
Topic 2 The N-Body Problem 1

Long range forces in a two-dimensional space

It is easier to understand and program tree code and fast multipole algorithms in a two-dimensional space
rather thn in 3 dimensions. There are also some physical systems that are effectively two dimensional: examples
include vortices in a type II superconductor, and the 2-dimensional electron gas in a semiconductor heterostructure.

The gravitational or Coulomb forces in a two-dimensional space fall off like 1/r. In a system of particles with
approximately uniform density, the number of particles at distance r from a particular particle is proportional to the
“surface” of a circle of radius r, i.e., its circumference 2πr. Thus, the contributions of all particles, are important
no matter how far away they are, just like for the 1/r2 force in 3 dimensions.

The Coulomb potential and field due to a charge q at the origin in two dimensional space r = (x, y) are given
by:

U(r) = −q ln r , E(r) = − ∂
∂r

U(r) =
q
r2 r .

If there are N charges qi located at positions ri, the potential at point r is given by

U(r) = −
N

∑

i=1

qi ln |r− ri| .

Viewing 2-d space as the complex plane

In many problems, it it turns out to be mathematically convenient to view 2-dimensional space as the complex
plane with points z = x + iy. The physical potential is the negative of the real part of a complex potential

U(z) =
N

∑

i=1

qi ln(z − zi) .

The magnitude of the field is given by the magnitude of a complex field

E(z) =
d
dz

U(z) =
N

∑

i=1

qi

z − zi
.

PHY 411-506 Computational Physics II Monday January 27, 2003

Topic 2 The N-Body Problem 2

The Cartesian components of the field are given by its real and (negative) imaginary parts:

Ex = <E(z) , Ey = −=E(z) .

If we are interested in the potential and field at a point far away from the charges, i.e., |z| � |zi|, then a multipole
expansion can be used:

U(z) = a0 ln z −
∞
∑

k=1

ak

zk , E(z) =
∞
∑

k=1

kak

zk+1 ,

where the multipole moments are given by

a0 =
N

∑

i=1

qi (the net charge)

a1 =
N

∑

i=1

qizi (the complex dipole moment)

ak =
N

∑

i=1

qizk
i

k
, k = 2, 3, . . .

Computing the potential energy of N charges

The complex potential energy of N charges is given by

Epot =
1
2

N
∑

i,j=1
i 6=j

qiqj ln(zi − zj) =
∑

pairs ij

qiqj ln(zi − zj) .

This is a typical N -body computation because the number of pairs N(N − 1)/2 is of O(N2).

PHY 411-506 Computational Physics II Monday January 27, 2003

Topic 2 The N-Body Problem 3

A particle-particle code to compute Epot

A particle-particle algorithm is one which examines every pair of particles.

#include <iostream>
#include <cstdlib>
#include <cmath>

Here we include two additional standard headers:

• complex defines a template class for arithmetic with complex numbers. The class can be instantiated with
various numeric types, double, float, long int, etc., and the arithmetic is done using those types.

• ctime defines some quantities that allow us to measure the CPU time used by the program.

#include <complex>
#include <ctime>

using namespace std;

int N = 1000; // number of charges
double L = 10; // side of square region containing charges

The positions in the complex plane and the complex potential energy are defined as complex quantities whose
real and imaginary parts are doubles.

complex<double> *z; // positions of particles
complex<double> Epot; // total potential energy of system

PHY 411-506 Computational Physics II Monday January 27, 2003

Topic 2 The N-Body Problem 4

double *q; // charges of particles

void initialize() {

// allocate arrays
z = new complex<double> [N];
q = new double [N];

// place particles with random charges at random locations
for (int i = 0; i < N; i++) {

q[i] = 2 * rand() / double(RAND_MAX) - 1;
double x = L * rand() / double(RAND_MAX);
double y = L * rand() / double(RAND_MAX);
z[i] = complex<double>(x, y);

}
}

void computeEpot() {
Epot = 0;
for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)
if (i != j)

Epot += q[i] * q[j] * log(z[i] - z[j]);
Epot /= 2;

}

The main function will be defined to use command line arguments to read optional input for the program:

PHY 411-506 Computational Physics II Monday January 27, 2003

Topic 2 The N-Body Problem 5

int main(int argc, char *argv[]) {

if (argc > 1)
N = atoi(argv[1]);

if (argc > 2)
L = atof(argv[2]);

cout << "Number of charges = " << N << endl;
cout << "Side of square box = " << L << endl;

initialize();

The clock function, which approximates the CPU time in units of “clocks” that the current program has been
running, will be used to time the N -body particle-particle computation of the potential:

clock_t t0 = clock(); // CPU time before computing potential
computeEpot();
clock_t t1 = clock(); // CPU time after computing potential
cout.precision(16);
cout << " Potential energy = " << Epot << endl;
cout << " CPU time = " << double(t1 - t0) / CLOCKS_PER_SEC

<< " sec" << endl;

}

The constant CLOCKS PER SEC is used to convert from “clocks” to seconds.

PHY 411-506 Computational Physics II Monday January 27, 2003

