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Syllabus

About Monte Carlo methods

‘Random number generators

* Elements of Statistical Physics, Stochastic Processes and Critical Phenomena
Brownian dynamics

‘Monte Carlo methods

*The Ising model

Metropolis and Glauber dynamics MC for the Ising model

*The BKL algorithm (grain growth, kinetic Monte Carlo methods)
*Cluster algorithms (Swensen and Wang algorithm)

*The histogram Monte Carlo method

Microcanonical Monte Carlo

Quantum Monte Carlo methods

*Frustated systems, spin-glasses

*Application of MC methods in wetting, crack formation, deposition of atoms on surfaces, grain growth ,
random networks.....

*Discussion and presentation of research projects




What are the Monte Carlo methods?

q - Molecular dynamics (deterministic
/ simulations, based on the integration of the

equation of motion)

Computer — - Monte Carlo methods (Stochastic simulation
simulation | T techniques, where the random number
thods. e e generation plays a crucial role)
g " - Cellular automata (approach to a given
J % phenomena discretized on a lattice, with
/:5, deterministic or stochastic update rules)

- In general we speak about Monte Carlo simulation methods whenever the use
of the random numbers are crucial in the algorithm!

- Monte Carlo techniques are widely used in problems from: statistical physics,
soft condensed matter physics, material science, many-body problems, complex
systems, fluid mechanics, biophysics, econo-physics, nonlinear phenomena,
particle physics, heavy-ion physics, surface physics, neuroscience efc....



Simulation of crack
propagation (large-scale)

lations
propagation (atomistic level)

Simulation of crack
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colliding microasperities

colliding elastic balls

vibrational dynamics of a molecule

Unfolding a protein



I | Cellular

~ | automata
| exhibiting self-
organization and
| spiral waves

3D cellular
automata (forest
fire model)

3D sandpile
cellular
automata

A modulo 2 cellular automata (1D+time evolution)



Some well-known problems where MC methods are useful

1 .Random walk on a lattice

Farficles Lhtinsion

1 free path = 16 pixels

<r’>~N




ome well-known problems where MC methods are useful

2. Percolation problems:
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Some well-known problems where MC methods are useful

3.The Ising model:
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Some well-known problems where MC methods are useful

4. The p-state Potts model o g T
H==p ) J 05000

<i,j>

Domain growth (coarse-graining) in the Potts model (low temperature)




Feeling what Monte Carlo simulation means

1. Studying the random walk -

-A basic model in natural sciences
(Brownian motion, fluctuations, diffusion etc...)
-We consider first the simple 1D case

P=12 P=1/2
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Analytical study

Quantities of interest: \/<’”2>N ~N* o=" P(N,k)="

P(N,k)= W_A]; W,/ :number of possible paths with N steps that end up at coordinate k
’ W,: total number of possible paths with N steps

N!
[((N+k)/2]I[(N—k)/2]!

N

N Kk ~(N+K)2

In[P(N,k)]=In(N!)—In[(N +k)/2!]=In[(N —k)/2!]— N In(2)

We study the N>>1 and k<<N limit and use the following approximations:

1 2
' = —_ J— HY H ) \ 2 k
In(n!) = nln(n)—n+ 5 In(27m) Stirling’s formula P(N.k) = exp| -
k. k k° N 2N
In(l+-) ==
I P , Taylor expansion > In the continuum limit:
11'1(1 ——) ~ —

NN 2N 1 X’
P(N,x)= exp| ———
’ 27N p[ 2Nj




Scaling properties

oo

(k) =D K*P(N,k)= [x*P(N,x)dx= Naa—%
(k] bt
the 2D and 3D cases: <r2>12VD = <x2 + y2>12VD = <x2>;/2 <x2>f/2 %+% =N
I I e I

The scaling exponent « is independent thus of the dimension!

Interesting problems:

-Random walks with restriction or memory

special case: self-avoiding random walk - what is a ?



Solving the problem by MC-type simulations

-the idea: reproducing the random walk by using “random numbers”, and realizing the
experiment with N random steps many time -> calculating numerically thus <k2>,,

3000 - - : : . . .
# include <stdio.h>

# include <stdlib.h> ® simulation results

power—law fit: <r*2>=0.9997*N"0.998

#define N_kezdeti 50

#define m 5000 ¢
#definej 50 2000 -
FILE *fp;
NA
float k_N_medium[j+1]; v
r1{1ain() 1000 -
intk, r, i, ii, ij, N;
for(i=1; i<j+1; i++)
{
N=i*N_kezdeti;
for(i=1; iikm+1  ;ii++) ol . . |
{k=0; 0 1000 2000 3000
for(ij=1; ij<N+1; ij++) N
{ : :
k=k+((int)((float)(rand())/(RAND_MAX+1.0)2)2-1); simulation results
}
k_N_medium[i]=(float)(k_N_medium[i]*(ii-1)+k*k)/(float)(ii);
}
}

fp=fopen("result.dat","a");
for(ii=1; ii<j+1; ii++)

fprintf(fp,"%d  %f\n", ii*N_kezdeti, k_N_mediuml[ii]);
fclose(fp);

}



Phase transition in a sociological system

Ina room with sizes LxL, there are N rats. Each rat can be in two states: either calm (state 0) or nervous (state 1). The system
of rats obey the following dynamical rules:

1. The rats randomly run through the whole room. From time to time they stop and look around. Each rat can detect only
those rats that are within a distance smaller than r.

2. If a nervous rat see no other rat around him, it becomes calm. Otherwise remains nervous.

3. If a calm rat sees a nervous rat around him, it becomes nervous. Otherwise remains calm.

4, With a very small p > 0 probability a calm rat can become nervous accidentally.

Problem: prove, that in the thermodynamic limit (L = o0 and N2> o) the rat system exhibits a phase transition as a function of
the rats density. |.e. there is a critical rat density (p,) in the system, so that for p<pthe stable dynamic equilibrium is that
the nervous rats concentration n,=0, and for p>p, n,>0.

Analytical solution

. N N . N, ,
notations:  p=—, p =—L densityof nervousrats, 7o =" density of calm rats (n,+n,=1)
L .Y N
P_,(N,N,) probabilitylevent (time) that a nervous rat becomes caim, £, ,, (N, N,) probability/event (time) that a calm rat becomes nervous

: : dN

the master equation of the dynamics: t=P _,(N,N)N,—-P_,(N,N,)N,
4

p— N-1 2 M "

PHO(N’NJ:(l—Fj ; P()M(N,Nl)ﬂ—[l—?j notation: ¢ =~

d dN N N-1
in equilibrium: Al t=0->[1-(1-g)"" 10-n)—n(1-g)"" =0---(eq.1)

1 _
dt dt



Managing the analytical solution for equilibrium

we consider the g=>0 limit

limg_m(l—g)”g = 8_1 >

n, is the order-parameter in the system

In the vicinity of the critical point n,<<1

(1_e—gNn1 )1—n,) —nle‘(N‘”g 0 n = 2 P.= N

—gNi
e *" =1-gNn —*

e—(Nc—l)g

I- =0 ~—— N, *
gN.

yo Ll it
2¢g 2 2g

if N<N, the stable solution is n,=0

if N>N,, the stable solution is n,>0

numerical solution of eq.1 (continuous line)
eq.2 dashed line

Points: MC simulation

n[(1-n)gN—e""¢1=0

Always acceptable gN

acceptable only if 0<n,<I

1.0
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MC simulation of the problem

The C program can be found on the course home age

the “rats” are placed in new random positions at each simulation steps « a fast uncorrelated

random motion

The algorithm:

1. We fix the simulation parameters (r, L, Number of transient steps, p—=> probability of get nervous accidentally , number

of steps on which averaging for n, is done)

2. We consider simulation with different rats number, outmost cycle

nervous) for each rat

3. Using the dynamical rules 1: 4we give new random positions for the rats, and update their states. We do this
many times, first as many times as many transient steps are, and than as many steps as needed for the average

4. We study the average value of n, as a function of N

numerical solution of eq.1 (continuous line)

eq.2 dashed line

Points: MC simulation

v
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For each case we initialize the states (calm or




Random numbers ..the key to MC simulations

- In order to get random numbers we need a real stochastic (random) process like:

throwing a dice or tossing a coin

- In reality there is no stochastic process in our calculator, so in simulations we use
pseudo-random numbers, generated deterministically by our computer. These
numbers will approach a desired random behavior if their statistics satisfy some
properties.

- In principle one can design interfaces which will be able to generate real random
numbers (using for example tunnel diodes, etc..). The speed of these generators are
however very low.

- Uniformly distributed on a given
interval (real numbers or integers)

Random numbers

- Distributed according to a given
distribution



Uniformly distributed pseudo-random numbers

The core of most of them are the modulo generators

Primary task is to arrange integers from 1 to M-1 in “random order”:
this is done by: x, = (ax,_, +c)mod(M)

(important the proper choice of “a” and “c”, to get a sequence with a periodicity of M-1)
in C this is done by the function: rand()

the simple use of rand() is not indicated!

Generating a random “float” in the [0,1)
interval:

x = (float )(rand ()) (RAND _ MAX +1.0)

Generating a random “float” in the [R
interval:

min? max)

x=R_. +(float)(rand())/(RAND _MAX +1.0)*(R

max mm )

Generating a random integer in the[R .., R...,-1] interval:

k = R, +(int)(( float)(rand ()) (RAND _ MAX +1.0)* (R, — R.;..))




Testing the uniform random number generator

1. Determining the repetition period (after how many calls the series will repeat). This must be as
big as possible....

2. Testing the uniformity of the distribution --> the histogram test.
(both for integer and float generators)
idea: construct a histogram for the numbers generated in some fixed constant intervals. Denote by v,
the frequency of generating a number in the " -th bin : y=Ni/N (i=1,2,.....n). The values of y; must
converge to 1/n for a uniform distribution as N--> . or:: 1 <&
X = ;Z \/()’i —1/n)’
i=1

¥ —0

3. The return map test --> testing both the uniformity and the absence of correlation in the [0,1)
interval. A visual test by plotting on an x-y coordinate system x.,, as a function of x, .
If the generator is a proper one, the points must cover uniformly the [0,1) x [0,1) square

4. The absence of short-range correlations --> the correlation test

XX, >—<X ><X,, >

for the total absence of “k” order correlation Ck) = iVitk i+k

we must have C(k)-->0 < xl.2 >—< X >?




Pseudo-random numbers distributed according to a desired distribution

We are looking for a Gen2 random number generator, that gives
random numbers according to the g(x) distribution function, on the

[Rinin. Rimax) interval. Riax
j g(x)=1

R .

min

Let us suppose that Gen1 gives random numbers distributed
uniformly on the [0,1) interval.

y Genl=0— Gen2=R_.
jg(z)=x Genl=x — Gen2=y

Rmin

Genl=1— Gen2=R__,

y=G[x+G(R,,)];

G(x)= : g(x)dx

Gen2=G '[Genl+G(R_ )]




Properties of a good “random number’ generator

* the basic generator should have a long period

* no detectable correlation between the terms

* distribution close to the the desired one already for relatively
short series

*should be very fast! (should not contain mathematical functions
like exp(), sin() ....)

*S

*S

*S

nou

Nou

Nou

d use small amount of memory
d be tested before the use

d be repeatable for optimal debugging purposes



Exercises

1. Write a simple dice-throwing program

2. Using the rand() function write a simple BINGO-game program (give the numbers from
1-49 in random order)

3. Using the rand() function write a “float” random number generator on the [0,1) interval
and test it!

- make the return-map test
- make the histogram test
- calculate the C(2), C(4) and C(6) correlation values

4. Write a random number generator that generates float random numbers on the [0,4)
interval according to the g(x)=x"2 distribution function.

5. Write a random number generator that generates float random numbers on the [0,100)
interval according to a Gaussian distribution



Elements of statistical physics

-statistical physics deals with systems of large number of particles or stochastic processes
- the (3D) coordinate and (3D) phase-space of one particle
- the (6D) state-space of one particle

- the (6ND) state-space of N particles (the state of the system is characterized by a characteristic point in this
6ND space)

- the allowed region of the state-space (region of the state-space where the characteristic point can move;
points permitted by the externally imposed conditions)

- the externally imposed conditions --> the ensemble in which the systems is

- the ergodic principle: in a very short time (much shorter than the time needed for a physical measurement)
the characteristic point of the system visits all the allowed points of the state-space.

(Not all systems respects the ergodic principle!)

- when we measure one physical quantity, we usually measure it's time-average for the states that are visited
during the measurement time by the characteristic point of the system

- systems that respect ergodicity: time average --> ensemble average (ensamble average is an average over
the allowed points of the state-space)

- for non ergodic systems: time average cannot be replaced by ensemble average!



The microcanonical ensemble

All allowed points of the state-space are equally
probably realized.

Important microscopic quantity:

W : the number of allowed microstates

S — k hl(W) Boltzmann’s equation

U,N

Generalization of the Boltzmann equation: Renyi

entropy valid for all ensembles: o o ( 36 |
_ 1o o aNj
S —_kz P; ln(pl) (aNjU,V vV
i}
Useful equation for handling analytically or N Y
numerically W--> In(N!)= NIn(N)—-N + 5 In(27N)

Stirling’s formula



Canonical ensemble

Different points of the state-space are

not visited with

The probability p; of visiting a micro-state
with energy E, is:

the same probabilities

Important microscopic Pi = 7 €

quantity; Z (the canonic
partition function)

E;
Z = Ze kT
(i)
F=—kTIn(Z)]

5= _(B_F)
daT )y »

v
V )o

|2

o)
ON );y

S:_(B_F]
daT )y »

—

M =

.

)
9B Jr

o)
ON ),y

Average value of a physical quantity:

E
<A>= lZAie K
Z G

<E > — <E>)

—(<M >—< M >%)

NKT




Elements of critical phenomenon

Critical phenomenon: behavior near a phase-transition point

-phase-transitions are usually possible only in systems with interactions among it's
constituents.

- real phase-transitions are only in infinite systems!

First order transitions (the first order derivative of
the relevant thermodynamic potential has a
discontinuity)

examples: boiling, freezing, hadronization ...

Phase transitions

Second order phase transitions (the second order
derivative of the relevant thermodynamic potential has a
singularity or discontinuity)

examples: para-ferromagnetic transition, percolation ....

many other type...



The order parameter (m)

- Characterizes the degree of the order in the system and the phases
- It is usually a first derivative of the relevant thermodynamic potential
- It is usually adimensional

- It is usually in the [0,1] interval

- Discontinuity at the transition point for first-order phase-transitions

- It's derivative has a discontinuity for second-order phase-transitions

- Examples of order parameters:
<S8>: for the Ising model
relative size of the largest cluster: for percolation
plp,. for freezing or boiling

Im i Im

\j

— N




Critical exponents A~t”

r-1,

- defined for second-order phase-transitions =
- all relevant physical quantities have a power-law behavior in TC
the vicinity of the transition point. The quantities either converge
to 0, or diverges. - o is the critical exponent of quantity A
- important is the universality of the critical exponents (they if o0 >0 A->0 when T-->T
do not depend on the microscopic details of the model, just on : -
the symmetry properties of the order parameter and the if ot <0 A-->+/-c0 when T-->T¢
dimensionality of the system)

, . we can define an o, (T>T,) o (T<T,)
- some important critical exponents:

B: critical exponent of the order parameter Critical exponents are not
independent from each other! -->

o critical exponent of Gy scaling laws: universal equations

v. critical exponent of the susceptibility between the critical exponents
v: critical exponent of the correlation length Ex. for 2D systems (d=2)
a+2p+y=2

Critical exponents are crucial quantities in

order to understand and model phase- dimensions
transitions! ) dv=2-«

Hyperscaling equation (valid in all




Elements of Stochastic Processes

Markov processes/ Makov chains

Markov processes (chain) is characterized by a lack of memory (i.e. the statistical properties of the
immediate future are uniquely determined from the present, regardless of the past)

Example: random walk --> Markov process; self-avoiding walk is NOT a Markov process

Let x; be the state of the stochastic system at step “", a stochastic variable

The time- evolution of the system is described by a sequence of states: X, Xq, ...y X, -
The conditional probability that x, is realized if previously we had: Xo, X4, -...., Xq.1: P(x |x  ,...x,)
Definition: For a Markov process we have: P( X, | X 15X, 5sees ﬁ ) — P( x_n | xn_l)

P(xy,....,.x )=P(x |x _).P(x, _, |Ix ,)...P(x,x,).q,

P(x,,x.)=P(x, = x.) = P, .| one-step transition probabilities,
k> k J k,j ) .
—_— — — — elements of the stochastic matrix w. >0

k °

Definition: A probability distribution over the possible states (w,) is called Z w, =1
invariant or stationary for a given Markov chain if satisfy: {w,-->P(x,) } k
Ws = Z Wk F ks
k




Ergodicity of a Markov chain

- A Markov chain is irreducible if and only if every state can be reached from every
state! (the stochastic matrix is irreducible)

- A Markov chain is aperiodic, if all states are aperiodic. A state x; has a period T>1
if P.W=0 unless n=zT (z: integer), and T is the smallest integer with this property. A
state is aperiodic if no such T>1 exist.




Brownian Dynamics

- It is a hybrid method, involving both deterministic and stochastic dynamics

- in molecular dynamics methods all degrees of freedom were explicitly taken into account --> classical
equation of motion of particles

- in Brownian dynamics some degrees of freedom are represented only through their stochastic influence

‘.7 v"» B B e

] [ o o
o L
’b,' h "0 [y !
b’ W U ; i
./' o,
" o

Molecular dynamics Brownian dynamics

- we study Brownian aynamics in canonical ensemoie. basic idea: The effect of the constant temperature
heat-bath --> by a stochastic force-field acting on the particles.

- in Brownian dynamics simulation methods the system is described by stochastic differential equations. For
example the equation of motion of a particle making a Brownian motion:

mﬂ = R(t)— v
dt

Langevin equation of motion, stochastic equation of motion. The coupling to the
heat bath is realized through the R(t) stochastic force.

Question: What properties should R(t) have, in order to be equivalent with a heat-
bath at temperature T?




- we are looking for R(t), that will lead for v the classical invariant Maxwell-Boltzmann distribution, expected in
canonical ensemble.

- let us work in 1D!

- by using the theory of stochastic processes and Markov chains, it can be shown, that this is achieved when:

h: is the time-step for numerically
integrating the equation of motion.

P(R)=QRr<R>>)"exp(-R*/2<R* >)

<R’ >= uk,T/h This choice of R(t) leads to:
<R(t)>=0 m

B Pv)=_|—— "
< R(t)R(0) >=2uk ,TO(t) 27k, T




Another way of doing Brownian dynamics:

- by taking into account the coupling of the system to the heat-bath by “statistical” collisions with
virtual particles. In this approach no friction is necessary.

- each stochastic collision is assumed to be an instantaneous event

- the colliding virtual particles have a Maxwell-Boltzmann momentum distribution
- The time intervals at which particle suffers a collision is distributed according to
P@t) = ;{e‘” (A is the mean collision time)




Exercises

1. Prove by computer simulations that the given recipe for R(t) leads to a Maxwell-
Boltzmann distribution of the particles velocities (in 1D)

2. Study the motion of a particle in a harmonic potential and subject to a heat-bath
at temperature T. (in 1D)

3. Study the motion of a particle in a W potential valley, in contact with a heat-bath
at temperature T. Both parts of the W potential valley are harmonic.(in 1D)

4. Study problem nr. 3 when the two minimum of the W potential valley is
modulated in anti-phase by a time-like harmonic component. Calculate the
correlation function between the particle’s position and the external modulating
field. (1D case) (the phenomenon of stochastic resonance)

\el |
NV

v




The Monte Carlo method

known examples: calculating P, calculating percolation thresholds ..
other examples: calculating average magnetization and energy for the Ising model
in general: applications are enormous and fascinating ....

1. Description of the system in terms of a Hamiltonian

The outline of MC methods: 2. Selecting an appropriate ensemble for the problem

3. Observables are computed using an associated distribution
function. Ultimately the goal is to compute quantities appearing
as results of high-dimensional integrations on the state-space.

The idea is to sample the main contributions to get an estimate
for the observable.

Starting point: one dimensional Monte Carlo integration



One dimensional Monte Carlo integration
Problem: given a function f(x), compute the integral: I= J.f (x)dx

The integral | can be computed by choosing n points (x;) randomly on the [a,b] interval,
and with a uniform distribution:

b—a
Straightforward sampling I= . ;f (x;)

v

The strong law of large numbers guarantees us that for a sufficiently large sample one can come arbitrary
close to the desired integral!

Let x4,%,,...,X, be random numbers selected according I = j f(x)u(x)dx;

to a normalized probability density i(x), then :

(!) the above affirmation is also true if the (hm - Z f ( X, ) —_ j —

random numbers are correlated, or the interval is finite

How rapidly the method converge? --> for u(x)= const. very badly!!!

Central limit theorem: if:

o® = [ f*()u(xdx =17

then: [ Zf(x) “_fj Fjexp(——)dx+0(\r)




*For straightforward sampling (w(x)= const.) the error ~ 1/n"2 Il

*The error is dependent on the choice of f(x) and w(x)! --> influencing ¢

b b
A better method for calculating [ = j f(x)dx||1= x)l?(x)dx j p(x)dx =1

We generate random x,,X,,...,X, points f(x)
according to the p(x) distribution Z

Problem: The methods needs advance knowledge of I!

One way to overcome the problem is by guessing some p(x) functions, that mimics well
the behavior of f(x)!. The error is also considerably reduced!

_ . Sampling in the neighborhood where f(x)
is large!




Monte Carlo for statistical physics problems

We want to compute integrals like: < A>= %J‘Q AXx)fIH(x)]ldx

f(x)--> an appropriate ensemble distribution

X -->elements of the state-space Z= L; f ([H (g)]d)_c

£2-> the entire state-space Very high dimensional integral which is

H(x)--> the Hamiltonian of the system exactly computable only for a limited
number of problems!!!

Basic idea: to use the importance sampling for calculating these integrals

If in the MC integration we choose the states with
probability P(x)---->

flH(x)]

S AP (x) FLH ()]

< A>=-12

Zn:P_l(ﬁ)f[H(ﬁ)]

By choosing | P(x) = o-->0 and thus the error-->0

Z

< A >= lzn: A(x,) Problem: we still don’t know Z!
n =1 T




The Metropolis et al. idea...
An algorithm has to be derived that generates states according to the desired P(x)!

Basic idea: using a Markov chain, such that starting from an initial state x, further states
states are generated which are ultimately distributed according to P(x)

For this Markov chain need to specify the W(x, ') transition probabilities from state x to state
X'. In order that the limiting distribution be P(x) we need:

* 1. For all complementary pairs (S,S’) of sets of phase points there exist xe S and xX'e S’
such that W(x,x')#0 (ergodicity)

« 2. Forall x, x": W(x,x')=>0
‘3. Forallx: D W(xx)=1
4. Forallx: ) W(x,x)P(x") = P(x):stence of the limiting distribution)

Instead of 4. A stronger but simpler condition can be used, the so called detailed
balance:
W(x, x)P(x)=W(x, x)P(x)

Result: We can construct Markov chains leading to the desired P(x) distribution,
without the prior knowledge of Z !!!




Example: the canonical ensemble: fIH (x)] < exp[—

H(x)
k,T

]

\Detailed balance

_satisfied

Algorithm for Monte Carlo simulations:
1. Specify an initial point x,_in the phase space
2. Generate a new state 5_
3. Compute the W(x, x') transition probability
4. Generate a uniform random number r between [0,1].
5. If r<W -->jump to the new state, and return to 2.

If r>=W --> count the old state as new and return 2.

N>>1 “transient” states

6. Average the desired A quantity on all states after the initial




The Ising model

H=-J]) SS,-uB).S,

<i,j> {i}

S =+1

Interaction with nearest neighbors
only!

- spontaneous magnetization IS
possible (M0 for B=0)

- first model for understanding ferro-
and anti-ferromagnetism for localized
spins

- for J>0 --> ferromagnetic order
- for J<0 --> anti-ferromagnetic order
- no phase transition in 1D

- ferro-faramagnetic phase transition
for D>

- second order phase transition (order-
disorder)

e

- In 1D and 2D exactly solvable!
- Due to the local interactions calculating Z is difficult.
- exact solution very difficult in 2D

- No exact solution in 3D

- Approximation methods: mean-field theory,
renormalization, high and low temperature expansion



Order parameter: m=l<.§ >=

o

Exact results:

Important quantities
-m(T) curve (1D) T.=0;
T (2D) T_=2.26918J/kg (square lattice); 3=1/8; a=0

C

- the critical exg)onent of

susceptibility(vy), order (3D) no exact results (believed that:
arameter([3), specific

eat(ot) and correlation T .= 4.44 Jlk; (square lattice); a=1/8; $=5/16; y=5/4;
length(v) 0=5/8)

(logartihmic divergence!); y=7/4; v=1




The transfer matrix solution to the 1D Ising chain

A S N

—JZO'(z)O‘(z+1) hZO'(z):— [Ja(z)cf(z+1)+Z(G(z)+a(z+1))}

N

Z=> . Zexp{ﬂZ[lG(l)d(l +1)+ (o) +0o(i+1) }} > Hexp{ﬁ{]a(i)G(HI)+§(O'(i)+0'(i+1))}}

oc()=t1 o(N)=%l1 {oc()} i=1

Z=><oM)IPlo(2)>.<0(2)IPl63)>..<o(N)IPlo(N+1)>= Y <o) P 1o(1) >=Tr(P")
{o()} o}

1 . |exp[B(J+h)] exp(=0)) A N N
|1 >= P = = o

| —1 {0} 7v1 2 the eigenvalues of P!
—_ >— ’

when N— and
A >A,

F =—Nk,T ln{eﬁ" cosh(fJ)+ \/ezﬁj sinh?(fJ) +e7” }

F =—k,TIn(Z)=—k,T In(4} +}) = —k,TN In(4))




Exact results in 1D: m=<o(i)y>=— L OF __ sinh(fh)
N oh \/sinhz(,b’h)+e_4ﬁ'

| _j| ¢&the correlation
Forh=0: < 6(i)o(i+ j) >=[tanh(B7)] = ¢| length
& =—|In(tanh(8N)["

no phase transition at T>0 !l (T_=0)

For T—0 we have that {—oo



The mean-field approximation of the Ising model

1 | 1 | 1 1 <S>

The interaction between the
1s o — 1 [

spins is de-coupled!

] ﬁ ﬁ ﬁ H,=—(qJ <S§ >+uB)S,

Z = Zexp[ﬂ(]q <S>+uB)S;]=e" +e " =2cosh(x)
(S}

x=L(Jg<8 >+uB)

<§,>=1P +(-)P. = Zi(ex —e™") = tanh(x)
< S >=tanh[f(Jg< S >+uB)] fg:mplicit equation for

<S>=tanh(r< S >)
t = plq

for B=0




a graphical solution:

f{«S> <S>

t<1

«—— g(<8>)=tanh(t<S5>)

<h>

t>1

ey

* for t<=1 the only possible solution: <S>=0 -->paramagnetic behavior

» for t>1two solutions;<S>=0 (unstable solution) and <S> > 0 (stable solution) -->

ferromagnetic behavior

* =1 the critical point -->

T

c

_J4
kB

in the neighborhood of T, (T<T):

on the square lattice q=4;

on the cubic lattice q=6;

v
N\
)
V
[l
I~y
7~ \
|~
N—




results of mean-field approach

T.=4 Jlkg (square lattice) , exact: 2.2692 J/kg
=6 J/kg (cubic lattice), believed 4.44 J/kg
=2 JIkg (Ising chain), exact: 0!

B=1/2; exact2D: 1/8; believed 3D: 0.31

0=0; exact 2D: 0; believed 3D: 0.12

v=1; exact 2D: 7/4; believed 3D: 1.25

v=1/2; exact 2D: 1; believed 3D: 0.64

-as the dimensionality of the problem increase, mean-field
approaches become better and better!

- mean-field is totally wrong in 1D !!



Implementing the Metropolis and Glauber Monte Carlo for
the 2D Ising model

Problem: Study <m(T)>, <E(T)>, <C,(T)> <x(T)> and T, for 2D Ising models by
using the Metropolis or Glauber algorithm.

We consider B=0, and fix J=1.  The units are considered that kg=1.

H=- Z S.5 ;| -Letus assume a lattice N x N with free boundary conditions

¢ = +<1i’j> -We consider a canonical ensemble and fix thus Nand T
= We would like to calculate:
<C,(T)>= : < B2y > - < E(T) >
my |25 <ZS> ' Nk, T?
<m(T) >:<F>: }V—Z :T

< x(T) >:L[< M*(T)>—-<M(T) >2]
NKT
<E(T)>=<H{S})>=-<> 85, >

<i,j> T. will be determined from the maxima of
<C,(T)>and <x(T)>



In order to get the desired quantities we have to calculate the following NxN
dimensional sums (integrals):

<MT)>=<Y 5> (ZSI _exl{ H;{ST,-DH
i } 2

{S; i

<M*(T)>=<(D.S,)* >= Z( j—exp( H}i{?})j

{Si}

<ET)>=-< .58 >=-) { >SS, —exp£ H;({{STi})ﬂ
15} B

<i,j> <i,j>

<E*T)>=<().5.8.)">=> (Zsisjj %exp{— HI({{STZ'}))

<i,j> {S;} <i,j>

We will use the Metropolis MC method to calculate these sums (integrals)!




The algorithm (Metropolis and Glauber MC for the Ising model):




writing the code--> see the computer code

A simple 2D Glauber dynamics code

1 -
0.8 -
A L
E 0.6
£
v
0.4 -
0.2 -
0 - |
0 1 2 3
T

Variation of <m(T)> as a function of T for different system sizes
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1.2 -

Variation of <C (T)> as a function of T for various system sizes
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(-
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Variation of <y(T)> as a function of T for various system sizes
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*—= from Cv data
from chi data
exact

Tc 15 -

Estimates for T, for various system sizes (step in T is 0.1)




Important observations:

* the considered W(x-->x') transitions leads to an ergodic Markov process
* one MC step is defined as N x N spin flip trials !

» By applying the above algorithm for T<T, one can also follow how the order arises in
the system. This dynamics might not necessarily be the “real one”. The Metropolis MC
method is intended to yield equilibrium properties and not dynamical simulation of the
system!

It is believed that the Glauber transition probabilities gives a realistic picture for the
dynamics as well!

*Influence of finite lattice size is strong --> finite size effects (finite lattice size cuts the
correlation length!, no real phase transitions, and no real divergences!) --> important
problem of scaling: get the desired quantities for the N--> o [imit.

One way of making the system quasi-infinite is to impose periodic boundary
conditions. (see the exercise in the computer codes!)



The BKL Monte Carlo (or: kinetic MC, or resident time MC) method

Used for:
- computing quickly equilibrium properties at low
temperatures in the Metropolis or Glauber algorithm
- simulating jump-like stochastic processes with
exp(-c AE) type activation probability.
examples: - diffusion of atoms on crystal substrates
- grain growth process
- dynamics of defects in crystals
- dynamics of spins at low temperature

Difficulties that are solved by the BKL method:

Reference: Bortz, Kalos,
Lebowitz; J. Computational
Physics, vol. 17, pp. 10
(1975)

1. The Metropolis and Glauber dynamics is very ineffective at low temperatures where exp(-
BAE)<<1 Il (too many rejected steps, where nothing is changed in the system)

(at low temperatures usually AE and [3 are both big!)

2. For jump-like stochastic processes the Glauber and Metropolis dynamics is also ineffective
due to the largely different time-scales that are present in real problems

(more concrete examples in this sense later ....)




The BKL method for low temperature Ising systems

- When we want to compute the specific heat or the susceptibility at low temperatures we need to follow
the fluctuation of the energy or magnetization for many MC steps

- At low temperature the Metropolis or Glauber algorithm is very ineffective since the system most of the
time waits...and nothing happens.

- A quick solution: make a transition at each flip-attempt and update the “resident time”of each state
(needed in the average) according to the probability of each transition.

- We give now the algorithm and make the theoretical basis later.




Motivation for the basic algorithm

- Let us presume we have a system with 3 possible transitions:
w(1) --> with rate (probability) r1=0.1; w(2) --> with rate (probability) r2=0.5
w(3) ---> with rate (probability) r3=0.5

- In the basic Metropolis (or Glauber) algorithm we make the transitions by attempts with the
given probabilities. The probability to choose a given transition from the possible three transition
is proportional to the values of ri.

- With r1, r2, and r3 we get the cumulative functions R1, R2 and R3:
R1=r1=0.1; R2=r1+r2=0.6; R3=r1+r2+r3=1.1
- We can plot now the values of ri as regions, and Ri as points on a line as follows
rl | 2 | 13 |
0 RI=0.1 R2=0.6 R3=1.1
- If we generate a random number ue [0,1) and multiply it by R3=1.1, this will correspond to one

point on the line. The probability to get transition w(2) will be proportional with the distance between
R1 and R2, which is r2/R--> this is what we wanted to do!

- At each simulation step we make than a transition, and the rates at which different transitions
occur is the desired one!

Problem: how to update the “time” in order to get the good values of the averages



Motivation for the equation of time

-It is easy to determine the fi(t) probability density, that the transition w; with rate r; didn’t occurred up to time t:

v

df () = —.f,(t)dt f,(t) = Cexp(-r1)

The C=1 constant results from the f(0)=1condition > f,(t) =exp(—rt)

- the individual transitions form a Poisson process, i.e. the probability to have a transition in a time dt is linearly
proportional with the length of the interval dt.

- a useful feature of Poisson processes is that a large number N of Poisson processes, with rates r,, will behave as
another large Poisson process with properties similar to the single processes. --> denoting by F(t) the probability
that no w; transition occurs up to time t, we get:

F (t) — exp(— Rt) with R= Z F; The probability to have the first transition
i between time t {te [0,0)} and t+dt is

dF (1)

In order to have time steps satisfying this probability  P(r + dt) = g(t)dt = — dt = R -exp(—Rt)dt
distribution,we need to generate thus g random

numbers according to the g(t)=R exp(-Rt) distribution!

This can be done with the known method, after 111(1 —u) ]n(u')
generating uniformly distributed u random numbers q=— ==
(see random number generators): g R R




Simulating dynamic processes

1. Simulating grain-growth by using a T=0 temperature Potts- model

(a trivial application)

Grain-growth in metals: growth of the size of the mono-crystalline domains. Small domains are
“‘eated up” by larger ones, the grain-boundary moves.Experimentally observed that the <d>

mean-grain size increases as: 5 .
< ) >~ (< > t+qat
The Potts model: d( ) ( d(O) )

H=-q Z Ouiro()

<i,j>

o(i)=1.2,...q

- We use a square or triangular lattice
- we start with a large q number of initial states

- each lattice site will have a randomly chosen Potts
variable
- Make a Metropolis or Glauber dynamics at T=0

(accept only steps that do NOT increase the energy of
the system)




- In the classical Metropolis or Glauber algorithm, one would randomly select between all the lattice sites, and
accept those moves that do not increase the energy --> assuming the used Metropolis or Glauber dynamics
real, the elapsed time here would be proportional with the number of attempts...one MC step (trial equal with
the number of spins) would be considered as a T unit time.

- In the BKL algorithm, we visit ONLY the GRAIN BOUNDARIES, and flip one of this sites in state equal to

it's neighbors! The probability to flip any site on the GB is the same. The time, however has to be updated
according to the BKL scheme!

(r=1 on the grain boundary for flips to any of the neighboring states, r;=0 in the bulk)

- If the number of possible GB transitions is q, we get that R=q.

- The update in time after each GB transition is:

In(u)
R

- The increase of <d(t)> follows the expected form! dt =— T

250MCS 500MCS 1000MCS




2. Simulating dynamics of atoms on crystal surfaces, or/and the deposition

of atoms on substrates

- atoms deposited on surfaces can jump from one site to a nearby site, after escaping from a
potential barrier (bounding energy to nearby atoms)

The escape probability

E
P ~ exp(——%
p( kT)

The transition rate

r=wexp(— ﬂ)

e £,

w: is the attempt frequency per unit time, or the frequency of the vibration (of order 10'2-10"3Hz)

- the bounding energy is proportional with the number of it's nearest neighbors.

- usually there is also a deposition process coexisting with the diffusion one, with a rate rg,,, (number of
atoms deposited per unit time per unit site)

- many times there is a co-deposition or co-diffusion of more types of atoms, let's say A and B.
- problem: to simulate the dynamics of the deposited atoms, and the formed structures.

Main difficulty: the largely different time-scales (transition rates) for the possible stochastic processes -->
makes the simulation very lengthy in time



A classical algorithm:

- consider a lattice for the substrate

- fix the interaction constants (fix the bounding energies to nearby atoms), fix the temperature
and deposition rates

- calculate the transition rates for different situations (different species and different number of
nearest neighbors)

- update the time in units t, smaller than the smallest period for the transitions or deposition

- at each time-step randomly choose as many sites as many atoms are on the substrate, and
attempt their transition to a nearby site with the probability: P, =/r.

- at each time-step deposit atom on a randomly chosen site with probability P
- continue the simulation until the desired time

Problem and solution: due to the largely different transition rates (effect of the exponential in
the transition rate formula) the simulation is very slow, and ineffective. Most of the time nothing
happens --> can be much improved by the BKL method!

depzt/ rdep



Cluster Algorithms (Swendsen and Wang MC method and the
Wolf algorithm)

® it is not a single spin flip, but a cluster flip algorithm
- in one simulation step we flip a cluster of spins
- these clusters becomes very large as T decreases and approaches T,
- it is very effective in the neighborhood of T,

» eliminates the critical slowing down in the neighborhood of T

* very appropriate to study the critical exponents

1. R.H. Swendsen, J-S. Wang, “Nonuniversal critical dynamics in Monte Carlo simulations”,

Phys. Rev. Lett. 58, 86-88 (1987)
Abstract: A new approach to Monte Carlo simulations is presented, giving a highly efficient method of

simulation for large systems near criticality. The algorithm violates dynamic universality at

second-order phase transitions, producing unusually small values of the dynamical critical exponent.

2. U. Wolff, Collective Monte Carlo Updating for Spin System, Phys. Rev. Lett. 62, 361-364 (1989)

Abstract: A Monte Carlo algorithm is presented that updates large clusters of spins simultaneously
in systems at and near criticality. We demonstrate its efficiency in the two-dimensional O(n) sigma
models for n=1 (Ising) and n=2 (x-y) at their critical temperatures, and for n=3 (Heisenberg) with
correlation lengths around 10 and 20. On lattices up to 128 no sign of critical slowing down is visible

with autocorrelation times of 1-2 steps per spin for estimators of long-range quantities.



Spin-spin correlation and the correlation length

The correlation between spin S, and spin S, is measured by: <5,3, >
(the average is an ensemble average). If two spins are uncorrelated <S,S_>=0.

- At T=0 the spins are lined up in one direction --> <5,S,>=1 (this is a trivial correlation, because
flipping S, will hardly affect S_ unless if it is not a nelghbor of Sp)

- Near T, the situation is very d|fferent the spins are constantly changing, but not independently --
> there are large domains of parallel spins which persist for long periods of time. Thus, spins far
apart from one another are strongly correlated
- At high temperatures, the spins fluctuate rapidly but almost independently of each other.

- To describe the real spin correlation (and eliminate the trivial correlation) we define the pair

correlation function
8o, =<35,5, >—<§,><S§, >

- In general g,,, depends only on the distance between the two spins: g--> g(r) (for large systems,
r can be considered a continuous variable. For r >>a (lattice spacing) we have:

exn(—r /&) ((T)is the correlation length)
g(r)~ XI;SI_;;,] ) &(T) diverges at T_as ----> E(T) ~ T 1T v

At T=T_ we obtain thus

1

g(r) ~—; n is another critical exponent (n=1/4) for
"1 the 2D Ising model




The critical slowing down (a first picture)

- The Ising model does not have real dynamics built into it (there is no kinetic energy term associated with
the spins, so there is no real time evolution)
- In'areal dynamical system, the dynamical variables are functions of time. The relaxation time

characterizes the time scale over which the system approaches .[ t\ Af) - Ao‘ s

equilibrium. If A(t) is a quantity that relaxes towards its equilibrium g

value A, , the relaxation time can be characterized as: t=-

- The Monte Carlo method generates successive spin configurations j ‘A(t )= AO‘dt
0

- Although there is no real time evolution the MC simulation process might be viewed as kind of dynamics...

- We can follow how a configuration of spins relaxes to another configuration as a the simulation goes by ---
> this defines a relaxation time

- The relaxation time is linked to the correlation length by the dynamical critical exponent, z:

T ~ 5 Zlas T->T, we have & --> oo and get that T-->co

- The big problem: for the Metropolis or the Glauber dynamics z=2 !!! ---> the relaxation time diverges more
quickly than the correlation length ---> critical slowing down

- There is necessary many MC steps to generate independent (uncorrelated configurations) --> the
sampling is restricted only to a small portion of the state-space

- The system has a long memory....



The relaxation time in Metropolis MC simulations --> the autocorrelation time

- The relaxation time in the Metropolis MC characterizes how many MC steps to skip in order to
generate statistically independent configurations.

- If the relaxation time is of the order of a single MC step, every configuration can be used in
measuring averages

- I the relaxation time is longer, than approximately T MC steps should be discarded between every
point.

- to define a relaxation time we first define the autocorrelation function for a quantity A:

cyuk)y=<AA .  >—<A >| A it's value at the MC step: n
- if this autocorrelation function decays exponentially  |C 44 (1) ~exp(—t/7 exp)
which defines the exponential correlation (relaxation) time (t, )
- starting from the equalities from below one can suggest another correlation time:
< P I &ceyy(k)
[ean@dr= [0 =1c,,(0) Y Ty =t )M
0 0 2 S ey 0)
T cintegrated correlation time; . This is what we determine usually

in computer simulations



Critical slowing down (a second look)

- for finite lattices when T---> T, we get E--> L (size of the lattice) ---> no real
divergence

-wegetthus: |7 ~ L°

- for the Metropolis and Glauber dynamics z=2, and we get |77 ~ L2

(Metropolis, Glauber and BKL are local algorithms....)

and the simulation is very inefficient on large lattices (on small lattices on the other
hand there are important finite-size effects!)

- good news: the value of the dynamical critical exponent is NOT universal, it
depends on the MC algorithm (paper of Swendsen and Wang!)

- the problem: elaborate a MC method for which the value of the dynamical critical
exponent is smaller! --> these must be non-local algorithms!

Cluster algorithms: /

- we flip together all correlated spins.
- in each flip we generate statistically independent configurations.

- the value of the dynamic exponent becomes as low as z=0.15!



The Swendsen and Wang cluster algorithm for J>0 Ising model

- the basic idea: is to identify the clusters of like and correlated spins and treat the clusters as a
giant spin, flipping it according to a random criterion.

- it is necessary that the algorithm should lead to an ergodic Markov process and the detailed
balance condition is satisfied!

- the algorithm can be generalized for arbitrary (J>0 or J<0) Potts models

Construction of the clusters of correlated spins:

- the simple clusters of like nearest neighbor spins are NOT the clusters of correlated spins, these
are too large... (At T=co there are still spins with like orientation, although the correlation between
them in this case should vanish)

- the way of constructing the clusters of correlated spins, is to put a link between nearest neighbors
and like spins, with a probability p=1-exp(-2J/kgT).

L W ] —T 11 IR |
tIit -ttt
1111 TI1H T4l




Flipping the clusters:

- all the clusters are flipped with probability 1/2! (we assign a new common value, +/-1 to all spins in
the cluster)

- the spins in the whole lattice are in this manner updated!

- the algorithm satisfies detailed balance --> appropriate for important sampling

Main difficulty: --> the construction of the clusters of correlated spins
need of clever and fast cluster identification algorithms
An example code --> program nr. ???? (identification of clusters with recursion)



The Wolff single cluster algorithm

- even more efficient than the S-W algorithm
- difference: constructing and flipping only one cluster at a time!
- the way of constructing the correlated spins cluster is the same as in the S-W algorithm

- The Wolff algorithm is more effective, because we construct only one cluster an always flip it, +
the probability to choose a cluster is proportional with the size of the cluster --> we will usually flip
bigger clusters --> we generate statistically independent configurations!

- An example program is given as code nr. 77777

- A simple visual program to compare the effectiveness of the Metropolis, BKL and Wolff algorith,:
LMC.exe



The Histogram Monte Carlo technique

A.M. Ferrenberg, R.H. Swendsen; Phys. Rev. Lett., vol. 61, 2635 (1988)

|dea: During normal Metropolis or SW Monte Carlo procedures a big quantity of information is lost!!! ( we
calculate only the averages <E>, <E2>, <M> and <M?>

- the distribution functions f(E) and g(M) can be however also be obtained, and they carry a lot of important
statistical information f(E)dE = P(E,E +dE)

gM)dM = P(M ,M +dM)

- with the knowledge of f(E) and g(M) at a temperature T we can then calculate averages at other
temperatures WITHOUT making ANY additional simulations at the desired temperature.
Basics of the method

Let P(E-AE/2,E+AE/2,T,) be the probability to get in the equilibrium configuration at temperature T,
energies between E-AE/2 and E+AE/2

AE . AE 1 E
P(E+—,E,———.T,)= f(E,,T,)AE =——— D(E,) exp(——=)AE
(E, S BT 0) = J(E.T)) 2T (E;)exp( kBT)

(corresponding to the used canonical ensemble)
D(E,) is the density of states in the neighborhood of E; (independent of temperature)
During the MC simulation at temperature T,we cn construct a histogram characterizing P(E-

AE/2 EH+AEI2 To) Where h(E, T,) is the number of spin configurations with
P(E, + AL E + AL )= WE;,T,) energy in the E-AE/2 and E+AE/2 interval

2 Y WE,T)

2 70




. . . _ E. 1
By using the previous equations we get: D(E,)) = C(T)h(E.,T,) exp(——)
i ) O) i°70 p kBTO ' E

Now, we can calculate f(E;,T) at any desired temperature

1 E.
J(E,T)= %D(Ei)exp(— kBT)
E.

C(T,) _E 1 T 1
2 ME TPl =l

The C(T,)/Z(T) constant can be obtained from the normalization condition Z J (Ei T)AE =1

f(Ei’T):

- we get thus for any T value: E 1 1
h(E.,T))exp[——-(———
( i O) p[ kB (T T() )]

E 1 1T
Zh(Ei,T())exp[—E(T T )]

f(Ei9T):

Any average of the energy can be than immediately calculated:
< E(T) >= j f(E,T)EJE =Y f(E, T)EAE
{E) i

< EX(T) >= j fE,TYE’dE =Y f(E,, T)E’AE

{E} I







Calculating other averages

- Calculating <M> or <M?> is more complicated

- Need to construct the histogram at two different temperatures

P(M, +%,Mi —&,TO) =fM,;, T, )AM = ! G(M;)exp(— E(Mi))AM
2 2 Z(1,,) kT,
- there are two functions to determine: G(M) and E(M)
- G(M): the density of the magnetization states P(M. +ﬁ, M.+ % )= Zl:l(hl\f 1(4 TO; ) )
i”70,1
- we get from here two equations:
EM). 1
M.)=C(T, )h(M,,T,,)exp[——]
g§M;)=C,,)h(M,T,,)exp T, AM
- we obtain from there E(M) and G(M) kT1To C (To Yh( Mi , To)
- we can construct thus the f(M, T) for EM,)= (T —T) In C(T)h(M .T)
any T temperature, and calculate the 1 ’ 1 ZT, 1
desired averages o(M )= 1 [C (T, )h(M i,TO)]To—Tl
7 T,
MM Teaynm, )l




1 EM))

Calculating f(M,T): T)=—— o(M )exp[—
alculating f(M,T) JM,,T) Z(T)g(Ml)eXp[ KT |
After substituting g(M) and E(M)
i Ty (T,+T) Ty (T;+T)
MOTY = 1 1 |CT,)|ra-1) |h(M,,T,)]|ra-1)
f( i )_Z(T) ﬁ]\[ - L (Ty+T) 1 (Ty+T)
C(T)|ra-1y |h(M,,T))|ra@-1)
U M, T
, I (Ty=1,)
— . 270/
f(MlaT) _a(TvTO’Tl) AM 1 1 (Ty+T)
_h(Ml-,Ti)_T(TO_TO
The value of o can be calculated by the Z fM ., T)AM =1
normalization condition for f(M,T), ;
and finally we get: To (T+T)
|n(M . T) |ra1)
[h L (Ty+T)
M., T)|ra-1)
fWM,T)= (M. 1); ( T (T+T) )
[h(Ml.,TO)_nTo—TI)
2 0T [
M, T Jray




<M> and <M2> can be calculated than as: <M(T)>= j f(M, TYMdM = Z f(M., TYMAM

{M})

<M*(T)>= j FM,TYM?aM =" f(M,,T)M*AM

{E} i

- In this simple histogram technique the estimated f(E,T) and f(M, T) values are accurate only for T close to
the reference T, temperature!!!

- As the value of T-T, increases, the error in the estimated averages increase!

- Source of the error is that the h -histograms have also errors. This error will strongly influence the
calculation of the averages at temperatures far from T, !

- By generating many histograms that overlap one can widen the range of T values! This method is called
the MULTI HISTOGRAM TECHNQUE. [A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. Vol. 63,
1195 (1989)]

- MULTICANONICAL sampling is a technique that makes the multi histogram idea in a very efficient manner
[B.A. Berg and T. Neuhaus; Phys. Rev. Lett. Vol. 68, 9 (19920]



The Quantum Monte Carlo Method

Quantum-statistical systems --> quantum mechanical systems in contact with a heatbath
Quantum spin models (taking in consideration the quantum nature of the spins)

H=-7,3 558 488 -1.3 §:§:
i,J _ i,j
55,57 |=ioamsz: (50§57 |= inms|se, 5+ |= inam$?

Q2
S; s,ms> = 27thm, s,ms>;Si

s,m,) =47x’h*m (m, +1)

s,m,)

J,y=J, —> Heisenberg model; J, =0 Ising model (classical) ; J,=0 XY model
Introducing the raising and lowering operators

A

S*=8*+iS”;SH|S,m,) = 27h,[S(S + 1) —m (m, +1)| S, m, +1)
—iS";87|S,m,) = 27h,[S(S +1) —m, (m, —1)|S,m, —1)

A=-To 5§05 1508~ 1.3 §:35

S"_

H=- ;y Z(SAitrlS\i_ +§i+5i11)—~’z25§1§f
i i,j




The Hubbard model

- many body hamiltonian in a second quantized form
- describes interacting electrons in the periodic potential of a lattice
- second quantization in Wannier states (quasi-localized) electron states on a given orbital and with

a given spin orientation at o given ion at position R,
- Hamiltonian written with the creation (a*)

and destruction (a) operators, acting on

states described with occupational number

- interaction is strongly sceened by the

electron gas, thus it is restricted at the same

site

ﬁ: Ztaa aO'AaO'-I_UZnaa a =4

a,o',o

t, ., = 525}; explik(R, —R )]
k

In 1D, and considering jumps only at nearest neighbor lattice sites, the hamiltonian becomes

a,0o

H = _tz (&+ Ayilo +aa+1 0'&05 6)++Uzﬁ05,6ﬁ06,—0'

a,o

n, . are the particle number operators in state (a.,0)




A lattice model for itinerant electrons in 1D

~ h2
for 1 electron: Hy=-—
87T

Ay+V(x)=Ey
m

[{Pg L)

Discretizing it on a lattice with sites “a
considered space);

--> L coupled linear equations (L.a=l; | the length of the

h2
v, is the medium of y(x) in box “” (———3)W,tV¥._, —2¥)+Vy, = EVy,
. . 87T “ma
Vis the medium of V(x) in box "
h® h
= W=V, +
87T ma’ Ar*ma’

introducing “t” and “W." we get:

— (W, tY,_)+Wy, = Ey,

- the above equations can be written in a secon quantized form

state-vectors --> n, occupation numbers of the cells ‘ s 1y seees Iy s ‘nL>

c

l

NN, ... =,/n +1 ‘nl,nz, L1 +1,...,n > W:incz
i=1

nl,nz,...ni,...nL>: n,

A

C, [ —1,...,nL>

Mygees Moy 1y ) :_tz[cl Cin T EC, ]+an

nz,...nl.,...nL>=ni

n




Considering more than one interacting electrons on the same lattice is possible by
considering extra terms. H, is an on-site repulsion and H,is interaction between particles
in neighboring cells.

ﬁozvozﬁi(ﬁi_l) I_Allzleﬁiﬁm

Taking into account the spin of the particles --> by an additional discrete parameter
characterizing the projection of the spin

Basic idea for the QMC method

Transferring the d dimensional quantum-statistical problem in a d+1 dimensional classical
statistical physics problem

we consider the system in canonical ensemble

Z =Trlexp(—BH)] = Z<n1,n2,...nL ‘exp(—ﬂl—?)‘ Ny ey )
(n,)

First possibility to tackle the problem: diagonalize H and consider after that the Metropolis
or other MC schemes for the resulted states

problem: if there are only 2 possible particles in each of the L possible cells --> we have to
diagonalize a 2LX2L matrix which is practically impossible for L>>1.



Second possibility: make a classical MC algorithm without diagonalization
- consider an {n.% initial configuration

- consider a possible new {n} configuration

- accept the change {n% --> {n} with probability:

((n! Y| exp(—p#)| (] )
<{nif }‘exp(—,ﬁﬁl)‘ {n/ > + <{”?}‘3XP(—IBFI)‘ {nlo>

- continue the algorithm until the thermodynamic equillibrium is reached
- collect periodically the relevant data

problem: calculation of the matrix elements are VERY TIME CONSUMING and it is
not clear from the start which changes will yield reasonable transition probabilities!

Third possibility (wise solution): to rewrite Z in a form in which the calculation of the P
probabilities are easy when only a few n, numbers are changed.

- this is possible by the use of the Trotter-Suzuki approximation



The Trotter-Suzuki approximation

We consider the general form of the H hamiltonian:

:—tZ[c .., +¢.C ]+ZWn +ZVH (n, —1)+ZV N

and denote: V= ZW” +Zvn(ﬁl_1)+zv ;.

we divide H in two parts: I—AI =I-A1a +I'Alb
A . mn V.V ~ N A V
H, =(—tcl+cz—tcz+cl+31+72)+(—tc;c4—tcic3+ , 24)+

.t (=tc, ¢, —tc,c, |+

V V N A A
Ly “Ly—H +H,+..+H,
2 2
1 1 : ! 7 e oa Vi Vi
H,=H,+H,+..+H, ;where:H, =—tc; ¢, ,—tc, C,+—+
2 2

The terms inside H, and H, commute with each other, but: [H 49 H b] =0




1 =({n}|exp(—BH,)|(n,})
({n;}] exp(- ﬂH )| (1) ({n | exp(=H )| {n })

Ideal would be to do this for the whole H=H_+H,! This is not possible however, because H, and
H, do not commute and have terms acting on the same n, numbers.

- SOLUTION the Trotter-Suzuki (TS) approximation: if A and B are sufficiently SMALL operators:

we can write thus: <

A A 1 A A
i B A+B+5[A,B] Ath
€ ‘¢ =¢€ =€

Applying the TS approximation: if M>>1 (integer), so that BH, /M and BH,/M is small enough
we can write

Z = Z({n}\exp[—ﬁ(ﬂ +H)1"[{n,}) = > ({n,)

{n;} {n;}

5 )1 (n,))

B~
M a

To write Z as product of simple terms we insert 2M-1 complete sets of state vectors

Z‘nl’a,nz’a,...,nL’a><nm,n2’a,...,nL’a ‘

{n'}

between the exponential terms




Taking into account that H, acts only on the occupation numbers n, and n.,, we can write

- 1and o label occupation numbers oM L
/ = P
- from a 1D lattice --> 2D lattice Z HH 1o

- all n. , numbers are independent! ~(AH,})

P’ = <ni,a ; ni+1,a ‘e ni,a+1 ; ni+!,a+1>

1,

- due to the original trace:ni,2M+1= n

where : AT =-"—
M
We transform now the quantum-statistical L= Z exp(—ﬁ Z ei,a)
> {ni,a} i,&’
problem to a classical one! g
o ﬂei,a =1In Pi,a

-6, ,, (effective energies) can be calculated from the occupation numbers at sites: (i,ax), (i+1,0t),
(i,o+1), (i+1,00+1),

- dimension indexed by i --> spatial dimension
- dimension indexed by o --> Trotter or imaginary time dimension

- the method is equivalent with the PATH integral formulation of the Quantum Mechanics



Performing the MC simulation:

- we have four-site interaction between neighboring sites (i,c), (i+1,0), (i,a+1),
(i+1,a+1) with the values of i and o both even or odd.

- in the i and o space this interaction is represented by a check-board pattern where
the interaction is around the dark plaquets

- the condition for P, ,#0 is to satisfy: n, +n_..=n_. +n., .,
! i,o i, i,o i+l,a

acceptable changes: (leading to non-infinite final
“energies”)

- the occupation numbers for the left side of a white
plaquet are increased by unity, and the values for
the right side are decreased by unity

- the occupation numbers for the left side of a white
plaquet re decrease by unity and the values from the
right side are increased by unity.

— D W B U N

- the occupation numbers cannot become negative!

01 2 3 4 5 6



P

" 1+exp(— BAE)




Calculation of the ¢, , factors

- in general these “energies” are only numerically calculable, after Taylor expansion of the formula
for P, |
1,00

- in some simple cases however, it is analytically possible

- example: spinless fermions with only nearest neighbor interactions. (n; ,=0,1)

AT
LLLD =V =—
) B

e(0,0,0,0) =0

E

e(0,1,0,1) = e(1,0,1,0) = In[cosh(p)]

1
I

P 1
e(0,1,1,0) = e(1,0,0,1) = In[sinh(p)] )
B B f= "

8 2 2




Determination of the relevant physical quantities

dlnZ 1

E =— ,E [,B e,a]exp( ﬂ el(Z)
op 77 2Pl 2
3 The formula for M and  in the z

E = <€i a> +( Cic direct.ion is the same as in the

| df3 classical case!
c=—p%

op

2D and 3D cases

- the TS approximation is again applicable
- in the QMC method the dimensionality of the problem increased by one

- for the applicability of the TS transformation M has to be big --> the problem becomes
technically difficult... to computer-time demanding



The Microcanonical Monte Carlo method

M. Creutz, “Microcanonical Monte Carlo Simulation” Phys. Rev. Lett., Vol. 50, 1411-1415 (1983)

Studies the thermodynamic system not in a canonical but in microcanonical
ensemble = E, V, N are fixed!

S(E,V,N)=k In(W),

W: the number of microstates corresponding to a macro-state with fixed E,V, N

All microstates have the same probabilities = needing no extra random number
generation to compute averages for the given ensemble

<A>=>AIW

{i}

where the summation is on all possible microstates
A,is the value of the physical quantity A in microstate

The main problem is how to sample states with fixed E values!

An immediate possibility would be to randomly try to change the state of the
system (using an ergodic Markov chain), and accepting only the changes that
keeps the total energy of the system constant. = the big problem is that many
trials are in vain, and are disregarded - loosing a lot of computation time!

The idea for improving this is the “demon algorithm”



The demon algorithm

« We add an extra degree of freedom to the original macroscopic system of interest - this is the
demon

« The total energy of the demon + thermodynamic system (TS) is conserved!

« There is an energy transfer between the demon and the thermodynamic system, the demon
can receive energy from the TS and can give energy to the TS. The only constraint is that the
demon energy cannot become negative!

«  We realize the following ergodic dynamics to map the micro-canonical ensemble of the TS
(specific case of the Ising model):

Since the demon is only one degree of freedom in comparison to the many degrees of freedom of the system,
the energy fluctuations of the system will be of order 7/N, which is very small for N>>1, so the calculated
average will approximate well the conditions for the micro-canonical ensemble at the fixed energy



The demon energy distribution, the demon as a thermometer

The demon in many respects acts as an ideal thermometer since it is only one degree
of freedom in comparison to the many degrees of freedom system (TS) with which it

changes energy

From classical statistical physics we know, that in the considered setup, the probability
that the energy of the demon at a given step is E,:

1

Z

L

P(E,) = —exp( ——-

kT

where

E
Z= Zexp(— —)
{S} kT

is the partition function

for the demon

One way to characterize thus the “temperature” that the demon (thermometer)
experiences is by plotting In[P(E )] as a function of E, = the slope will give indication

for 1/kT

A simpler way to determine the temperature experienced by the demon is by calculating
<E . For the case of the Ising model it can be shown, that:

kT /J

" In(+4J/<E, >)

for IKREp> <<1 - KkT=<Ep



Problems to solve by microcanonical Monte Carlo

1. Compute T for N=100 and E=-20, -40, -60 and -80 from the inverse slope of P(E,) and <E >.
Compare Your results to the exact results of the infinite one-dimensional lattice E/N=-

tanh(J/kT). Consider 500 MC steps to heat up the system, and than 1000 Monte Carlo steps
to study the statistics for E.

2. Simulate the two-dimensional Ising model on a square lattice by using the demon algorithm.
Compute <E >, <M?> and <|M|> as a function of E. From here study the susceptibility as a
function of the temperature of the system. Consider a lattice with sizes 100x100, 500 MCS to
heat up the system and 1000 additional MC steps to study the necessary averages.



