
Topic 1 Molecular Dynamics 1

Making the MD simulation more efficient

The most time consuming part of a molecular dynamics program is the computation of the forces between
pairs of particles and hence the accelerations of the particles. There are N(N − 1)/2 pairs of particles, and hence
computing the forces takes time of O(N2).

In a paper by L. Verlet, Phys. Rev. 159, 98 (1967), two ways of speeding up the molecular dynamics simulation
of Rahman were introduced:

• Cut-off on the potential: Since the Lennard-Jones force is short ranged and the potential decreases rapidly
with distance r > σ, it makes sense to introduce a cut-off distance rcut-off beyond which the potential and force
are approximated by zero. If rcut-off is smaller than L/2, which is the maximum distance between interacting
pairs according to the closest image convention, then the number of pairs for which the force must be computed
is reduced from N(N − 1)/2. If N is increased while holding the density of particles fixed, then the number
particles which interact with a given particle remains fixed, and hence the total number of interacting pairs is
of O(N) and not of O(N2).

• Neighbor list: The problem with using a cut-off is that all N(N − 1)/2 pairs must be examined to find those
for which rij = |ri− rj | < rcut-off. At each time step, the positions ri of the particles change, so it appears that
the calculation is still of O(N2). However, Verlet noted that the change in positions at each time step is small
because dt is chosen small to reduce numerical errors in the integration of Newton’s equations.

◦ A maximum distance rmax > rcut-off is chosen, and a list of all pairs (ij) with rij < rmax is maintained. In
his paper, Verlet suggests rcut-off = 2.5σ and rmax = 3.2σ.

◦ The list of interacting pairs is not updated at every time step, but rather after some fixed number of steps,
say 10 or 20. This fixed update interval is chosen so that it is unlikely that a separation rij < rcut-off

increases beyond rmax, or a separation rij > rmax decreases below rcut-off, during this interval.

Verlet found that these simple approximations made his MD simulations run ten times faster with little loss in
accuracy!

Improved program md3.cpp

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 2

The following program implements the cut-off and neighbor lists introduced by Verlet.

First include standard libraries, and declare some variables and functions as in md2.cpp:

#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

// simulation parameters
int N = 864; // number of particles
double rho = 1.2; // density (number per unit volume)
double T = 1.0; // temperature
double L; // will be computed from N and rho

double **r, **v, **a; // positions, velocities, accelerations

// declare some functions
void initPositions();
void initVelocities();
void rescaleVelocities();
double instantaneousTemperature();

Variables and functions for cut-off and neighbor list

• Pairs with rij < rmax are indexed from 0 to nPairs−1, where nPairs is the number of such pairs at the time
the pair list is updated.

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 3

• The indices (ij) of the pair are stored in the nPairs×2 array: pairList[n][0] = i, pairList[n][1] = j.

• rij = ri − rj is stored in the nPairs×3 array: drPair[n][0] = xij , drPair[n][1] = yij , drPair[n][2] =
zij .

• rSqdPair[n] = r2
ij

// variables to implement Verlet’s neighbor list
double rCutOff = 2.5; // cut-off on Lennard-Jones potential and force
double rMax = 3.3; // maximum separation to include in pair list
int nPairs; // number of pairs currently in pair list
int **pairList; // the list of pair indices (i,j)
double **drPair; // vector separations of each pair (i,j)
double *rSqdPair; // squared separation of each pair (i,j)
int updateInterval = 10; // number of time steps between updates of pair list

// declare functions to implement neighbor list
void computeSeparation(int, int, double[], double&);
void updatePairList();
void updatePairSeparations();

void initialize() {
r = new double* [N];
v = new double* [N];
a = new double* [N];
for (int i = 0; i < N; i++) {

r[i] = new double [3];
v[i] = new double [3];
a[i] = new double [3];

}

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 4

initPositions();
initVelocities();

The initialize function from md2.cpp is modified to allocate memory sufficient to store the maximum number
N(N − 1)/2 of pairs:

// allocate memory for neighbor list variables
nPairs = N * (N - 1) / 2;
pairList = new int* [nPairs];
drPair = new double* [nPairs];
for (int p = 0; p < nPairs; p++) {

pairList[p] = new int [2]; // to store indices i and j
drPair[p] = new double [3]; // to store components x,y,z

}
rSqdPair = new double [nPairs];

}

Compute separation between two particles

The following function computes the separation between particles i and j using periodic boundary conditions
and the closest image convention.

void computeSeparation (int i, int j, double dr[], double& rSqd) {

// find separation using closest image convention
rSqd = 0;
for (int d = 0; d < 3; d++) {

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 5

dr[d] = r[i][d] - r[j][d];
if (dr[d] >= 0.5*L)

dr[d] -= L;
if (dr[d] < -0.5*L)

dr[d] += L;
rSqd += dr[d]*dr[d];

}
}

Find all pairs with separation less than rmax

The function updatePairList loops over all distinct pairs and adds pairs with separation less than rmax to the
pairList array:

void updatePairList() {
nPairs = 0;
double dr[3];
for (int i = 0; i < N-1; i++) // all distinct pairs

for (int j = i+1; j < N; j++) { // of particles i,j
double rSqd;
computeSeparation(i, j, dr, rSqd);
if (rSqd < rMax*rMax) {

pairList[nPairs][0] = i;
pairList[nPairs][1] = j;
++nPairs;

}
}

}

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 6

Find and store all pair separations less than rmax

The function updatePairSeparations computes the pair separations of all pairs in pairList and stores ri−rj

in drPair and |ri − rj |2 in rSqdPair:

void updatePairSeparations() {
double dr[3];
for (int p = 0; p < nPairs; p++) {

int i = pairList[p][0];
int j = pairList[p][1];
double rSqd;
computeSeparation(i, j, dr, rSqd);
for (int d = 0; d < 3; d++)

drPair[p][d] = dr[d];
rSqdPair[p] = rSqd;

}
}

Compute accelerations

The function computeAccelerations contains the crucial Verlet modifications. Instead of looping over all
pairs, only those pairs in pairList are examined, and from these pairs, only those with rij < rcut-off are actually
used in the force calculation. This makes the function execute much faster than the corresponding function in
md2.cpp.

void computeAccelerations() {

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 7

for (int i = 0; i < N; i++) // set all accelerations to zero
for (int k = 0; k < 3; k++)

a[i][k] = 0;

for (int p = 0; p < nPairs; p++) {
int i = pairList[p][0];
int j = pairList[p][1];
if (rSqdPair[p] < rCutOff*rCutOff) {

double r2Inv = 1 / rSqdPair[p];
double r6Inv = r2Inv*r2Inv*r2Inv;
double f = 12*r2Inv*r6Inv*(r6Inv - 1);
for (int d = 0; d < 3; d++) {

a[i][d] += f * drPair[p][d];
a[j][d] -= f * drPair[p][d];

}
}

}
}

Velocity-Verlet integration algorithm

The function velocityVerlet is modified from md2.cpp in two ways:

• The accelerations are computed only once each time step. This simple change should speed up the program
considerably.

• At each time step, updatePairSeparations is called after all of the particle positions have been updated. The
new forces and accelerations can then be computed.

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 8

void velocityVerlet(double dt) {
// assume accelerations have been computed
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++) {
r[i][k] += v[i][k] * dt + 0.5 * a[i][k] * dt * dt;

// use periodic boundary conditions
if (r[i][k] < 0)

r[i][k] += L;
if (r[i][k] >= L)

r[i][k] -= L;
v[i][k] += 0.5 * a[i][k] * dt;

}
updatePairSeparations();
computeAccelerations();
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++)
v[i][k] += 0.5 * a[i][k] * dt;

}

Steering the simulation

The main function is modified to call updatePairList every updateInterval time steps.

int main() {
initialize();
updatePairList();

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 9

updatePairSeparations();
computeAccelerations();
double dt = 0.01;
ofstream file("T3.data");
for (int i = 0; i < 1000; i++) {

velocityVerlet(dt);
file << instantaneousTemperature() << ’\n’;
if (i % 200 == 0)

rescaleVelocities();
if (i % updateInterval == 0) {

updatePairList();
updatePairSeparations();

}
}
file.close();

}

Functions repeated from md2.cpp

void initPositions() {

// compute side of cube from number of particles and number density
L = pow(N / rho, 1.0/3);

// find M large enough to fit N atoms on an fcc lattice
int M = 1;
while (4 * M * M * M < N)

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 10

++M;
double a = L / M; // lattice constant of conventional cell

// 4 atomic positions in fcc unit cell
double xCell[4] = {0.25, 0.75, 0.75, 0.25};
double yCell[4] = {0.25, 0.75, 0.25, 0.75};
double zCell[4] = {0.25, 0.25, 0.75, 0.75};

int n = 0; // atoms placed so far
for (int x = 0; x < M; x++)

for (int y = 0; y < M; y++)
for (int z = 0; z < M; z++)

for (int k = 0; k < 4; k++)
if (n < N) {

r[n][0] = (x + xCell[k]) * a;
r[n][1] = (y + yCell[k]) * a;
r[n][2] = (z + zCell[k]) * a;
++n;

}
}

double gasdev () {
static bool available = false;
static double gset;
double fac, rsq, v1, v2;
if (!available) {

do {
v1 = 2.0 * rand() / double(RAND_MAX) - 1.0;
v2 = 2.0 * rand() / double(RAND_MAX) - 1.0;

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 11

rsq = v1 * v1 + v2 * v2;
} while (rsq >= 1.0 || rsq == 0.0);
fac = sqrt(-2.0 * log(rsq) / rsq);
gset = v1 * fac;
available = true;
return v2*fac;

} else {
available = false;
return gset;

}
}

void initVelocities() {

// Gaussian with unit variance
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
v[n][i] = gasdev();

// Adjust velocities so center-of-mass velocity is zero
double vCM[3] = {0, 0, 0};
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
vCM[i] += v[n][i];

for (int i = 0; i < 3; i++)
vCM[i] /= N;

for (int n = 0; n < N; n++)
for (int i = 0; i < 3; i++)

v[n][i] -= vCM[i];

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 12

// Rescale velocities to get the desired instantaneous temperature
rescaleVelocities();

}

void rescaleVelocities() {
double vSqdSum = 0;
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
vSqdSum += v[n][i] * v[n][i];

double lambda = sqrt(3 * (N-1) * T / vSqdSum);
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
v[n][i] *= lambda;

}

double instantaneousTemperature() {
double sum = 0;
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++)
sum += v[i][k] * v[i][k];

return sum / (3 * (N - 1));
}

Output of the neighbor list program

The figure compares the output of md3.cpp with that of md2.cpp with N = 864 particles. Cutting off the
Lennard-Jones force at rcut-off does not appreciably affect the results of the simulation. Running the two programs
shows that md3.cpp is roughly 10 times faster.

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 13

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700 800 900 1000

In
st

an
ta

ne
ou

s
T

em
pe

ra
tu

re

�

Time step number

N = 864. T2 = all pairs, T3 = neighbor list

"T3.data"
"T2.data"

Correcting for the cut-off

The differences between the outputs of md3.cpp and md2.cpp are due to the use of the cut-off potential. This
effect is discussed in §8.2 of Thijssen’s book. Cutting off the force violates energy conservation and also causes
errors in integrating Newton’s equations of motion. These effects can be corrected by using the modified potential
given in Eq. (8.12):

Uforce shift(r) = U(r)− d
dr

U(rcut-off) (r − rcut-off) .

PHY 411-506 Computational Physics II Wednesday January 22, 2003

Topic 1 Molecular Dynamics 14

Since the potential has been changed, observables such as the pressure and average potential energy will not have
the same values as for the original Lennard-Jones potential. Eqs. (8.17) and (8.18) show how these discrepancies can
be corrected for in a simulation. It is straightforward to include these corrections in the MD simulation program.

PHY 411-506 Computational Physics II Wednesday January 22, 2003

