
• The positioning of the needle relative to nearby lines can be described

with a random vector which has components A and    . The random
vector (A,  ) is uniformly distributed on the region [0,d)  [0,     ).
Accordingly, it has probability density function  1/(d     ).

• The probability that the needle will cross one of the lines is given by
the integral

• Suppose Buffon’s experiment is performed with the needle being
dropped  n times. Let M be the random variable for the number of
times the needle crosses a line, then the probability of the needle
crossing the line will be:   E(M)/n

•  Thus :
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Applications of Monte Carlo
• Example1: To understand the behavior of electrons in

a semi-conductor materials, we need to solve
Boltzmann Transport equation:

• To do this, we need to integrate some complicated functions
and that’s where Monte Carlo methods come in. But before
doing the hard stuff, let’s watch the outcome of using Monte
Carlo method to understand the electrons in a pure silicon
crystal at 300K



How did we integrate using
Monte Carlo method then?

• Pairs of random numbers can be
transformed into coordinates
uniformly distributed within the
box. The fraction of coordinates
that falls below the function
multiplied with the area of the
limiting box, gives the solution of
the integral.

• The accuracy of the solution
depends on the number of
random numbers used.

• The exact solution will be found
within some interval around the
result obtained by the Monte
Carlo method. For an infinite
number of coordinates the
solution will be exact.



Sampling Methods
• Here, we will talk about the sampling

methods: Rejection, Metropolis and
exact sampling.

• Why do we need to know about
sampling?

• Correct samples from P(x) will by
definition tend to come from places in x-
space where P(x) is big; how can we
identify those places where P(x) Is big,
without evaluating P(x) everywhere
(which takes a lot of time especially in
higher dimension systems)?



Rejection Sampling
• We would like to sample from p(x), but

it’s easier to sample from a proposal
distribution q(x)

• A proposal distribution is a simpler
distribution that we sample from

• q(x) satisfies p(x) ≤ M q(x) for some M<∞
• Procedure:

– Sample x(i) from q(x)
– Accept with probability p(x(i)) /

Mq(x(i))
– Reject otherwise

• The accepted x(i) are sampled from p(x)!
• Problem: it works well only if p(x) and

q(x) are similar!
     and we have no easy (and fast) way to

make sure that these two distributions
are similar.

• If M is too large, we will rarely accept
samples !

• In high dimensional space, you will have
too much to sample from



Transition…

• Since we will need to understand state
diagrams and transition between states
to talk about the following two sampling
methods (Metropolis, Metroplis-Hasting
and exact sampling)

• I will switch gear here to introduce
Markov Chains first before we come
back to the sampling methods



Markov Chains

• Markov chain on a space X with transitions T is a
random process (infinite sequence of random
variables) (x(0), x(1),…x(t),…) ∈ X∞ that satisfy

• T is the transition probability matrix, P is the
probability for x to be in state x(t) given the history of
the state.

• That is, the probability of being in a particular state at
time t given the state history depends only on the
state at time t-1 --> Memoryless
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Markov chain for sampling
• In order for a Markov chain to useful for sampling p(x), we

require that for any starting state x(1)

• Stationary distribution (   ) : for any pairs of state i,j :
• Equivalently, the stationary distribution of the Markov chain

must be p(x)

• If this is the case, we can start in an arbitrary state, use the
Markov chain to do a random walk for a while, and stop and
output the current state x(t)

• The resulting state will be sampled from p(x)!
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Stationary distribution example:
Consider the Markov chain given above:

• The stationary distribution is

• Some samples:
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Markov chain and sampling
Claim: To ensure that the stationary distribution of the Markov

chain is p(x) it is sufficient for p and T to satisfy the detailed
balance (reversibility) condition

Proof: for all y we have

-> stationary distribution!
Once we know that it is a stationary distribution, we can then take

the samples from the stationary distribution and it should reflect
p(x) if we create the Markov chain correctly.

! Recall that we want to integrate efficiently some difficult
functions, and we want to use Monte Carlo integration, but we
don’t want to sample around the regions where the probability
of accepting is low, now with Markov chains, we can sample
more efficiently!
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Metropolis algorithm
• Suppose our distribution p(x) is easy to sample, and easy to
      compute up to a normalization constant, but hard to compute
      exactly

– We tried using Rejection Sampling to sample p(x),
    but in high dimensional space, there are too many samples

that is being rejected-> BAD
– So, we can use a Markov Chain with the following algorithm

to make sure that when we sample, we stay very closely
around where the p(x) is high, thus most of our samples will
be accepted (when you sample from the Markov chain).

– How do we do that?
– We define a Markov chain with the following process:
– Sample a candidate point x* from a proposal distribution

q(x*|x(t)) which is symmetric: q(x|y)=q(y|x)
– Compute the ratio:

– With probability min(r,1) transition to x*, otherwise stay in the
same state
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How does Metropolis work?
• Why does the Metropolis

algorithm work?
– Proposal distribution can

propose anything it likes (as long
as it can jump back with the
same probability)

– Proposal is always accepted if
it’s jumping to a more likely state

– Proposal accepted with the ratio
if it’s jumping to a less likely state

• The acceptance policy,
combined with the reversibility of
the proposal distribution, makes
sure that the algorithm explores
states in proportion to p(x)!

xt

r=1.0

x*

r=p(x*)/p(xt)

x*



Detailed Balance

Looking at Metropolis Algorithm and assume that
p(y)>=p(x) without loss of generality
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Other Sampling Methods

• Metroplis-Hasting: We do not require the
proposal distribution to be symmetric (q(x|y
=q(y|x)) that Metropolis needs and instead
use:

    as the ratio to determine whether we accept
or not.

• Gibbs Sampling: A special case of
Metropolis-Hasting, but we use the
conditional P(xj|xi) instead.
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Practicalities
• Can we predict how long a Markov chain Monte

Carlo simulation will take to equilibrate? (reaching
the stationary distribution)

->By considering the random walks involved in a
MCMC simulation, we can obtain simple lower
bounds on the time required for convergence. (say
the length scale of the state space is L (the curvature
of the pdf), and step size is s, then you will need T
steps = (L/s)1/2 before the chain equilibrate)

• But predicting this time more precisely is a difficult
problem.

• Exact sampling offers a solution to this problem and
we will talk about this later.



More practicalities
• Can we diagnose or detect

convergence in a mcmc ? -> very
difficult

• Can we speed up the convergence?
-> Hamiltonian Monte Carlo
-> Overrelaxation
-> Simulated annealing



How do we know the Markov chains have
reached the equilibrated state?

--> Exact sampling

• We will know for sure for some
Markov chains that they have
reached the stationary states
using exact sampling:

• 3 Big ideas:

   1) When the Markov chains (with
the same random number seed)
meet, then the chains will not
separate anymore



Exact Sampling:

2) Couplings from the past:
Let the Markov Chains
run and then stop at time
t=0, if not all the chains
meet together, then start
the simulation at t=-T
using the same random
number seeds (so that
the same situation is
modeled)

   3) For some Markov
Chains, they never cross
each other, then we just
need to look at the
maximal and the minimal
state and look for the
time when they meet.



Exact sampling: Ising Model
• Exact sampling is very useful especially

for spins.
• Spins can be for example electrons that

have simple +1/2 or -1/2 spin.
• Since for some of the spins systems, they

can have a maximal and a minimal state,
so that we can feasibly use exact
sampling.

• Example: Ferromagnetic system (4 spins
only):

• You can order the states from ++++ to ----
• One can evolve the spin chain to the final

equilibrated state in a way such that we
only consider the maximal and minimal
state, and then wait until the Markov
chain of both of these states converge,
then we know that we will get exact
samples from that equilibrated spin chains



MCMC in Action:
• WMAP!
• Used Markov Chain Monte Carlo to
    get the cosmological parameters with their

confidence levels.
• To get the confidence levels of parameter ai, one

has to marginalize over all the other parameters in
the parameter space (thus doing an integration!! -
> Recall how we did Monte Carlo integration!)

• We need to get the area underneath a certain
unknown function, thus, sample the space around
the curve (in the rectangular box ) and in this
case, we are going to use Markov Chain
(produced using Metropolis Algorithm) Monte
Carlo to get the samples.
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1) Start with a set of cosmological parameters {a1} ,
compute the likelihood

             denotes the best estimator of the

2) Take a random step in parameter space to obtain a
new set of cosmological parameters {a2} . The
probability distribution of the step is taken to be
Gaussian in each direction i with r.m.s given by        .

    We will refer below to    as the “step size”. The
choice of the step size is important to optimize the
chain efficiency.

3) Compute  L2  for the new set of cosmological
parameters.
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Markov Chain Monte Carlo Analysis of WMAP



More on WMAP analysis
4.a) If L2> L1, “take the step” i.e. save the new set of

cosmological parameters {a2} as part of the chain, then
go to step 2 after the substitution {a1}  {a2}.

4.b) If L2< L1 , draw a random number x from a uniform
distribution from 0 to 1

    -> If x >=L2/L1 “do not take the step”, i.e. save the
parameter set {a1} as part of the chain and return to step
2.

    -> If x <L2/L1, “ take the step”, i.e. do as in 4.a).
5) For each cosmological model run four chains starting at

randomly chosen, well-separated points in parameter
space.

6)When the convergence criterion is satisfied and the chains
have enough points to provide reasonable samples from
the a posteriori distributions, stop the chains (we will talk
about this step in details the next slide)



         Convergence and Mixing
          (in WMAP analysis)

• How to test convergence?
• Let us consider running M chains, each with 2N elements, and

we only consider the last N: {yj
i}

• (i runs from 1 to N, j runs from 1 to M)
• Mean of the chain:             Mean of Distribution:

• Variance within the chain:    Variance between chains
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More on convergence and
mixing

• We can define this ratio:

     numerator-> estimate of the variance that is unbiased if the
distribution is stationary (otherwise, overestimate)

     denominator-> underestimate of the variance of target distribution if
individual chains have not converged

• When the ratio is nearly 1, that means the chain has basically
achieved convergence. WMAP uses R <1.1

• WMAP only samples the chain after it reaches this ratio, thus making
sure that it has converged.

• Mixing: It also uses all the points after the first 200 points in the chain
and WMAP claims that using at least 30,000  points in each chains is
good enough to produce marginalized likelihood for all the parameters.

• This is tested (from David Spergel) by computing the 1-sigma contour
of the chains independently and make sure that they agree with each
other to within 10%.
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Analysis of WMAP cont’d
• Finally, after all the Markov Chains finished running,

we need to find the marginalized likelihood for all the
parameters!

• First, we have now found a M-dimensional
confidence region (say we have M parameters).

• Recall from previous talks: A confidence region (or confidence
interval ) is just a region of that M-dimensional space (hopefully
a small region) that contains a certain (hopefully large)
percentage of the total probability distribution.

• Example: You point to a 99% confidence level region and say,
e.g., “there is a 99 percent chance that the true parameter
values fall within this region around the measured value.”



Analysis of WMAP cont’d
Expectation value of each parameter:

How do we do this integral?
->Since the underlying distribution function is so complicated and

we want basically an integration over all the other parameters
(say you only want 1 parameter ‘w’)

    -> Monte Carlo integration!!
-> And we already have a nicely understood systems of Markov

Chains and we can sample from states of the Markov Chains.
Recall that the Markov Chains are designed to walk and stay

around where the P(a) is large, so then when we sample the
Markov Chain, it will give us a good sampling of the distribution
function P(a).
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Marginalized Likelihood cont’d
Marginalized Likelihood for one parameter:

And here N is the number of points in the Markov
Chain that has stabilized, at,i is the value of
parameter at the t-th step of the chain

• This can be easily understood as the MCMC gives to
each point in the parameter space  a “weight”/
probability proportional to the number of steps the
chain has spent at that particular location.

• The 100(1-2p)% confidence interval [cp,c1-p] for a
parameter is estimated by setting cp to the pth

quantile of at,i  and cp-1 to the (1-p)th quantile of at,i.
• -> DONE !!
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THANK YOU!!! All for coming!
• References:
• MacKay’s book and website
• Mitzenmacher & Upfal, Probability and

Computing: Randomized Algorithms and
Probabilistic Analysis (not yet published
…)

• Verde et al. 2003 , Spergel et al. 2003
• Jokes website:

http://www.isye.gatech.edu/~brani/isyeba
yes/

• A lot of pictures from the web (not
including the list here)



More Monte Carlo application
• Making fake dataset to test

the algorithm :
         In high energy physics

experiment, one generate a
fake dataset using Monte
Carlo to test if the algorithm
is correct.

• To get the probability of
some phenomena:  

        In strong lensing simulation,
you throw sources
repeatedly randomly onto
the source plane and ray-
traced each source through
the lensing cluster to get the
probability of how often does
the cluster lens.



Efficient Monte Carlo Methods

• Hamiltonian Monte Carlo
• Overrelaxation (only talk about this

when Gibbs sampling is introduced)
• Simulated Annealing



Hamiltonian Monte Carlo

• If we write P(x)=exp(-E(x))/Z
• If we can augment the state space x with

p, and sample from the joint density:
• P(x,p)=1/Zhexp[-H(x,p)]
• Algorithm hinges on: when we go to a

lower energy state (dH<0 or a random
number < exp(-dH) ), then we move to
this new state.



Simulated Annealing

• Introduce a parameter T ~ temperature
• PT(x)=1/Z(T) exp[-E0(x)-E1(x)/T]
• So that we will have a well behaved

function at high temperature defined by
E0

• Pros: Avoids going into very unlikely
region and get stuck there
(unrepresentative probability island)

• Cons: does not necessarily give you the
sample from the exact distribution.



Gibbs Sampling

• When we can’t really draw from
P(x) directly since P(x) is too
complicated

• But P(xj|xi) where i<>j is tractable
• A special case of Metropolis-

Hasting, but we use the conditional
P(xj|xi) instead.



Metropolis-Hasting
• The symmetry requirement of the Metropolis

proposal distribution can be hard to satisfy
• Metropolis-Hastings is the natural generalization of

the Metropolis algorithm, and the most popular
MCMC algorithm

• We define a Markov chain with the following process:
– Sample a candidate point x* from a proposal distribution q(x*|x(t))

which is *not* necessarily symmetric
– Compute the ratio:

– With probability min(r,1) transition to x*, otherwise stay in the same
state x(t)

– One can prove that it satisfy detailed balance too !
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Break time again :)
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P(a | x) =
P(x | a)P(a)

P(x | a)P(a)da"
a-> a set of cosmological parameters

X-> set of observed 
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Break time ….

From a Frequentist: A Bayesian is one who, vaguely
expecting a horse, and catching a glimpse of a
donkey, strongly believes he has seen a mule.

From a Bayesian(?):
A Bayesian and a Frequentist were to be executed. The judge

asked them what were their last wishes.
The Bayesian replied that he would like to give the Frequentist

one more lecture.
The judge granted the Bayesian's wish and then turned to the

Frequentist for his last wish.
The Frequentist quickly responded that he wished to hear the

lecture again and again and again and again........


