
Topic 6 Cellular Automata and Complex Systems 1

Visualization and Animation

Scientific visualization using computer graphics can very useful:

• computer simulations can generate large amounts of data, which are easier to interpret visually;

• visualizing a simulation as it runs can be very useful in understanding the simulations;

• visualizing the state of program data as the program runs can be very helpful in finding programming errors
and bugs;

• programming computer graphics and animations can be fun!

Visualization systems

There are numerous computer graphics and visualization systems. Many of them are special purpose programs
designed for particular types of problems, and which make use of special graphics hardware.

Systems like Mathematica, Maple and Matlab have fancy 2-D and 3-D graphics built in, as well as facilities to
perform animations.

If you use a lower level programming language and want your graphics programs to run on different platforms
(Unix, Windows, MacOS at least!), then there are essentially two choices:

• Use Java, which is an excellent programming language. Java programs are probably the most portable programs
you can write. Write Once, Run Anywhere is a Java slogan. Java graphics can be incorporated in applets which
will run on most web browsers.

• Use OpenGL, which claims to be The Industry’s Foundation for High Performance Graphics. The native
language of OpenGL is C, so it is much easier to use with C++. OpenGL can be much more efficient than
Java in exploiting graphics hardware. It is somewhat harder to learn than Java, and also not quite as platform
independent.

The OpenGL library is useful for programming 3 dimensional graphics and animations. There are OpenGL
functions to draw, color, and texturize points, lines, and surface, as well as bitmapped images. The OpenGL

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 2

Utility Toolkit (GLUT) has functions manipulate windows on computer displays: these functions are very
convenient because they are portable across operating systems.

OpenGL: hello world program

The following simple program illustrates the use of OpenGL and GLUT library functions to open a window on
the display and write a message on it.

Including glut.h automatically includes gl.h and glu.h.

// OpenGL hello program

#include <GL/glut.h>

display() is a callback function which is invoked by the program when the window to which it is attached needs
to be repainted.

• glClear clears the window by painting it with the current background color, which defaults to black if it is not
set.

• glRasterPos2d sets the origin for drawing a raster (bitmap) image.

• glutBitmapCharacter draws a character using the font specified in the first argument at the current raster
position, and resets the raster position just beyond the bitmap.

void display() {
glClear(GL_COLOR_BUFFER_BIT);
char message[] = "Hello, world!";
glRasterPos2d(0, 0);
for (int i = 0; i < sizeof(message) / sizeof(message[0]); i++)

glutBitmapCharacter(GLUT_BITMAP_HELVETICA_12, message[i]);
}

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 3

The main function must be defined with command line arguments which can be passed to

• glutInit, which initializes the graphics system.

• glutInitWindowSize sets the window width and height in pixels.

• glutCreateWindow creates and initializes a window data structure but does not actually place it on the screen.

• glutDisplayFunc registers its argument as the callback function which is invoked whenever the window needs
repainting.

• glutMainLoop enters an infinite loop which waits for user input after painting the window on the screen.

int main(int argc, char *argv[]) {
glutInit(&argc, argv);
glutInitWindowSize(250, 100);
glutCreateWindow("OpenGL hello program");
glutDisplayFunc(display);
glutMainLoop();

}

OpenGL: double-buffered rotating square

The following example is taken from the OpenGL Programming Guide (Red Book).

// double buffered rotating square

#include <GL/glut.h>

double spin = 0.0; // angle to rotate square

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 4

void init() {
glClearColor(0.0, 0.0, 0.0, 0.0); // background color black
glShadeModel(GL_FLAT);

}

void display() {
glClear(GL_COLOR_BUFFER_BIT);
glPushMatrix(); // save transformation matrix
glRotated(spin, 0.0, 0.0, 1.0); // rotate about z-axis by spin
glColor3f(1.0, 1.0, 1.0); // set color to white
glRectd(-25.0, -25.0, 25.0, 25.0); // draw a rectangle
glPopMatrix(); // restore transformation matrix
glutSwapBuffers(); // copy drawing buffer to screen

}

void spinDisplay() {
spin += 2.0;
if (spin > 360.0)

spin -= 360.0;
glutPostRedisplay(); // request glut to repaint window

}

void reshape(int w, int h) { // window reshape callback function
glViewport(0, 0, w, h); // use whole window for drawing
glMatrixMode(GL_PROJECTION); // select projection matrix
glLoadIdentity(); // make it the identity
glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0); // orthographic projection
glMatrixMode(GL_MODELVIEW); // select modeling matrix
glLoadIdentity(); // make it the identity

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 5

}

void mouse(int button, int state, int x, int y) { // mouse callback
switch (button) {
case GLUT_LEFT_BUTTON:

if (state == GLUT_DOWN)
glutIdleFunc(spinDisplay); // set idle function to spinDisplay

break;
case GLUT_RIGHT_BUTTON:

if (state == GLUT_DOWN)
glutIdleFunc(NULL); // set idle function to do nothing

break;
default:

break;
}

}

int main(int argc, char *argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // use double buffering
glutInitWindowSize(250, 250);
glutInitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display); // register display function
glutReshapeFunc(reshape); // register reshape function
glutMouseFunc(mouse); // register mouse function
glutMainLoop();

}

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 6

One dimensional sandpile automaton

This is a simple one-dimensional cellular automaton. It’s behavior is not very interesting, but it is relatively simple
to understand, and to visualize using OpenGL graphics.

Imagine a one-dimensional array of L columns of sand grains with non-negative integer heights

hi , i = 0, 1, . . . , L−1 .

At each column position we define the local slope of the pile

si ≡ hi − hi+1 .

We also define a critical slope sc: the pile is unstable if si > srmc for any column i; or equivalently, the pile is stable
only if si ≤ sc for all columns.

The local rule for updating the sand pile is as follows:

• If the pile is unstable, then for each column such that si > sc, let hi → hi−1 and hi+1 → hi+1+1, that is, move
the top sand grain on column i to column i+1. This update is carried out synchronously on all columns.

• If the pile is stable, then add a sand grain to a randomly chosen column.

To make the model well defined, we need to say what happens at the two boundaries. Note that an unstable
column in this model can only topple to the right (which is not very realistic). Thus the left boundary at i = 0
can be considered to be a rigid retaining wall. We can, for example apply open boundary conditions at the right
boundary i = L by fixing sL = 0: thus if hL−1 > sc the unstable grains are removed from the system, and can be
considered to fall off the edge of the table on which the sandpile is being built.

OpenGL: 1-D sandpile animation

// One dimensional sandpile cellular automaton model
#include <cstdlib>

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 7

using namespace std;

#include <GL/glut.h>

int L = 20; // length of sandpile (number of columns)
int criticalSlope = 1; // sand topples if slope exceeds this value

int *height; // height of pile of grains
int *slope; // slope of sandpile
bool *stable; // true if slope is <= critical slope

void allocate() { // allocates storage
static int oldL = 0;
if (oldL != L) {

if (height) {
delete [] height;
delete [] slope;
delete [] stable;

}
height = new int [L];
slope = new int [L];
stable = new bool [L];
oldL = L;

}
}

void initialize() { // initialize to empty sandpile
allocate();

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 8

for (int i = 0; i < L; i++) {
slope[i] = height[i] = 0;
stable[i] = true;

}
}

bool pileIsStable() { // check pile stability and reset slopes
bool pileStable = true;
for (int i = 0; i < L; i++) {

slope[i] = height[i];
if (i < L - 1)

slope[i] -= height[i + 1];
stable[i] = true;
if (slope[i] > criticalSlope)

stable[i] = pileStable = false;
}
return pileStable;

}

void takeStep() { // local update rule
if (pileIsStable()) { // add a grain to a randomly chosen column

int i = int(rand() / double(RAND_MAX) * L);
++height[i];

} else { // topple one grain from each unstable column
for (int i = 0; i < L; i++)

if (!stable[i]) {
--height[i]; // decrease unstable column height by 1
if (i < L - 1)

++height[i + 1]; // unstable grain topples to right

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 9

}
}

glutPostRedisplay(); // request glut to repaint the window
}

int xPixels = 400; // width of window in pixels
int yPixels = 400; // height of window in pixels
bool running; // is the animation running?

void display() { // display callback function - repaint window
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(1.0, 0.4, 0.0); // this is a shade of orange in RGB

for (int i = 0; i < L; i++) {
for (int j = 0; j < height[i]; j++) {

glRectd(i, j, i + 0.9, j + 0.9);
}

}

glutSwapBuffers(); // draw the buffer in memory to the screen
}

void reshape(int w, int h) { // invoked when shape of window changes
glViewport(0, 0, w, h); // use the full window for drawing
glMatrixMode(GL_PROJECTION); // select projection matrix
glLoadIdentity(); // set it to the identity
glOrtho(0, L, 0, L * h / double(w), -1.0, 1.0); // orthographic projection
// columns fill window, and grains are drawn square

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 10

}

void reset(int menuItem) { // callback function for popup menu
switch (menuItem) {
case 1: // user selects "Reset" from popup

initialize();
break;

case 2: // user selects "++ critical slope" from popup
criticalSlope += 1;
break;

case 3: // user selects "-- critical slope" from popup
criticalSlope -= 1;
break;

default:
break;

}
}

void mouse(int button, int state, int x, int y) {
switch (button) {
case GLUT_LEFT_BUTTON: // use left button to toggle animation on/off

if (state == GLUT_DOWN) {
if (running) { // animation is running

glutIdleFunc(NULL); // set idle callback to do nothing
running = false; // now not running

} else {
glutIdleFunc(takeStep); // set idle callback to take step
running = true; // now running

}

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 11

}
break;

default:
break;

}
}

int main(int argc, char *argv[]) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(xPixels, yPixels);
glutInitWindowPosition(100, 100);
glutCreateWindow("One Dimensional Sandpile Automaton");
if (argc > 1) // first argument of command line

L = atoi(argv[1]); // is the number of columns
initialize();
glClearColor(1.0, 1.0, 1.0, 0.0); // background color white
glShadeModel(GL_FLAT);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutCreateMenu(reset); // create a popup menu
glutAddMenuEntry("Reset", 1);
glutAddMenuEntry("++ critical slope", 2);
glutAddMenuEntry("-- critical slope", 3);
glutAttachMenu(GLUT_RIGHT_BUTTON); // attach it to right mouse button
glutMouseFunc(mouse);
glutMainLoop();

}

PHY 411-506 Computational Physics II Monday March 31, 2003



Topic 6 Cellular Automata and Complex Systems 12

Results from running the program

This sandpile automaton has a simple asymptotic behavior: the slope at each column is equal to the critical
slope, and any grains of sand added to the pile cascade down the slope without changing it.

The image on the left shows the steady state of the pile with sc = 1: note the single grain of sand on its way down
the stable slope. The image on the right shows the steady state with sc = 2.

PHY 411-506 Computational Physics II Monday March 31, 2003


