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4.1 Introduction

This chapter is aimed at describing the Monte Carlo method for the simulation of grain growth
and recrystallization. It has also been extended to phase transformations and hybrid versions
(Monte Carlo coupled with Cellular Automaton) of the model can also accommodate diffu-
sion. If reading this chapter inspires you to program your own version of the algorithm and
try to solve some problems, then we will have succeeded! The method is simple to implement
and it is fairly straightforward to apply variable material properties such as anisotropic grain
boundary energy and mobility. There are, however, some important limitations of the method
that must be kept in mind. These limitations include an inherent lattice anisotropy that man-
ifests itself in various ways. For many purposes, however, if you pay attention to what has
been found to previous work, the model is robust and highly efficient from a computational
perspective. In many circumstances, it is best to use the model to gain insight into a physical
system and then obtain a new theoretical understanding, in preference to interpreting the re-
sults as being directly representative of a particular material. Please also keep in mind that the
“Monte Carlo Method” described herein is a small subset of the broader use of Monte Carlo
methods for which an excellent overview can be found in the book by Landau and Binder
(2000).

4.2 History of the Monte Carlo Method

This section describes the history and development of the MC method. The basic features of
the model are described as needed.

The Monte Carlo method as known in the materials community is an adaptation of a
method used primarily to study the statistical physics of phase equilibria (Landau and Binder
2000). The name “Monte Carlo” was coined by Metropolis (inspired by Ulam’s interest in
poker) during the Manhattan Project of World War II, because of the similarity of statistical
simulation to games of chance, and because Monte Carlo, the capital of Monaco was a cen-
ter for gambling (http://csep1.phy.ornl.gov/mc/node1.html). Monte Carlo now refers to any
method that utilizes sequences of random numbers to perform statistical simulation. The main
requirement to use Monte Carlo method for simulation of a physical system is that it must
be possible to describe the system in terms of probability density function (PDF), also called
partition function (Z). Once the PDF or Z for a system is known, then the simulation begins
by random “sampling” from the PDF, and subsequently determining the desired properties of
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the sample by conducting some kind of a “trial”. There must be a rule available, based on
some reasonable mathematical and/or physical theory, to decide the outcome of such a trial.
Many trials are conducted and outcomes of all of these trials are recorded. The final step in the
MC method is that the behavior of the overall system is obtained by computing the average of
outcomes of the trails conducted.

MC methods are used in many different ways e.g. as a technique of integration of a func-
tion, as a way to model stochastic (random) processes, as tool to calculate properties of state
such as E, T, P , and V , and as a model to simulate a system of interacting particles e.g. ferro-
magnetic materials. In materials science, however, the MC method has been primarily applied
to simulate microstructural evolution where equilibrium occurs on a local basis at best (e.g.
at triple junctions). In general, the system is far from equilibrium and we attempt to study
the kinetics of the processes that lead to equilibrium as a function of time e.g. grain growth
or recrystallization. Although the model has proven to be useful for many different problems,
it is important to understand that its ability to simulate physical behavior at the continuum
(or mesoscopic) level is heuristic. One notable exception to this remark is recent work that
has demonstrated rigorously that interfacial velocity is linearly related to the curvature of the
interface (Holm 2002).

4.2.1 Ising and Potts Models

The genesis of the method lies in solid state physics community and the development of mod-
els for ferromagnetic materials. The Ising model (1925) represents a magnetized material as
a collection of spins where only two states are possible, namely up or down. Potts (Potts
1952) later generalized the Ising model and allowed for Q states for each particle in the sys-
tem, hence the term “Q-state Ising model.” It is the Potts model that has been used most
extensively to simulate mesoscopic (where the length scale is of the order of the grain size)
behavior of materials such as recrystallization, grain growth and texture evolution. While we
will describe the algorithms for solving the Ising model, as the Ising model is the simpler of
the two, it should be noted that the same algorithms are equally applicable for solving the
Potts model with some modifications to accommodate the Q states.

In both models, neighboring spins interact with each other through a contribution to the
system energy: if the spins are the same, no interaction energy is contributed (ground state)
whereas a difference in spin leads to a (positive) contribution to the system energy. The system
is symmetric in the sense that the minimum energy condition is reached when either all spins
point up or all point down. If there are N interacting particles and each particle has two
states (“up” or “down” in Ising model) then the system as a whole has 2N possible states in
which it can exist. The problem is to be able to determine the behavior of such a system at a
temperature T and predict the properties of the system at equilibrium configuration. Consider
a system that is in contact with a thermal reservoir with infinite heat capacity so that energy
exchange between the system and the reservoir occurs at constant T . The precise nature of the
reservoir is not very relevant and it can be viewed as consisting of an infinitely large number
of copies of the system that we set out to study. For the reservoir as well as for the system,
V , N and T are fixed and E can vary between 0 and ∞. The assembly of systems within
the reservoir is referred to as a (macro)canonical ensemble (Pathria 1972). The question now
is: what is the probability Pi that the system is in state i, with energy Ei at any time t? The
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Monte Carlo approach consists of generating a series of possible macrostates i, j, . . . such that
the probability Pi that the system is in state i within the state space, is given by an appropriate
PDF. Such a distribution is called a canonical distribution given according to:

Pi =
1
Z

e
−Ei
kBT , (4.1)

where kB is Boltzmann’s constant, T is the absolute temperature and Z is the partition func-
tion given as follows:

Z =
∑

i

e
−Ei
kBT (4.2)

The next step is to determine equilibrium properties of the canonical ensemble such as energy
and magnetization. The energy associated with each state depends on the exchange energy of
the particles and interaction of the particles with the external magnetic field. However, in the
absence of an external field, system energy is dependent only on the spin exchange energy, E:

Ei =
J

2

N∑
i=1

z∑
j=1

(
1 − δSiSj

)
, (4.3)

where J is the energy associated with a dissimilar pair of spins, δ is the Kronecker delta, Si is
the spin on the ith site (S = {0, 1}), z is the coordination number of each grid point, N is the
number of points in the grid and the factor of one-half compensates for counting each pair of
spins twice.

For a given temperature T and spin exchange energy J , the system will approach an equi-
librium configuration with a consequent system energy E and an order parameter m (m is the
expectation value of the magnetization of the system at temperature T ) In the Ising model, m
is determined from the following implicit equation:

m = tanh[β(zJm + H)], (4.4)

where β = (1/kBT ), z is the number of nearest neighbor spins and the quantity H is propor-
tional to the external magnetic field, but has units of energy. Equation (4.4) must be solved
numerically to obtain the actual value of m. It is clear from Equations (4.1)–(4.4) that the
behavior and properties of a system in the Ising model depend critically on the values of J
and T .

It is noted here that the Ising spin model does not determine the dynamics of evolution
i.e. there is no reference to how long it takes for the system to approach the equilibrium
canonical distribution. The dynamics of the Ising model were subsequently determined by
Kawasaki (1972) for a conserved order parameter spin transition and by Glauber (1963) for a
non-conserved order parameter approach. The two approaches vary in the way the system’s
structure evolution is handled as shown schematically in Figure 4.1.

In Figure 4.1 a simple Ising one-dimensional model is shown schematically. In Fig-
ure 4.1a, the second and third spins simply exchange their spin orientations so that the total
number of Up and Down spins is not changed during the transition. On the other hand, in
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Figure 4.1: Schematic representation of (a) order
parameter conserved, and (b) order parameter not
conserved spin transitions.

Figure 4.1b, the second site reverses its spin to line up in the direction of spins of its neighbors
on either side. In this case, the order parameter is not conserved, as there are now 3 Up spins
and 1 Down spin in the system. Essentially all applications of the Monte Carlo method to mi-
crostructural problems have used the latter, non-conserved Glauber dynamics: one crystal in
a polycrystal can obviously grow at the expense of its neighbor such that the volume of a par-
ticular orientation is not conserved. Conserved Kawasaki dynamics are useful in magnetism
problems where extensions of the Ising model continue to be studied.

For a system with large numbers of particles, it is extremely complex to analytically solve
Equations (4.1) – (4.4) above. To deal with this problem, Metropolis et al. (1953) proposed
an algorithm to solve these equations using Monte Carlo method. The Metropolis algorithm
for the solution of the Ising model using the Monte Carlo method is described in the following
section.

4.2.2 Metropolis Algorithm

At this point it is useful to introduce the procedure for changing the state of a MC model. The
simulation begins by initializing an array of lattice sites, with nearest neighbor interactions
that depends upon the state (or spin) of the neighboring sites. The Metropolis algorithm is
then enforced on such an array. The key steps of the Metropolis algorithms are as given below
(Landau and Binder 2000):

1. Choose a site i at random

2. Calculate the energy change ∆E (using Equation (4.3)) associated with changing the spin
at the ithsite

3. Generate a random number r such that 0 < r < 1

4. If r < exp(−∆E/kBT ), flip the spin

5. Increment time regardless of whether a site changes its spin or not

6. Go to 2 until sufficient data is gathered.

There are several important points to be noted here to elucidate the procedure. First of all,
the changes are made on an individual site basis where the choice of site is random in time
(Step 1) in contrast to other models where simultaneous updating of all sites is the norm (finite
difference, finite element, phase field, some types of cellular automata). Secondly, the ∆E
mentioned in Step 2 depends upon the states of the neighbors and the number of neighbors
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depends on the assumed lattice structure as discussed in more detail in Section 4.3.4. In Step 4,
the transition from one state to another at any given site is calculated by a transition probability
given as exp(−∆E/kBT ). This is in accordance to Equation 4.1. There are different schemes
to determine the transition probability as discussed below. The transition probability is then
compared to a random number that is generated in Step 3. This is a necessary rule to simulate
the roll of a dice or the “chance” involved in making the decision to change the state. Finally,
the time mentioned in Step 5 is not the wall-clock time of a program run, but the simulation
time in some arbitrary units. One iteration of the Metropolis algorithm represents 1/N time
increments. On average, N iterations are required for each site in the lattice to have a chance
to change its state and therefore, 1 unit of system simulation time elapses after N iterations.
This unit of simulation time is called Monte Carlo Step (MCS) and represents an integer time
increment. An alternative time accounting method is discussed in Section 4.2.3 that uses a
continuous time increment.

The particular expression given here is the Metropolis method that is the one most com-
monly used in materials simulations; see (Landau and Binder 2000).

p(∆E) =

{
1 if ∆E � 0
exp(−∆E/kBT ) if ∆E > 0

(4.5)

There is also the symmetric method that uses a hyperbolic tangent function. In simulations of
domain coarsening, this method yields similar results to the Metropolis method.

p(∆E) = tanh(−∆E/kT ) (4.6)

To gain an intuitive understanding of the transition kinetics, the influence of ∆E and T on
p(∆E) is shown in Table 4.1.

The major inefficiency associated with the Metropolis algorithm is that during the late
stages of evolution (sparse systems), or for low temperatures, the transition probability ap-
proaches 0 at most sites so that the system evolves very slowly and many reorientation attempts
are wasted. This characteristic increases computation times. This weakness is substantially
mitigated at low temperatures by the n-fold way algorithm described in the following section.

4.2.3 n-fold Way Algorithm

The Monte Carlo method is very inefficient when applied in its basic form to large data sets
because of the sparseness of the problem to be worked. Once much coarsening has occurred
in grain growth, or recrystallization is nearly complete, most sites in the lattice are surrounded
by sites of the same orientation, i.e. they are in the bulk of a grain. Therefore the probability of
their changing orientation is very low and expending computational effort there is wasted. The
crucial contribution of Bortz et al. (1975) was to propose a method for eliminating the need to
compute unsuccessful changes in orientation. The n-fold way algorithm speeds up simulations
by eliminating Steps 3 and 4 in the Metropolis algorithm given above. The essential concept
is that for a given state of the system, the spin-flip transition probability for each of the lattice
sites can be calculated before choosing a site to flip. The spin-flip transition probabilities in a
system will have certain specific values depending on the configuration of surroundings and
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Table 4.1: Influence of ∆E and T on kinetics and equilibrium state of a system.

T → 0
Zero Temperature

∆E � 0 ∆E < 0 P (∆E) → 0
P (∆E) → 1

System is in equilibrium
in ground state, all spins
point in the direction
of H

T → ∞
Infinite Temperature

Any ∆E P (∆E) → 1 System is in completely
disordered state as
entropy dominates and
spins are randomly
oriented w.r.t. H

T < Tc

Tc is a critical tem-
perature below which
system orders sponta-
neously,
Tc = 2.269185 J/kB

for 2D, square, Ising
model
Finite Temperature

∆E � 0 ∆E > 0 P (∆E) � 1
P (∆E) < 1*

T is expressed in terms
of the ratio J/kB . Vari-
ation in T leads to first
order (discontinuous) or
second order (continu-
ous) transitions

T > Tc

Finite Temperature
∆E � 0 ∆E > 0 P (∆E) � 1,

P (∆E) < 1,
but greater
than * above

– as above –

choice of lattice type. The energy associated with site i is given according to the following
modification of Equation (4.3):

Ei =
J

2

z∑
1

(
1 − δSiSj

)
+ H (Si) (4.7)

Consider a square lattice Ising model with four nearest neighbors (z = 4) and J = |H| =
1, and kBT = 0.4. Based on the orientation of the reference spin and those of its neighbors
and the direction of the external field there are 10 distinct values of transition probabilities.
The transition probabilities are calculated using the Metropolis scheme, Equations (4.5) and
(4.7). The different possible values are termed classes in the n-fold way terminology. Three
such classes and their corresponding transition probabilities are shown in Figure 4.2. Three
examples of different classes and their initial orientation of the external field and spins are
shown in Figure 4.2. For Class 1, the external field is in the opposite direction to the spins
while the four neighboring spins are in the same direction as the central reference spin leading
to Eold = 1. If the central reference spin were to flip its spin direction, then it would align
itself in the direction of the external field, but would be anti-parallel to all four of its neighbors
so the new Enew would be 4. The net change for this transition in energy (∆E) would be
4−1 = +3. The probability of this transition is then determined according to Equations (4.5)
and (4.7) as shown in Figure 4.2, together with two additional examples. A similar analysis is
required for all ten classes of spin configurations.
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Figure 4.2: Three examples of different classes in the n-fold way algorithm for a two-dimensional,
square lattice Ising model. Each class represents a different possibility for a change in configuration of
spins (or orientations when grain growth is considered). The spins are shown in their initial configuration
and the transition probability is evaluated for changing (flipping) the central spin (from up to down).

The next step in the n-fold way algorithm involves sorting of the lattice sites into these
spin-flip transition probability classes. The sum of spin-flip probabilities for the entire system
(Qn) is calculated according to

Qn =
n∑

j=1

njpj . (4.8)

where n = 1, 2, 3, . . ., 10 are the number of classes of spin-flip transition probabilities, nj

is the number of sites in jth class and pj is the spin-flip probability for that class. For a 2D
isotropic system with z = 4, there are 10 classes. If anisotropy is introduced between the X-
and Y- axes, then there are 18 classes (Novotny 1995). To decide which spin to flip in the
n-fold way algorithm, a random number r(0, 1) is generated and the kth class is chosen based
on satisfying the following condition:

Qk−1 � rQn < Qk . (4.9)

This procedure thus chooses classes according to their weight – classes with high p are
chosen more often, classes with low p are chosen less often, while those classes with prob-
ability = 0 will not be chosen at all. Thus sites internal to a domain or a grain that will not
flip (transition probability = 0), are simply never chosen to flip in the n-fold way, thus avoid-
ing the rejections involved (Metropolis Step 4) in the conventional MC method. Within the
chosen class k, the particular site to be flipped is selected randomly from the nk sites that
belong to that class. Finally, the spin at the chosen site is flipped with probability 1 and this
eliminates Steps 3 and 4 in the Metropolis algorithm. The class of the chosen spin and those
of its nearest neighbors is then updated. The n-fold way algorithm may be described in the
following manner (Novotny 1995):

1. Generate a random number and increment the time by an appropriate amount.

2. Choose a class k that satisfies the condition given in Equation (4.9)
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3. Generate a random number to choose one of the sites from class k

4. Flip the spin at the chosen site with probability 1

5. Update the class of the chosen spin and all of its nearest neighbors

6. Determine Qn

7. Go to 1 until sufficient data is gathered

The time increment in the n-fold way algorithm is explained in detail by Novotny based
on the concept of absorbing Markov chains. In effect, the time increment, ∆t, in the n−fold
way algorithm is correlated to the probability that the given system configuration will change
to a different configuration during the time increment:

∆t =
− ln r

Qn
. (4.10)

Equation (4.10) is based on the assumption that the successful re-orientation of a site is de-
scribed by an exponential probability distribution, so that successive evolution steps are Pois-
son events.

It is useful to see exactly how the n-fold way speeds up the computation time. Consider
class 1 as shown in Figure 4.2. The transition probability for this class is calculated as 6.7 ×
10−3. Hence, on average, about 1/p(1) = 148 spin flip trials are required for a spin in class
1 to flip successfully using the Metropolis algorithm. For sparse systems, a large proportion
of sites have a low transition probability and therefore Metropolis trials require long times in
these cases for successful flips whereas the n-fold way flips those sites in one attempt. One
drawback of the n-fold way algorithm is that it requires more memory than the standard MC
algorithm, because it needs to store the class tables and the list of sites that belong to each
class. Also, some computation time is spent in updating the class tables after every iteration.
A practical consideration is that, at high lattice temperatures, the advantage of the n-fold way
disappears because all sites approach similar activity levels. However, these restrictions are
now almost not relevant since the memory size of desktop computers is commonly 2 GB and
parallel computing is making inroads into computational materials science. For most grain
growth and recrystallization problems, the overall performance of the n-fold way algorithm
is much better compared to the conventional MC algorithm because the density of boundary
sites is low and typically decreases during a simulation.

This approach was adapted by Sahni et al. (1983) to the Q-state Potts model to take
account of variable activity in the system where Q is the number of possible spin numbers that
an individual grid point can take. The system activity, A, is defined as the sum of the separate
probabilities for each site for each possible re-orientation over all distinct spin numbers in the
system.

A =
N∑

i=1

Q−1∑
j=1

pj (Si → S′
i) (4.11)
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Here the subscript j indicates the counter for each possible new spin value, of which there are
(Q − 1) possibilities at each site (since changing to the same spin is excluded). Based on this
definition, the time increment associated with each successful re-orientation is as follows:

∆t =
−(Q − 1)

A
ln r . (4.12)

This particular approach was, however, limited to zero temperature and uniform grain bound-
ary energy (i.e. a single value of J in Equation (4.3)). An important generalization of the
n-fold way was made by Hassold and Holm (1993) who pointed out that, although finite tem-
perature introduces a finite probability that a given site will switch to any of the (Q− 1) other
possible orientations, most of the switching probabilities are known analytically. Thus the
additional work of computing the activities at each site due to finite temperature is minimized
and a practicable algorithm was generated. For 2D grain growth, for example, Holm found
that the conventional Monte Carlo method was more efficient only when the mean grain ra-
dius was less than 3 and computation efficiency increased monotonically as the simulation
progressed (Holm, Glazier et al. 1991). Even at high fractions of the critical temperature, the
n-fold way was more efficient for long simulation times.

It has been noted that the time scale depends on the number of distinct orientations or spins
in the system (Equation (4.12)). In reality, however, the rate of grain growth does not depend
on the number of different orientations present initially. Therefore it has been suggested that
the time increment should be adjusted so as to remove the dependence on Q:

∆t =
− ln r

A
. (4.13)

4.3 Description of the Monte Carlo Method for Grain
Growth & Recrystallization

4.3.1 Discretization of Microstructure

The Monte Carlo also uses a discretized representation of microstructure; however, site in-
teractions are energetically controlled. A continuum microstructure is mapped onto a two-
dimensional (2D) or three-dimensional (3D) lattice. Each lattice site is assigned a number, Si,
which corresponds to the orientation of the grain in which it is embedded. Lattice sites that
are adjacent to sites having different grain orientations are regarded as being separated by a
grain boundary, whereas a site surrounded by sites with the same orientation is in the grain
interior.

Each site contributes bulk energy, H(Si), to the system; in recrystallization modeling,
H(Si) is the energy stored at site i during deformation, analogous to dislocation densities in
real crystals. In addition, each unlike pair of nearest neighbors contributes a unit of grain
boundary free energy J to the system as already described. Summing bulk and surface energy
contributions, the total energy of the system is calculated via the Hamiltonian specified in
Equation (4.7). In static recrystallization simulations, the stored energy per site is assumed to
be positive for initially unrecrystallized material and zero for recrystallized material. When
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Figure 4.3: Diagram of the square 2D lattice, showing orientation numbers at each site and grain
boundaries drawn between sites with unlike orientations. The circled site with spin value 9 has
three like neighbors when 1st and 2nd nearest neighbors are counted, and five unlike neighbors.
For isotropic grain boundary energy, flipping this site from spin = 9 to spin = 4 would leave
the number of unlike nearest neighbors unchanged; thus ∆E = 0 and the flip probability is one.

dynamic recrystallization is simulated, however, the stored energy at each point is a function
of both time and position.

4.3.2 Evolution of the Microstructure

The evolution of the structure is modeled by picking a site and a new orientation at random
from the set of allowable values. The change in total system energy ∆E for reorienting the
site is computed, and the reorientation is implemented with the transition probability, p as
discussed in Section 4.2.2. It is important to note the difference between the meaning of
temperature in the context of the Monte Carlo model and the physical parameter relevant to
recrystallization. In the simulation, temperature governs the degree of disorder in the lat-
tice, and below some critical temperature Tc, dependent on the lattice type, the system orders
spontaneously. Only second order effects are observed for variations in simulation temper-
ature (Hassold, Holm et al. 1990) on the kinetics of grain growth. Because of this lack of
sensitivity to lattice temperature, much simulation work with model has been performed at
zero lattice temperature. The consequence of this is to simplify the transition probabilities as
follows.

p(∆E) =

{
1 if ∆E � 0
0 if ∆E > 0

(4.14)

The usual procedure in Monte Carlo simulations is to start with a completely random structure
that corresponds to a structure obtained at infinite temperature. The structure may then be
evolved based on the manner in which it is cooled. One approach is to quench the structure to
a temperature below Tc and observe the evolution as the system approaches the equilibrium
ordered state. This is the so-called Quenched Potts model. When the quenching temperature
is low, i.e. T approaches 0, then the evolution rate is low and it would take long time for
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the system to approach equilibrium. Therefore, an alternative approach termed simulated
annealing is used to evolve the structure. In this case, the temperature of the system is lowered
slowly and the structure is allowed to attain equilibrium at each temperature step. The time
steps needed to ensure slow cooling are proportional to exp(1/T ) such that, as the temperature
decreases, the number of time steps needed increases exponentially. In such cases, a fast
simulated annealing procedure may be used, see Plischke and Bergensen (1994) for more
details.

One Monte Carlo time step (1 MCS) is typically defined as N reorientation attempts, i.e.
each site is given an opportunity to change orientation. The number of Monte Carlo Steps
is assumed to be proportional to physical time. Recently, it has been pointed out that this
definition results in a dependence on the Q value, i.e. the number of orientations in the system.
The higher the Q value, the slower the rate at which boundaries will move. This is clearer in
the definition of the time step for n-fold way in Section 4.2.3 (Equation (4.12)).

4.3.3 Inert Particles

Particles are introduced into the simulation as sites which have an orientation different from
any of the grains and which cannot be reoriented during the course of the simulation. An
individual particle may consist of a cluster of contiguous sites. In 2D, single site particles are
effective but in 3D it is important to use a particle size that is comparable (or bigger than)
the interaction distance implicit in Equation (4.3). The particles do not react, dissolve or
grow themselves and hence are called inert rather than second phase particles or precipitates.
This assumption results in an equality of the particle-matrix interfacial energy and the grain
boundary energy, which is reasonable for particles that are incoherent with respect to the
matrix. Just as the grain boundary energy can be made a function of the boundary type, so
the particle-matrix energy can be varied. Also, the particles cannot move through the lattice,
which means that grain boundary drag of particles is not permitted (Ashby and Centamore
1968). Results for particle pinning effects are discussed in Sections 4.9.3, 4.9.4.

4.3.4 Lattices

Implicit so far in the discussion has been the connectivity of the points that represent the
discretized microstructure. It turns out that the lattice can have a strong effect on the results
of the simulation. A survey of lattice types for both two and three dimensions is available
in the thesis by Holm (1992). The grain boundary energy per unit length is anisotropic with
respect to the boundary orientation in the lattice. This anisotropy can be characterized by a
Wulff shape, which is directly related to the coordination number and symmetry of the lattice.
Tables 2 and 3 list the lattice types with their geometries and the anisotropy of the Wulff plot.
The number in parentheses after the lattice type denotes the number of shells of neighbors,
such that square (1,2) means a square lattice with first and second nearest neighbors. The
lattice type cubic (2*) denotes a simple cubic lattice with first, second, third nearest neighbors
and neighboring points located at [222].

The characteristic of many lattices that has been ignored by several authors is the tendency
towards self-pinning for grain growth (explained later) in simulations performed at zero tem-
perature. The last column in each table shows which lattices can sustain grain growth without
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Table 4.2: Listing of 2D lattice types with geometries and anisotropies.

Lattice Type Wulff Shape Coordination
Number

Anisotropy Grain Growth

Square (4.1) Square 4 1.414 Inhibited
Triangular Hexagon 6 1.154 Normal
Square (1,2) Octagon 8 1.116 Normal
Triangular (1,2) Dodecagon 18 1.057 Normal

Figure 4.4: Diagram of the nearest neighbor relationships around a central point labeled ‘A’ in:
(a) triangular lattice with first nearest neighbors; (b) triangular lattice with 1st and 2nd nearest
neighbors; (c) square lattice with 1st and 2nd neighbors.

Table 4.3: Listing of 3D lattice types with geometries.

Lattice Type Wulff Shape Coordination
Number

Grain Growth

Cubic (4.1) Cube 6 Inhibited
Cubic (1,2) 18-hedron 18 Inhibited
Cubic (1,2,3) 26-hedron 26 Normal
Cubic (2*) 98-hedron 124 Normal
fcc (4.1) Rhomboid Dodecahedron 12 Inhibited
fcc (1,2) 18-hedron 18 Inhibited
hcp (4.1) Trapezoidal Dodecahedron 12 Inhibited

self-pinning and are therefore suitable for studies of microstructural evolution. For example,
in three dimensions, both of the close packed lattices, face centered cubic and hexagonal,
cannot sustain coarsening to long times. The reason for this is a combination of high lattice
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anisotropy tending to favor grain facets that lie on high symmetry planes, and a tendency for
kinks or steps in boundaries to anneal out with time. If the microstructural features that allow
boundaries to move are lost, then it is not surprising that self-pinning occurs. Finite tem-
perature can be used, however, to maintain a population of kinks and steps thereby allowing
grain growth to proceed. In general it is advisable to use a finite temperature in order to avoid
faceting and loss of the kinks that allow interface motion to occur, regardless of the particular
lattice used.

If the grain boundary energy J is uniform for all boundary segments in a recrystallization
simulation, the triangular lattice is suitable for the simulation of recrystallization in two di-
mensions (Srolovitz, Grest et al. 1986), and that the cubic (1,2,3) lattice is suitable in three
dimensions (Anderson, Grest et al. 1989). For other types of simulations, careful examination
for lattice effects must be made even for these lattices. Figure 4.3 shows a 2D triangular lattice
with boundaries drawn between regions of uniform orientation. Despite the availability of 3D
simulation methods, no substantial results have been reported for 3D Monte Carlo simulation
of recrystallization.

4.3.5 Boundary Conditions

It is common to use periodic boundary conditions on the spatial domain. This has been likened
to modeling a circle or Möbius strip of points in 1D, or a set of points on a torus in 2D. The
advantage of using periodic boundary conditions is that it avoids the singularity of edges in a
finite domain. The effect of such boundary conditions is illustrated in Figure 4.5. A point on
the edge of the domain is connected to points on the opposite edge. The equivalent effect can
be obtained by copying the domain along all the edges. Care is needed if a triangular lattice
with an oblique two index-addressing scheme is used in order to avoid an implicit shear from
connecting the top and bottom edges of the lattice.

Periodic boundary conditions are simple to implement and a natural choice when the initial
state of the lattice is artificial. If, however, a microstructure has been measured experimen-
tally, e.g. by orientation imaging microscopy, and is used to initialize the lattice then periodic
boundary conditions are obviously inappropriate (Baudin, Paillard et al. 1999; Cheong, Hilin-
ski et al. 2003). The typical choice is to make each edge a mirror, which has the effect of
allowing boundaries to terminate at an edge but be able to slide along the edge as dictated by
the driving forces that act on them.

4.3.6 Parallelization of the Monte Carlo Algorithm

Since parallelization of the algorithm is largely concerned with boundary conditions, it is
appropriate to review the efforts that have been made in connection with the Monte Carlo
model. Two main concepts are discussed here: one is based on dividing the simulation do-
main into subdomains, and the second is based on the checkerboard approach (Holm, 1992).
Lubachevsky (1987, 1988) proposed parallelization of the Ising model based on an asynchro-
nous scheme. Korniss et al. (1999) developed a parallel MC model for studying magnetic
domains using Lubachevsky approach, described in more detail below. In complete contrast
to the subdomain approach, Miodownik (2000) used the checkerboard approach in which a
subset of the pixels is operated on, chosen such that in each time-step, each active pixel (or
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Figure 4.5: Periodic boundary conditions illustrated for a 2D lattice with 1st and 2nd nearest
neighbors. The site in solid shading has 5 of its neighbors with similar index values and 3 of its
neighbors on the left hand side of the lattice. The arrow indicates the connection from one side
of the lattice to the other. The concept is easily extended into 3D.

voxel) has no nearest neighbors that are operated on simultaneously. Given that each active
pixel is independent of all others, the work of deciding what flip to perform can be distributed
across processors without any need for communication between them: only the results of
each individual flip must be recorded in memory. At the next time step, the origin of the
checkerboard is translated by one pixel and the next subset of (spatially independent) pixels is
operated on. Implementation of the n-fold way method was not possible with this approach.
Also, the particular simulations involved required high lattice temperatures in order to avoid
problems associated with faceting of grain boundaries in configurations where they are pinned
by second-phase particles. At high enough lattice temperatures, as noted elsewhere, the high
rate of flips associated with positive changes in energy is high enough to nullify the advantages
of the n-fold way and the standard MC method is more efficient.

The main ideas involved in the asynchronous parallelization of the n-fold way algorithm
for Ising-like systems are as follows. The first step in parallelization involves dividing the sim-
ulation domain into suitably sized pieces for each processor to work with. One such example
of domain decomposition is shown in Figure 4.6 below.

Each processor works on its piece of simulation domain with its local simulation time.
When a processor chooses a site that is situated on a processor boundary or a corner, special
care must be taken to ensure that the simulation trajectory is not corrupted. This is achieved
by allowing a border or corner site update only if its local simulation time is less than or equal
to the local times of all the corresponding processors that carry its neighboring sites. For
example, in Figure 4.6, if the processor 0 has chosen the diamond-patterned site to update, then
this update will be evaluated only when the local simulation time of processor 0 becomes less
than or equal to the local simulation time of processors 1, 3 and 4 that carry the neighboring
sites marked with circles. Until this happen, processor 0 must wait. Lubachevsky and Korniss
et al. defined a special class for boundary and corner sites to handle PE boundaries. The
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Figure 4.6: Domain decomposition in parallel processing. In the example shown in the figure,
a global simulation domain size of 12× 12 sites is divided up into 9 processors, each carrying a
local simulation domain size of 4×4 sites. Note that the sites situated at a processor corner (e.g.
horizontal lines) have some of their neighbors located on three other processors (gray), sites at a
processor boundary (vertical lines) have some of their neighbors residing in one other processor
while sites within the kernel of the local domain (solid) have all of their neighbors within the
same processor. The numbers shown are the processing element (PE) or processor ID numbers.

activity of all of the PE boundary and corner sites was always set to 1. Assigning a high weight
to PE boundary sites leads to PE boundary sites being picked more often and this compensate
for the waiting at the PE boundaries This procedure ensures comparable evolution kinetics of
the kernel and boundary sites. The time increment in the parallel n-fold way is as follows:

∆t =
−1

Nb +
n∑

j=1

njpj

ln r , (4.15)

where Nb is the total number of sites on PE boundaries.
The parallel n-fold way algorithm based on the asynchronous approach is then stated as

follows:

1. Select a class based on Equation (4.13). Note that in parallel, asynchronous n-fold way,
PE boundary sites have a class of their own as explained above.

2. (a) If the chosen site is in kernel, flip it with probability 1 and go to Step 3.

(b) If the chosen site is in the boundary class, then wait until the local simulation time
of this updates becomes less than or equal to the local simulation times of the neigh-
boring PEs. When this condition is satisfied, evaluate the environment, compute the
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transition probability and flip with Metropolis probability, Equation (4.5). Go to
Step 3.

3. Update tabulation of spin classes in kernel.

4. Determine time of next update based on Equation (4.15).

5. Go to 1 until sufficient data is gathered.

4.4 Nucleation in Recrystallization

Nucleation presents several challenges at the level of mesoscopic simulation of microstruc-
tural evolution. It has long been known (Martin et al. 1997) that homogeneous nucleation
is impossible and that for all practical purposes new grains arise from the existing defor-
mation microstructure. The subgrain structure and other relevant features of the deforma-
tion microstructure have, however, a characteristic length scale on the order of 1 µm or less
(Miodownik et al., 1999). This is more than an order of magnitude smaller than the typical
grain size after recrystallization (10 to 100 µm) and so it is impracticable to model the nucle-
ation process is detail. New grains must be introduced deus ex machina according to empirical
rules for their location and orientation, as described below. There are two exceptions to these
remarks. One is work by Radhakrishnan et al. who have studied combined models of plastic
deformation and recrystallization (Radhakrishnan et al. 1998; Sarma et al. 2002). The second
is work by Holm et al. (2003) on modeling the process subgrain coarsening in detail which
has led to a theory of nucleation of new grains, discussed in more detail below in Section 4.9.1
on abnormal grain growth.

From an algorithmic point of view, the fact that recrystallization introduces new grains
means that it is not practicable to work with a fixed list of orientation values as can be done
in grain growth, wherein the maximum numbers of grains occurs at time zero. Therefore it
is convenient to introduce each new grain with a unique orientation value. Alternatively, the
range of orientation values can be partitioned into recrystallized and non-recrystallized sets.
Nucleation is accomplished by introducing new (recrystallized) grains into the simulation with
orientation numbers chosen from the appropriate set. The computational efficiency of the
continuous time method is unaffected by this characteristic of recrystallization simulations.

Nucleation of recrystallized grains is modeled by adding small embryos to the material at
random positions at the beginning of the simulation (i.e. site saturated nucleation) (Srolovitz,
Grest et al. 1986). The stored energy is set to zero at each site belonging to the embryo.
Adding embryos at regular intervals during the simulation simulates continuous nucleation.
In both cases the effective nucleation rate decreases with time because, at long times, most
of the available space has been recrystallized and has zero stored energy; embryos placed in
recrystallized material will shrink and vanish. Dynamic recrystallization is modeled by adding
stored energy to each lattice point continuously (Rollett, Luton et al. 1992). This means that
it is not possible to distinguish between recrystallized and unrecrystallized material after the
first cycle of recrystallization is complete. The process of work hardening starts anew with
each new grain, which means that the stored energy at any given point is related to the length
of time that has elapsed since the nucleation event associated with that grain.
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Embryos have orientations that differ from those of all other grains and particles as dis-
cussed above. If the bulk stored energy H is too small, the embryos are sub-critical and shrink
away. The value of H required for embryo growth depends on its surroundings and on the
lattice being used. Above some critical H/J , an isolated embryo is super-critical and can
grow as a new grain nucleus. Below that H/J , the embryo must be adjacent to an existing
grain boundary in order to become a nucleus; its growth then occurs preferentially along the
prior grain boundaries. In the 2D triangular lattice, homogeneous nucleation cannot occur for
H/J < 2. Embryos of two lattice sites can grow when 2 � H/J < 4. Single-site embryos
can grow when H/J � 4.

Table 4.4: Critical Embryo Sizes in the MC model for Recrystallization (Holm 1996).

Stored Energy: Boundary Energy Critical Size (lattice sites)

2D, Triangular Lattice:

H/J < 2 (Very large)
2 < H/J < 4 2
4 < H/J < 6 1
H/J > 6 (Any embryo grows)

2D, Square Lattice,
with 2nd nearest neighbors:

H/J < 1 (Very large)
1 < H/J < 2 3
2 < H/J < 8 1
H/J > 8 (Any embryo grows)

3D, Simple Cubic lattice,
with 2nd and 3rd nearest neighbors

H/J < 3 (Very large)
3 < H/J < 5 5
5 < H/J < 8 3
8 < H/J < 26 1
H/J > 26 (Any embryo grows)

4.5 Initialization of MC Simulations

The 2D MC recrystallization simulations reviewed here were typically initialized with a mi-
crostructure obtained from grain growth simulations (Anderson et al. 1984; Srolovitz et al.
1984). Grain growth for a period of 103 MCS in a domain size of 200× 200 sites yields a mi-
crostructure with approximately 1000 grains and a mean grain area of approximately 40 sites.
Whether new grains placed in the structure survive and grow will depend on their spatial loca-
tion because prior boundaries act as heterogeneous nucleation sites (Srolovitz et al. 1988). If
second phase (inert) particles are required, single-site “particles” are randomly placed within
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the microstructure to obtain a certain area fraction. The typical method is to assign particle
sites an orientation number that is not permitted to change during a simulation. The stored
energy is initialized to the desired value for each site. It is also reasonable to start with no
prior grain structure, which is equivalent to having a single crystal. The survival and growth
of new grains is then independent of spatial location in the lattice.

Another interesting aspect of initialization is how to represent experimentally measured
microstructures. Several authors have recently reported using experimental orientation maps
to specify the initial state of the model (Baudin et al. 1999; Cheong, et al. 2003). These maps
are currently obtained from automated electron back-scatter diffraction (EBSD) characteri-
zation of metallographic specimens in a scanning electron microscope (SEM). The transfer
is exceptionally simple because the size of the maps is well within the capacity of modern
2D MC codes. It is also noteworthy that Demirel et al. (2003) made a direct comparison
of experimentally characterized grain growth with simulations albeit using a finite element
code rather than an MC model. They were able to demonstrate that it was essential to include
the anisotropy of the grain boundary properties in order to obtain a good agreement between
simulation and experiment.

In three dimensions, the challenges of devising accurate representations of microstructure
are considerable. Miodownik et al. (1999) have used a simulated annealing procedure (see
Section 4.2.3) to match a misorientation distribution to a measured distribution. More recently
Saylor et al. have extended this concept to the specification of 3D initial structures that re-
produce measured grain shape, orientation and misorientation distributions, again based on
EBSD measurements (Saylor et al. 2003). Figure 4.7 shows an example of a 3D microstruc-
ture generated by matching EBSD orientation maps on orthogonal sections of a recrystallized
aluminum 1050 alloy. This statistical approach opens up the possibility of being able to per-
form simulations of microstructural evolution that can be compared directly with experimental
measurements.

4.6 Verification of the Monte Carlo Model

An important aspect of any model is to verify that it behaves as expected. This is not a trivial
issue for this model because most of the basic features governing grain growth are not imposed
on the model. For example, there is nothing in the formulation given above to guarantee that
the migration rate of boundaries is proportional to the driving force, or that local equilibrium
is maintained at triple junctions between the surface tensions.

The most basic verification that the model works as desired is to simulate a single isolated
grain shrinking under the action of the curvature of its boundary. Mullins’ (1956) analysis
shows that, for velocity proportional to mean curvature, the rate of change of area, dA/dt, of
any grain is constant and equal to the integral of the turning angle around the perimeter of the
grain. In the case of a grain with n vertices, this leads to the expression:

dA

dt
= −2πMγ(n − 6) , (4.16)

where M is the mobility, and γ is the grain boundary energy. For an isolated grain with one
side, the rate of area change is constant. The reason for 6-sided grains being neutral is that,
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Figure 4.7: 3D model microstructure generated by fitting ellipsoids to measured grain shapes
in a sample of aluminum 1050 alloy and then associating orientations with each grain such that
both the average texture and the average grain boundary character corresponds to the experi-
mental measurements (Saylor et al., 2003).

for isotropic grain boundaries, the turning angle at a three-fold vertex (triple junction) must
be 60◦.

To test this relationship for the case of n = 1 is simple because the multi-state model
collapses to the Ising model with one grain isolated within another grain. In either 2D or 3D,
the result is the same, i.e. that dA/dt is constant (and negative). Recently, Holm has verified
(Holm 2002) that the rate of collapse of the isolated grain is exactly equivalent to motion by
curvature for the case of a 2D square lattice with first nearest neighbors. This is also important
because it verifies that the model satisfies the relationship

V = MP , (4.17)

where V is the boundary velocity, M is the mobility, P is the driving pressure, taken here to
be the product of boundary energy and curvature, P = γκ.

A second test of the model is to examine grain growth kinetics in a polycrystal. Classical
theory states that the average grain area, 〈A〉, should vary linearly with time:

〈A〉 − 〈A〉t=0 = kt . (4.18)
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This is justified on the basis of the observed self-similarity of the microstructures, which
simply means that snapshots taken at different times can only be distinguished if either a
time or a length scale is provided. More specifically, self-similarity means that the average
curvature in the system scales with the inverse grain size. This permits a simple differential
equation to be solved as follows:

d〈R〉/dt = k〈κ〉 = k〈R〉−1

d〈R〉〈R〉 = k dt .

Therefore,

〈R〉2 = kt + C . (4.19)

Thus the predicted exponent on area is one (or two for grain diameter). Provided that
self-pinning does not occur (through poor choice of lattice) the exponent obtained from MC
simulations is very close to one. There has been considerable attention paid to this point
because the earliest results suggested an exponent slightly less than one. Various authors
have ascribed this discrepancy to either a too small simulation domain, incorrect choice of
switching algorithm (Radhakrishnan and Zacharia 1995), or to improper regression analysis.
Nevertheless, the MC model is sufficiently robust that, provided a reasonable choice of lattice,
domain size, and method of regression analysis is made, then the expected theoretical grain
growth kinetics will be obtained. A more complex issue in grain growth is that of grain size
distributions which space does not permit us to review in detail here. Suffice it to say that
the distributions observed in 2D MC simulations correspond closely to experimental observa-
tions (Srolovitz et al. 1984) and that, as of the time of writing, the theoretical basis for size
distributions is still an active topic of discussion in the literature.

Another way of looking at the connection between polycrystal coarsening and motion by
mean curvature is to examine the link between topology and size. There is a strong correlation
between topological class and size that is known in both the experimental literature (Feltham
1957; Aboav and Langdon 1969) and for the MC model (Srolovitz et al. 1984). The nearly
linear relationship between size and number of sides of a grain provides a direct link between
the (n− 6) rule, Equation (4.16), and the mean field equation for growth rate of an individual
grain, below. It is this connection that Hillert exploited to derive his seminal theory of grain
growth based on the Lifshitz–Slyozov–Wagner theory of coarsening.

dR

dt
= −k

(
1

Rcritical
− 1

R

)
(4.20)

In recrystallization, there are two basic verifications of the model. The first is that the driving
forces of curvature and stored energy can be set in opposition to one another. In the context of
the isolated grain, this means that the Gibbs-Thomson effect can be verified: in other words,
for a given grain boundary energy (set by J) and stored energy (set by H) there should be
a grain size that neither shrinks nor grows. This is indeed the case for the MC model as has
been verified (Rollett and Raabe 2001). Figure 4.8 shows the result of simulating the behavior
of a single grain with an initial radius of eight sites and a range of stored energies associated
with the sites surrounding the single grain. For a large enough stored energy, the grain radius
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Figure 4.8: Plot of radius of single grain versus time for various bulk energies showing the
Gibbs-Thomson effect. For large stored energies, the grain grows and vice versa; for an initial
size of 5 sites and a stored energy of about one, the grain neither grows nor shrinks although
the metastability of the equilibrium is reflected in the fact that any deviation in size will lead to
either growth or shrinkage (Okuda, 2002).

grows with constant velocity as expected, Equation (4.17). For small stored energies, the grain
shrinks under capillary pressure. At some intermediate stored energy the size is metastable:
fluctuations on either side will lead to growth or shrinkage.

The second verification is to perform simulations of recrystallization and compare the
kinetics against the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. This has been done
by several investigators (Srolovitz et al. 1986) and extensions of the model have been made in
order to explore experimentally observed deviations from the expected kinetics (Rollett et al.
1989). The slopes observed in KJMA plots correspond to the expected theoretical values for
a variety of nucleation and growth morphologies.

4.7 Scaling of Simulated Grain Size to Physical Grain Size

Most computer simulations require significant amounts of computer time so it common prac-
tice to minimize the size of the lattice that is used. Therefore it is useful to analyze the
relationship between grain size in the Monte Carlo recrystallization model, and physical grain
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sizes (Rollett et al. 1992). As of the time of writing, increases in computer power have made it
feasible to perform simulations in a few hours on desktop computers with more than a million
grid points over simulation times of many millions of MCS.

We will assume that the ratio of stored energy to grain boundary energy per unit volume
can be equated in the model and in real, physical recrystallization process. The physical
process has two characteristic driving pressures for boundary migration, P store and P grgr. The
stored dislocation content typically yields a P store of 10 MPa. For grain growth driven by grain
boundary curvature, P grgr = γ/〈R〉, where γ is the grain boundary energy per unit area, and
〈R〉 is the mean grain radius. In the 2D triangular lattice, the stored energy per unit area is
given by P store = H/[3s2 sin(60◦)] where s is the unit boundary length on the lattice. The
stored energy due to boundary curvature is

P grgr =
γmodel

〈R〉model
=

J

s〈R〉model
. (4.21)

The initial grain size in the Monte Carlo simulations is typically about 6 s. Thus, for the model

P store

P grgr
=

H〈R〉model

3sJ sin 60̊
= 2.5

H

J
. (4.22)

Using a typical value for the grain boundary energy, γ = 0.5 Jm−2, for physical systems

P store

P grgr
= 20〈R〉 m−1 . (4.23)

Equating the energy densities for the model and physical systems and rearranging gives

〈R〉 = 0.125H/J µm . (4.24)

Then for a typical simulation with H/J = 2, we can estimate 〈R〉 = 0.25 µm, which
is a small but not unphysical grain size. Clearly, however, it would be preferable to simu-
late recrystallization with lattices with linear dimensions an order of magnitude larger than is
currently typical.

4.8 Recrystallization Kinetics in the Monte Carlo model

A characteristic of the Monte Carlo model of recrystallization is that a finite recrystallized vol-
ume is introduced at the beginning of simulations when site saturated nucleation conditions
apply. This becomes apparent in a KJMA plot as a curvature at early times. A simple correc-
tion may be made for the finite initial fraction transformed by adding a constant to the measure
of time. The correction is of course heuristic because it depends on the results themselves.

A limitation of the Monte Carlo model is that the growth rate of recrystallized grains is
not linearly related to the stored energy density. As with nucleation, each integer increment
of H/J leads to a discrete change in the number of sites that can change orientation with a
neutral or negative change in system energy.
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4.9 Results of Simulation of Recrystallization by Monte
Carlo Method

The section provides a review of a number of areas in which useful results have been obtained
from recrystallization simulation using the Monte Carlo method. Note that all the results
discussed here are for two-dimensional simulations only.

4.9.1 Abnormal Grain Growth

The early stages of recrystallization are labeled as nucleation even though no new phase ap-
pears in the material. At the level of the dislocation structure, however, the existing hetero-
geneities of the deformed structure coarsen in the process known as polygonization. The het-
erogeneities exist at several length scales from cells to shear bands to prior grain boundaries.
Many observations have been made which suggest that individual subgrains acquire a growth
rate advantage over their neighbors and become identifiable as new grains. This growth ad-
vantage can result from a difference in mobility between the boundary of the new grain and
the boundaries in the surrounding material. This process of competitive growth has been ob-
served in the Monte Carlo model in both 2D (Rollett et al. 1989) and 3D (Grest et al. 1990)
simulations. By altering the rate at which sites are sampled for reorientation, the mobility of
specific grain boundaries can be varied. Small ratios in mobility between one grain and an-
other lead to marked abnormal grain growth behavior (Rollett and Mullins 1996), which may
correspond to the early growth of new grains in recrystallization. Holm et al. (2003) have
recently derived a theory for the frequency of abnormal grains as a function of orientation
spread and the characteristic angle at which the grain boundary mobility transitions from low
to high values. The key feature of the simulations carried out in this work was that coarsening
in microstructures based on a single texture component with a realistic spread in orientation
of the subgrain structure will occasionally exhibit abnormal grain growth. It turns out that if
a particular grain has the topology required for growth (more than six sides, for example) and
happens to be at the edge of the orientation distribution such that its perimeter possesses a
high misorientation, it will grow much faster than the average size of the matrix. Figure 4.9
shows a snapshot of the microstructure from such a simulation after MCS. High angle grain
boundaries are drawn in solid black whereas low angle boundaries are white. Grains that have
grown to sizes significantly larger than the average size clearly tend to be surrounded by high
angle, mobile boundaries.

4.9.2 Static Recrystallization

A key observation in grain growth is that an isolated grain will shrink and eventually vanish in
response to tendency to minimize grain boundary area. When an isolated grain can eliminate
stored energy by growing, however, it does so, provided that the grain is not smaller than
a critical size. In a polycrystalline structure with 0 < H/J < 1, any recrystallized grain
will grow at the expense of its neighbors because of the bias imposed on the unit step of
the grain growth process. That is to say, the motion of kinks along a boundary is reversible
when the change in energy associated with a step is zero, as is often the case for the 2D
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Figure 4.9: Microstructure showing abnormal grain growth in a subgrain structure whose spread
about the cube orientation was 8◦. High angle grain boundaries (> 10◦) are drawn as black lines
and low angle boundaries (> 1◦) are white. Large grains are associated with highly misoriented
boundaries.

triangular lattice; however, such energy neutral steps become irreversible when biased by the
elimination of stored energy at each step. Clearly, the Monte Carlo simulation of the motion
of recrystallization fronts is much closer to a deterministic model (e.g. cellular automaton)
than for grain growth.

The kinetics of recrystallization have been found to reproduce those anticipated from the-
oretical analysis very closely. For example, in 2D simulations (Srolovitz et al. 1986) site sat-
urated nucleation conditions with a high enough stored energy density (H/J > 2), a KJMA
plot of the fraction recrystallized versus time show a slope of 2 at long times; continuous nu-
cleation gives a slope of 3. Both results are as predicted from classical KJMA analysis. For
low stored energy densities (H/J < 2), nucleation is heterogeneous in the sense that embryos
must be adjacent to existing boundaries in order to survive and grow. In this case the kinetics
show significant deviations from the classical KJMA pattern (Srolovitz, Grest et al. 1988).
The key observation here is that the growth of new grains at low stored energies is highly
dependent on the prior structure. For H/J � 1, the recrystallization front grows out from
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a triple point and is concave with respect to the unrecrystallized side. The net effect is that
growth is very slow in early stages of recrystallization.

Work by Martin (1994) with the Monte Carlo method has examined the effect of spatially
non-random distributions of nuclei under site-saturated conditions. This work used a variant
of the n-fold way in which only flips to nearest neighbor orientations were considered. Also,
a stored energy (as a scalar contribution to the system energy associated with each unrecrys-
tallized site) was not explicitly considered. Instead, once a recrystallized grain was inserted,
flips are allowed from unrecrystallized to recrystallized, but not vice versa, thereby guarantee-
ing growth of the recrystallized regions. The main result was to demonstrate the importance
of the distribution of nuclei. Nucleation on a square lattice gave narrow size distributions
whereas (heterogeneous) nucleation on a coarse prior grain structure gave wide distributions
and non-compact grain shapes. Subsequent grain growth broadens the size distribution and,
as expected, grain shapes become compact.

4.9.3 Grain Growth in the Presence of Particles

Miodownik et al. (2000) applied a parallel version of the 3D model with the primary aim of
being able to perform simulations on particle pinning with large domain sizes. For the problem
of particle pinning that they studied, this was of crucial importance because they needed to use
particles larger than one voxel (a unit volume element) in order to avoid thermally activated
unpinning. Their result was instructive: in contrast to earlier 2D studies (Srolovitz et al. 1984;
Doherty et al. 1990) that suggested that particles pinned grain boundaries more effectively
than predicted by the Zener-Smith theory (Zener 1948), the new 3D results showed that the
classical theory was indeed applicable. The difference between 2D and 3D appears to be
that in 2D, particles can remove curvature because a boundary can effectively pivot about a
particle. Thus the limiting grain size is similar to the nearest neighbor spacing, ∆2. In 3D,
however, the effect of a particle on a boundary is more local and so the limiting grain size is
similar to the mean free path between particles.

4.9.4 Recrystallization in the Presence of Particles

Recrystallization with inert particles present is easily modeled by assigning sites orientation
values that cannot be changed. Although only the effects of single site particles have been
studied (Rollett et al. 1992) in 2D simulations (whereas particle shape and size has been
examined for grain growth (Hassold et al. 1990)), the results appear to be general, at least for
small particles. Large particles in physical systems have the effect of stimulating nucleation,
an effect that has not been addressed by microstructural simulations. Another worthwhile
extension of computer modeling of recrystallization would be three-dimensional simulations
because the interaction of boundaries with particles is quite different than in two dimensions.

During recrystallization simulation with sufficient stored energy (H/J � 3 in the triangu-
lar lattice) the recrystallization front can readily bypass particles regardless of particle size or
area fraction. Under these circumstances the recrystallization growth kinetics are unaffected
by particles. The overall kinetics is accelerated slightly, however, by heterogeneous nucleation
on particles.
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Figure 4.10: Microstructures of a single recrystallizing grain growing into a matrix containing
inert second phase particles. The last picture illustrates the effect of periodic boundary condi-
tions as the new grain wraps around the edges of the simulation.

At intermediate stored energies (1 � H/J � 3) nearly all recrystallization boundaries can
move past single-site particles. Boundaries with a very high particle density will stop mov-
ing. However, the irreversible propagation of grain boundary kinks allows most boundaries
to achieve a configuration from which two kinks can join to move past single-site particles.
The presence of prior grain boundaries further enhances recrystallized boundary motion. In
these systems, boundaries intersect particles at random, and recrystallization kinetics are sub-
stantially unaffected by particles, as shown in Figure 4.10, where a single recrystallized grain
shows unrestricted growth for H/J = 1. Larger particles may inhibit recrystallization in this
stored energy regime, however, since two boundary kinks cannot join directly.

At low stored energies (H/J < 1) grain boundary energy governs boundary motion, and
the recrystallization front is strongly pinned by particles which leads to a much higher than
random density of particles on the recrystallization front. In these circumstances recrystal-
lization is strongly inhibited which usually results in incomplete recrystallization, as shown
in Figure 4.13. When only small particle fractions are present, however, recrystallization may
go to completion because pinning does not occur until after the transformation is complete.

In addition, prior grain boundaries may still enhance motion of recrystallized grain bound-
aries, so that the recrystallized grains can grow (at low particle fractions) much larger than the
deformed matrix grains. This is sufficient to drive the recrystallizing grains past some parti-
cles, but only if the matrix grain size is much smaller than the interparticle spacing. In other
words, recrystallization at low stored energy and at very low particle fractions is similar to
abnormal grain growth.
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Grain boundaries undergoing curvature driven growth (both in the deformed state and after
complete recrystallization) rapidly acquire a higher than random density of particles which
then inhibits grain growth. If the recrystallized grain size is smaller than the critical grain
size, grain growth continues until pinning occurs and the microstructure is a normal grain
growth microstructure. However, when the recrystallized grain size is large compared to the
critical grain size, particle pinning occurs almost immediately following the completion of
recrystallization thus preserving the non-compact grain shapes and sharply peaked grain size
distribution that are characteristic of randomly distributed nuclei.

Analysis of recrystallization in particle containing materials suggests that there are two
limiting values of particle drag; a low (Zener) value with a random density of particles and a
much higher value if particles have become highly correlated with the recrystallization front
(as in grain growth). The simulation results show both these behaviors, depending on the
H/J ratio. Figure 4.11 plots the density of particles on boundaries for two types of bound-
aries; recrystallization fronts have a lower, near random spatial distribution of particles; gen-
eral boundaries exhibit a higher than random density, suggesting that they are more strongly
pinned. Experimental studies appear to show only the lower particle drag (Zener) as studied
by Ashby et al. (1969). A note of caution about the comparison is that boundary-particle
interaction is more complex in three dimensions than in two.

4.9.5 Texture Development

Tavernier and Szpunar extended the 2D Monte Carlo model of Anderson et al. (1984) to
account for the different boundary energies and mobilities expected for different texture com-
ponents. They chose low carbon steel sheet as their model material and developed parameters
to account for eight different texture components. They found that the <111> class of texture
component tended to become dominant after a period of grain growth when the simulations
were run with high boundary energies between the <111> component grains and other tex-
ture components. They also simulated the recrystallization process by making provision for
the variation of stored energy and boundary mobility, depending on whether a given volume
of material is recrystallized or not. Unfortunately many details of the key parameters were
omitted from their paper so that it is difficult to judge the success of their efforts. They also
point out, reasonably enough, that there is very little experimental data available for the vari-
ation of grain boundary energy and mobility over the general range of misorientations. This
lack is currently being addressed by both simulation of grain boundary properties (Upmanyu
et al. 1998) and by experimental measurement (Yang et al. 2001; Saylor et al. 2002). More
recently, Hinz & Szpunar have used the MC model to investigate the role of special boundary
types (coincident site lattice boundaries) on texture development in electrical steels, especially
with respect to the Goss texture, {110}<001>.

Holm et al. (2001) have investigated the development of grain boundary character as
quantified by the misorientation distribution during grain growth. They find that low energy
boundaries become strongly preferred during coarsening in 2D structures where the range
of orientation is limited to only one degree of freedom. In 3D coarsening with 3-parameter
orientations, however, even if the special boundaries based on CSL relationships are assigned
low energies, the grain boundary character does not reflect the energy distribution because of
the geometric constraints.
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Figure 4.11: Plot of the fraction of particles on either recrystallization fronts (solid symbols) or
on all boundaries (open symbols) for two different densities of nuclei – (a) 100 and (b) 1000 site
saturated nuclei.

Recently Rollett (2004) has investigated the development of the cube texture component
in fcc metals. The investigation was confined to grain growth with no stored energy driving
forces. The initial microstructure was based on a microstructure from simulations of isotropic
grain growth. A rolling texture was imposed on the structure except for a small fraction of the
grains that were assigned orientations close to the cube component. A combination of a Read-
Shockley model of grain boundary energy for low angle boundaries and a broad maximum in
mobility around a misorientation of 40◦ <111> with very low mobility at low misorientation
angles was used to describe the grain boundary properties. For a sufficiently large ratio of
maximum to average mobility, the cube component was observed to increase markedly during
grain growth.
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Incorporating texture into the Monte Carlo model is straightforward although, as always,
symmetry (both crystal and sample-based) must be dealt with carefully. The most efficient
way to proceed is to calculate all the grain boundary properties that could be required during
a simulation at the beginning and store them in a look-up table. Each spin number of the Q
possible spins represents an individual orientation. The required lookup table is then Q(Q −
1)/2 in then size for each property in order to account for all possible boundary types in the
system.

4.9.6 Texture

Although texture is a substantial topic in itself, it is perhaps helpful to the reader to provide
a basic introduction while providing references to the standard works. Texture has to do with
how one quantifies the relationship between the crystal axes in a particular grain of a poly-
crystal and a set of axes associated with the external shape of the polycrystalline body. Most
often the term texture is used in conjunction with x-ray pole figures which are the most ef-
ficient experimental means of quantifying the average texture of a (polycrystalline) material.
Most fundamental is the understanding that crystallographic orientation requires specification
of a rotation. This rotation is most often used as an axis transformation in order to express
properties known in crystal axes into properties in the frame of the material. In the context
of Monte Carlo simulations, orientations are used to determine the properties of grain bound-
aries. The second vital piece of information is that rotations can be expressed in a wide variety
of mathematical and not-so-mathematical parameterizations, all of which have three indepen-
dent parameters. The standard symbol for orientation is “g” but other symbols are used,
especially for the less well-known Rodrigues-Frank vectors and quaternions. The table below
provides a summary of commonly used approaches. The entries are ordered by familiarity
to materials scientists. Specification of a plane and direction by Miller indices is most intu-
itive but numerically awkward! Euler angles are common because of the convenience series
expansion methods based on generalized spherical harmonics. Serious computational work,
however, uses quaternions for speed and simplicity. Axis-angle descriptions are the most in-
tuitive description of grain boundaries because of the intimate connection to crystal geometry
and Rodrigues-Frank vectors have some very attractive features for both representation and
for certain types of computation. A few conversion formulae are given in the table in order to
provide some clarification of the meaning of the parameters. There are formulae available in
the standard texts to convert between any pair of representations (Bunge 1982; Kocks et al.
1998).

• Texture Component:
Specifies alignment of a plane normal specified by Miller indices, (hkl), parallel to sam-
ple direction 3 (ND) and a crystal direction, [uvw], with sample direction 1 (RD). Each
normal and direction is, in effect, a unit vector and they must be perpendicular, yielding
three independent parameters.
Parameters: (hkl)[uvw]

• Euler Angles:
The Euler angles specify a triple of rotations (transformations) about the Z, X and Z
directions. Many variants of Euler angles are known and we present here the most
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common definition according to Bunge.
Parameters: g = g(φ1, Φ, φ2)
Conversion Formula:

aij =




cos ϕ1 cos ϕ2 sin ϕ1 cos ϕ2 sin ϕ2 sin Φ
− sin ϕ1 sin ϕ2 cosΦ + cos ϕ1 sin ϕ2 cosΦ

− cosϕ1 sin ϕ2 − sin ϕ1 sin ϕ2 cos ϕ2 sin Φ
− sin ϕ1 cos ϕ2 cosΦ + cos ϕ1 cos ϕ2 cosΦ

sin ϕ1 sin Φ − cos ϕ1 sin Φ cosΦ




• (Orthogonal) Matrix:
The coefficients of an axis transformation are defined by: aij = ê′i • êj , where the e are
the unit basis vectors in the primed and unprimed coordinate systems. All columns and
rows are unit vectors which reduces the number of independent coefficients to 3. The
unit vector, b, is derived from the Miller indices,[uvw], of the crystal direction parallel to
sample direction 1. Similarly the unit vector n is derived from (hkl) and the unit vector t
is the cross-product n × b.

Parameters: g =


 a11 a12 a13

a21 a22 a23

a31 a32 a33




Conversion Formula: a =


 b1 t1 n1

b2 t2 n2

b3 t3 n3


 ≡ Crystal

Sample
 b1 t1 n1

b2 t2 n2

b3 t3 n3




• Axis-Angle:
The rotation axis is specified by a unit vector, n, and the rotation angle by θ. For grain
boundaries, the rotation axis is often specified in crystallographic terms with a set of
Miller indices.
Parameters: g = g(θ,n)
Conversion Formula: aij = δij cos θ + ninj (1 − cos θ) +

∑
k=1,3

εijknk sin θ

• Rodrigues-Frank Vector:
The RF-vector is the rotation axis but scaled by the tangent of the semi-angle. In this
space, all rotations that share a common rotation axis lie on a straight line.
Parameters: ρ = {ρ1, ρ2, ρ3} = tan(θ/2)n
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Conversion Formula:

ρ1 :=
tan

(
Φ
2

) · sin [
(φ1−φ2)

2

]
cos

[
(φ1+φ2)

2

]

ρ2 :=
tan

(
Φ
2

) · cos
[

(φ1−φ2)
2

]
cos

[
(φ1+φ2)

2

]
ρ3 := tan

[
(φ1 + φ2)

2

]

• Quaternion:
The quaternion is closely related to the Rodrigues-Frank vector. The ni are the compo-
nents. For rotations, the quaternion is always of unit length. Be aware that the quaternions
representing θ and 2π−θ are the negative of each other but represent the same orientation
(2-to-1 mapping).
Parameters: q = {q1, q2, q3, q4} = { sin(θ/2)n1, sin(θ/2)n2, sin(θ/2)n3, cos(θ/2)}
Conversion Formula:

q1 := sin
(

Φ
2

)
· cos

[
(φ1 − φ2)

2

]

q2 := sin
(

Φ
2

)
· sin

[
(φ1 − φ2)

2

]

q3 := cos
(

Φ
2

)
· sin

[
(φ1 + φ2)

2

]

q4 := cos
(

Φ
2

)
· cos

[
(φ1 + φ2)

2

]

The next step in understanding and using texture is to become familiar with the character-
istic preferred orientations of the particular material and processing history of interest. This is
far too broad a subject for treatment here and the reader is referred to Kocks, Tomé and Wenk
(1998) and Randle and Engler (2002) for detailed information and analysis.

From a mathematical point of view, the next step is to realize that rotations can be com-
bined together. The simplest method is matrix multiplication: any pair of orthogonal matrices
can be (matrix) multiplied together to yield another rotation. Note that group theory is very
useful in this context. Less intuitive but just as useful are the methods of combining (or ‘com-
posing’) two Rodrigues vectors or quaternions. Two Rodrigues vectors combine to form a
third as follows where ρ2 follows after ρ1:

(ρ1, ρ2) = {ρ1 + ρ2 − ρ1 × ρ2}/{1 − ρ1ρ2}. (4.25)

The algebraic form for combining quaternions is given as, where qB follows qA:

qC = qA · qB
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qC1 = qA1qB4 + qA4qB1 − qA2qB3 + qA3qB2

qC2 = qA2qB4 + qA4qB2 − qA3qB1 + qA1qB3

qC3 = qA3qB4 + qA4qB3 − qA1qB2 + qA2qB1

qC4 = qA4qB4 − qA1qB1 − qA2qB2 − qA3qB3

(4.26)

Now we can introduce the concept of misorientation, or the difference in orientation be-
tween two crystals, to which the properties of boundaries can be related. Mathematically, this
is just the combination of one orientation with the inverse of the other. One very important
caveat must be noted here which is that the order in which the orientation and the inverse
orientation are combined is important: recall that matrix multiplication is not commutative.
One combination produces a rotation whose axis is in crystal coordinates whereas the inverse
order produces a rotation whose axis is in sample coordinates. This is also important with
respect to the application of symmetry operators which will be discussed next. The most com-
mon approach, by far, is to write misorientations in crystal coordinates because that is the
physically more meaningful approach in almost all cases. If the orientations are expressed
as matrices representing axis transformations, the misorientation is given by the following,
where superscript T denotes transpose:

∆g = g2 · gT
1 (4.27)

Similarly for quaternions, the expression is:

qC = qA · q−1
B

qC1 = qA1qB4 − qA4qB1 + qA2qB3 − qA3qB2

qC2 = qA2qB4 − qA4qB2 + qA3qB1 − qA1qB3

qC3 = qA3qB4 − qA4qB3 + qA1qB2 − qA2qB1

qC4 = qA4qB4 + qA1qB1 + qA2qB2 + qA3qB3

(4.28)

Finally we must summarize the effect of crystal symmetry because there are many phys-
ically equivalent descriptions of any misorientation because of the multiplicity of ways in
which crystal axes can be labeled. The following expression summarizes the way in which
smallest possible rotation angle can be identified. The formula for determining the smallest
misorientation angle, θ*, is as follows, where the symmetry operators, O, are drawn from the
set of n members of the (proper rotation) point group appropriate to the crystal symmetry:

θ∗ = min
{

cos−1

(
O(i)gBg−1

A O(j) − 1
2

)
, cos−1

(
O(k)gAg−1

B O(l) − 1
2

)}
,

{i, j, k, l = 1, . . . , n} (4.29)

Inspection of this expression will reveal that it can also be used to specify the misorientation
in a unique way. In fact, one can chose specific symmetry operators in such a way as to
always locate the misorientation axis in a particular asymmetric unit such as the standard
stereographic triangle (SST) for cubic materials. Finally, we note that the properties of grain
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boundaries (and other interfaces) very often depend also on the boundary normal in addition to
the misorientation. This adds another two parameters to the three already required to describe
misorientation and boundary normals require additional computational effort in the MC model
(and which has not yet been implemented as of the time of writing).

4.9.7 Dynamic Recrystallization

Dynamic recrystallization has been successfully modeled with the 2D Monte Carlo model
(Rollett et al. 1992). In its simplest form, stored energy at each point of the lattice is increased
at a fixed rate and embryonic new grains are continually added at a constant rate. The basic
result is that temporal oscillations are observed both in the grain size and in the stored energy,
which is analogous to the oscillations in the flow curve, as shown in Figure 4.12. These os-
cillations are observed over almost the entire range of recrystallization parameters examined
(energy storage rate, nucleation rate, initial grain size) and damp out over time periods that
decrease with increasing storage rate and increasing nucleation rate. The oscillations in both
grain size and stored energy have the same period but are out of phase by approximately one
quarter of a period. Examination of the simulated dynamic recrystallization microstructures
which were formed under the same conditions but with different initial grain sizes shows that
the evolution of the microstructure may be divided into three distinct stages: an initial mi-
crostructure dependent transient stage, an initial microstructure independent transient stage,
and a steady state stage. While necklace nucleation was observed in these simulations under
some circumstances, it is apparent that it is not a necessary condition for grain refinement in
dynamic recrystallization. This phenomenon is associated with refinement of the relatively
coarse initial microstructure and over-damped oscillations in the flow stress. Therefore, even
when there are no obvious oscillations in the flow curve and no necklace nucleation is ob-
served, dynamic recrystallization cannot be precluded.

It should be noted that the geological community had applied the Monte Carlo model to
dynamic recrystallization but had only examined the microstructural aspects. Jessel (1988) de-
scribed an adaptation of the Monte Carlo model for the simulation of deformation of quartzite.
Although the model is similar to the combined grain growth and recrystallization model, the
Jessel work used only differences in stored energy between sites to evaluate transition prob-
abilities for orientation changes. In this form, the model is essentially a cellular automaton
(CA) model. Also, the only results given were for microstructural evolution, with no attempt
to investigate stress-strain relationships. The simulations were used to investigate the develop-
ment of texture (fabric in geological terms), based on the Taylor model (strain compatibility
enforced on all grains) with some degree of success.

Peczak and coworkers have investigated several aspects of the correspondence between
this type of simulation and have added several refinements to the model, see for example
(Peczak 1995), in order to allow detailed comparisons with experimental data. They have
modified the nucleation process such that the probability of an embryo appearing in a region
of high stored energy is higher than for low stored energies. This has the consequence that the
effective nucleation rate increases with time as stored energy is added to the system and is also
position dependent during the simulation. They have also modified the rate of stored energy
addition from the original constant addition rate to correspond to a Voce-type equation (i.e.
an exponential work hardening curve) with a saturation (asymptotic) flow stress expressed in
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Figure 4.12: Stress plotted versus strain for a range of rates of addition of stored energy in a
Monte Carlo model, Rollett (1992). Note the oscillations observed in the simulated flow curves
whose period varies with the rate of addition of stored energy.

terms of temperature-compensated strain rate (Zener-Holloman parameter). By making these
modifications they have been able to reproduce many of the characteristics of the phenomenon
of dynamic recrystallization. For example, the transition from multiple peaks to a single peak
in the flow curve occurs when the ratio of the initial to the steady state grain size goes over
2.3. This is in agreement with Sakai’s experimental observations on the effect of initial grain
size on dynamic recrystallization in OHFC copper (Sakai 1995). The relationship between the
steady state grain size and flow stress in the model shows grain size decreasing with increasing
stress as expected; the slope is ∼1, Figure 4.13, which is close to the experimental value of
0.7 (Derby 1991).

4.10 Summary

The principal methods for modeling the phenomenon of recrystallization have been reviewed.
In addition to the geometrical and analytical models, several methods of modeling microstruc-
tural evolution during recrystallization are briefly described. Many of the latter examples il-
lustrate to need to be able to model the local environment of grains. In view of the frequency
with which the Monte Carlo model has been used in the literature, that method has been re-
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Figure 4.13: Plot of asymptotic grain size against steady state stress derived from Monte Carlo
simulations, after Peczak (1995).

viewed in more depth. The characteristics of the various lattice types, the Hamiltonians for
the system energy, the transition probabilities, and the continuous time method were briefly
treated. Key results from the simulation literature have been reviewed and summarized.
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