
Topic 4 Quantum Monte Carlo Methods 1

Quantum Monte Carlo Methods

In PHY 410-505 last semester, we studied variational methods for finding the energy eigenstates of quantum
mechanical particles. The simplest such system is the quantum harmonic oscillator in one dimension. To find the
energy eigenstates, we solve the time-independent Schrödinger equation

Hψ(x) =
[

− h̄2

2m
d2

dx2 +
1
2
mω2x2

]

ψ(x) = Eψ(x) ,

subject to boundary conditions
lim

x→±∞
ψ(x) = 0 .

If you are not familiar with quantum mechanics, you can just view this as an interesting example of an eigenvalue
problem for a second-order ordinary differential equation. The solution of this equation is the wave function of the
particle. The interpretation of the wave function ψ(x) is that

|ψ(x)|2 dx

is the probability of finding the particle between position x and position x + dx.

Such a simple one-dimensional problem can easily be solved numerically using deterministic algorithms described
in Appendix A.7.1 of Thijssen’s book. In fact, the harmonic oscillator problem can be solved exactly. Solutions
which satisfy the boundary conditions exist only for discrete eigenvalues of the energy

En =
(

n +
1
2

)

h̄ω n = 0, 1, 2, 3, . . .

and the normalized energy eigenfunctions are given by

ψn(x) =
(mω

πh̄

) 1
4 1√

2nn!
Hn

(

x
√

mω
h̄

)

e−mωx2/(2h̄) ,

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 2

where Hn are Hermite polynomials

H0(y) = 1 , H1(y) = 2y , H2(y) = 4y2 − 2 , etc.

Exact solutions have been found only for a very small number of problems which can essentially be reduced to
one-dimensional ordinary differential equations. Another example is the hydrogen atom which consists of a proton
and an electron interacting through a Coulomb force.

The variational theorem

The eigenfunctions of a quantum mechanical problem are complete. This means that any wave function Ψ(x)
can be expressed as a linear superposition

Ψ(x) =
∑

n

cnψn(x) ,

where cn are complex numbers. According to the rules of quantum mechanics, the average energy of a particle with
this wave function is given by

〈E〉 =

∫

dx Ψ∗(x)HΨ(x)
∫

dx Ψ∗(x)Ψ(x)
.

The variational theorem states that 〈E〉 ≥ E0 for any Ψ, and 〈E〉 = E0 if and only if Ψ(x) = c0ψ0(x). It is easy to
see this is we use the fact that the eigenfunctions ψn(x) can be chosen to be orthonormal

∫

dx ψ∗n(x)ψn′(x) = δnn′ ,

〈E〉 =

∑

n,n′ c
∗
nEn′cn′

∫

dx ψ∗n(x)ψn′(x)
∑

n,n′ c∗ncn′
∫

dx ψ∗n(x)ψn′(x)
=

∑

n |cn|2En
∑

n |cn|2
= E0 +

∑

n |cn|2(En − E0)
∑

n |cn|2
,

we have used the eigenvalue equation Hψn′ = En′ψn′ . Because En−E0 > 0, the second term in the last expression
is positive and larger than zero unless all cn = 0 for all n 6= 0.

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 3

The variational method is based on this important theorem: to estimate the ground state energy and wave
function, choose a trial wave function ΨT,α(x) which depends on a parameter α. The expectation value 〈E〉 will
depend on the parameter α, which can be varied to minimize 〈E〉. This energy and the corresponding ΨT,α(x) then
provide the best estimates for the ground state energy and wave function.

Mean-field variational methods

For most quantum systems which involve more than two particles, i.e., atomic nuclei and electrons, numerical
methods must be used. Last semester we studied deterministic variational methods for solving Schrödinger’s equation
for many-particle systems. These methods typically replace the effects of the many particles by an average mean
field: each particle is then acted on by this field, thus reducing the problem to an effective one-particle system. This
problem must be solved self-consistently because the mean field is determined by the positions of the particles, and
the motion of the particles is determined by the mean field!

The problem with these methods is that they do not take into account many-particle effects and correlations
between particles in a simple way.

Quantum Monte Carlo methods use random numbers and random walks to try to improve on deterministic
variational methods.

Variational Monte Carlo (VMC)

In the Variational Monte Carlo method, a trial wave function ΨT,α, which depends on a set of variational
parameters α = (α1, α2, . . . , αS), is carefully chosen.

An efficient way must be found to evaluate the expected value of the energy

〈E〉 =

∫

dR Ψ∗T,αHΨT,α
∫

dR |ΨT,α|2
,

where R = (r1, . . . , rN) are the positions of the particles in the system. The problem is that this multi-dimensional
integral must be evaluated many many times as the program searches the α parameter space for the minimum 〈E〉.

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 4

Monte Carlo methods can be used to evaluate multi-dimensional integrals much more efficiently than deter-
ministic methods. The key to using a Monte Carlo method is to define a positive definite weight function which is
used to sample the important regions of the multi-dimensional space. In the VMC method, the weight function is
taken to be

ρ(R) =
|ΨT,α(R)|2

∫

dR |ΨT,α|2
.

The expectated value of the energy can then be written

〈E〉 =

∫

dR |ΨT,α|2 HΨT,α

ΨT,α
∫

dR |ΨT,α|2
=

∫

dR ρ(R)EL(R) ,

where the local energy EL(R) is defined by

EL(R) =
HΨT,α(R)
ΨT,α(R)

.

The variational wave function ΨT,α(R) is usually chosen to be real and non-zero (almost) everywhere in the region
of integration. In evaluating the ground state of the system, it can generally be chosen to be real and positive
definite.

The VMC strategy is to generate a random set of points {Ri}, i = 1, . . . ,M in configuration space that are
distributed according to ρ(R). Then

〈E〉 =
1
M

M
∑

i=1

EL(Ri) .

VMC Program for the Harmonic Oscillator

Thijssen’s textbook suggests a simple variational trial wave function for the Harmonic Oscillator:

ΨT,α(x) = e−αx2
.

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 5

Let’s choose units so that m = 1, h̄ = 1, and ω = 1. The Hamiltonian operator in these units is

H = − d2

dx2 +
1
2
x2 ,

from which the local energy can be derived:

EL(x) = α + x2
(

1
2
− 2α2

)

.

Note that when α = 1/2 we obtain the exact ground state energy and eigen function.

The following program vmc.cpp implements the VMC method outlined above.

// Variational Monte Carlo for the harmonic oscillator

#include <cmath>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include "rng.h"
using namespace std;

int seed = -123456789; // for random number generator

The program uses N Metropolis random walkers

The weight function
ρ(x) ∼ e−2αx2

,

can easily be generated using a single Metropolis random walker, as was done in Topic 3 to evaluate a Gaussian
integral. However, in more complex problems, it is conventional to use a large number of independent random

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 6

walkers that are started at random points in the configuration space. This is beacuse the weight function can be
very complicated in a multi-dimensional space: a single walker might have trouble locating all of the peaks in the
distribution; using a large number of randomly located walkers improves the probability that the distribution will
be correctly generated.

int N; // number of walkers
double *x; // walker positions
double delta; // step size

Variables to measure observables

Variables are introduced to accumulate EL values and compute the Monte Carlo average and error estimate.
The probability distribution is accumulated in a histogram with bins of size dx in the range −10 ≤ x ≤ 10.

double eSum; // accumulator to find energy
double eSqdSum; // accumulator to find fluctuations in E
double xMin = -10; // minimum x for histogramming psi^2(x)
double xMax = +10; // maximum x for histogramming psi^2(x)
double dx = 0.1; // psi^2(x) histogram step size
double *psiSqd; // psi^2(x) histogram
int nPsiSqd; // size of array

void zeroAccumulators() {
eSum = eSqdSum = 0;
for (int i = 0; i < nPsiSqd; i++)

psiSqd[i] = 0;
}

Initialization

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 7

The following function allocates memory to hold the positions of the walkers and distributes them uniformly
at random in the range −0.5 ≤ x ≤ 0.5. The step size δ for the Metropolis walk is set to 1.

void initialize() {

x = new double [N];
for (int i = 0; i < N; i++)

x[i] = ran2(seed) - 0.5;
delta = 1;

nPsiSqd = int((xMax - xMin) / dx);
psiSqd = new double [nPsiSqd];

zeroAccumulators();
}

Probability function and local energy

The following function evaluates the ratio

w =
ρ (xtrial)

ρ (x)
,

which is used in the Metropolis algorithm: if w ≥ 1 the step is accepted unconditionally; and if w < 1 the step is
accepted only if w is larger than a uniform random deviate between 0 and 1.

double alpha; // trial function is exp(-alpha*x^2)

double p(double xTrial, double x) {

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 8

// compute the ratio of rho(xTrial) / rho(x)
return exp(- 2 * alpha * (xTrial*xTrial - x*x));

}

double eLocal(double x) {

// compute the local energy
return alpha + x * x * (0.5 - 2 * alpha * alpha);

}

One Metropolis step

One Metropolis step is implemented as follows:

• Choose one of the N walkers at random

• The walker takes a trial step to a new position that is Gaussian distributed with width δ around the old
position. The function gasdev defined in rng.h returns a Gaussian deviate with unit width: multiplying this
by a step size δ yields a Gaussian deviate with σ = δ. This choice of trial step is suggested by the programs on
the author’s web site.

int nAccept; // accumulator for number of accepted steps

void MetropolisStep() {

// chose a walker at random
int n = int(ran2(seed) * N);

// make a trial move
double xTrial = x[n] + delta * gasdev(seed);

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 9

// Metropolis test
if (p(xTrial, x[n]) > ran2(seed)) {

x[n] = xTrial;
++nAccept;

}

// accumulate energy and wave function
double e = eLocal(x[n]);
eSum += e;
eSqdSum += e * e;
int i = int((x[n] - xMin) / dx);
if (i >= 0 && i < nPsiSqd)

psiSqd[i] += 1;
}

As usual, when we have multiple walkers, one Monte Carlo Step is conventionally defined as N Metropolis
steps:

void oneMonteCarloStep() {

// perform N Metropolis steps
for (int i = 0; i < N; i++) {

MetropolisStep();
}

}

Steering the computation with the main function

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 10

int main() {

cout << " Variational Monte Carlo for Harmonic Oscillator\n"
<< " ---\n";

cout << " Enter number of walkers: ";
cin >> N;
cout << " Enter parameter alpha: ";
cin >> alpha;
cout << " Enter number of Monte Carlo steps: ";
int MCSteps;
cin >> MCSteps;

initialize();

As in all Monte Carlo calculations, some number of steps are taken and discarded to allow the walkers to come
to “equilibrium.” The thermalization phase is also used to adjust the step size so that the acceptance ratio is
approximately 50%. If δ is too small, then too many steps will be accepted; and conversely, if δ is too large, then
too many steps will be rejected. Multiplying δ by one half of the acceptance ratio will increase δ if the ratio is larger
than 0.5, and decrease δ if the ratio is smaller than 0.5.

// perform 20% of MCSteps as thermalization steps
// and adjust step size so acceptance ratio ~50%
int thermSteps = int(0.2 * MCSteps);
int adjustInterval = int(0.1 * thermSteps) + 1;
nAccept = 0;
cout << " Performing " << thermSteps << " thermalization steps ..."

<< flush;
for (int i = 0; i < thermSteps; i++) {

oneMonteCarloStep();

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 11

if ((i+1) % adjustInterval == 0) {
delta *= nAccept / (0.5 * N * adjustInterval);
nAccept = 0;

}
}
cout << "\n Adjusted Gaussian step size = " << delta << endl;

Once the system has thermalized, the accumulators for observables are initialized and the production steps are
taken.

// production steps
zeroAccumulators();
nAccept = 0;
cout << " Performing " << MCSteps << " production steps ..." << flush;
for (int i = 0; i < MCSteps; i++)

oneMonteCarloStep();

Finally the average value of the energy and the Monte Carlo error estimate are printed, and the probability
distribution ∼ ψ2

0(x) is written in the form of a histogram to a file.

// compute and print energy
double eAve = eSum / double(N) / MCSteps;
double eVar = eSqdSum / double(N) / MCSteps - eAve * eAve;
double error = sqrt(eVar) / sqrt(double(N) * MCSteps);
cout << "\n <Energy> = " << eAve << " +/- " << error

<< "\n Variance = " << eVar << endl;

// write wave function squared in file
ofstream file("psiSqd.data");

PHY 411-506 Computational Physics II Monday February 24, 2003

Topic 4 Quantum Monte Carlo Methods 12

double psiNorm = 0;
for (int i = 0; i < nPsiSqd; i++)

psiNorm += psiSqd[i] * dx;
for (int i = 0; i < nPsiSqd; i++) {

double x = xMin + i * dx;
file << x << ’\t’ << psiSqd[i] / psiNorm << ’\n’;

}
file.close();
cout << " Probability density written in file psiSqd.data" << endl;

}

The following plots show results for the average energy 〈E〉 and its variance
〈

E2
〉

− 〈E〉2 as functions of the
variational parmeter α. Runs were performed with N = 300 walkers and MCSteps = 10,000.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

<
E

>�

alpha

Variational Monte Carlo for Harmonic Oscillator

energy

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

<
E

^2
>

 -
 <

E
>

^2

�

alpha

Variational Monte Carlo for Harmonic Oscillator

Variance

As might be expected, the average energy is minimum 〈E〉 = 1/2, and the variance is zero, at α = 1/2 which
corresponds to the exact solution for the harmonic oscillator ground state.

PHY 411-506 Computational Physics II Monday February 24, 2003

