
Topic 2 The N-Body Problem 1

The N-Body problem

Consider a set of N particles (bodies) which interact with one another by long range forces which decrease
inversely as the square of the distance. The gravitational interaction between masses and the electromagnetic
interaction between charges are examples of long range forces.

This N -body problem is one of the oldest problems in physics. After Newton solved the 2-body problem
exactly, numerous scientists and mathematicians attempted to find exact solutions to the 3-body problem. So far,
no non-trivial exact solutions to the 3-body problem have been found. Mathematicians have been able to prove that
the problem is non-integrable, and that many 3-body trajectories are chaotic and cannot be computed numerically.

Why are 1/r2 forces called long range? Suppose a very large number of particles are distributed roughly
uniformly over a large region of space. The area of a sphere of radius r surrounding any particle increases like 4πr2.
Thus the number of particles at distance r times the strength of the force exterted by each of these particles is
roughly independent of r. Thus all of the particles in the system influence the motion of any one particle.

Because the forces are long range, it is not possible to solve for the dynamics of any particle by considering a
local neighborhood, as was done in speeding up the Lennard-Jones MD simulation by introducing a cut-off radius
beyond which the force could be neglected.

Numerical solution of the N-body problem

Several approaches to speeding up N -body codes have been developed. The following are some examples of
widely used methods:

• Particle-mesh methods: These are based on introducing a uniform cubic lattice of points in space. The
effect of each particle in a cube of the lattice is approximated by variables located at the neighboring grid
points. This grid of variables is used to compute the potential which determines the force on the particles.
These methods have been very successful in solving problems in which the particles are spread out roughly
uniformly over all of space. These methods typically scale like O(M log M) where M is the number of grid
points.

• Tree-code methods: These methods were developed to simulate astrophysical systems such as the motion of

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 2

stars in a galaxy. The distribution of stars is generally highly non-uniform: particle-mesh methods do not work
well for non-uniform distributions. Tree-code methods partition space hierarchically into a tree like structure
of cubic regions: where there are few particles, the tree contains only a few large cubes; but in regions with
many particles, the cubes are repeatedly sub-divided into smaller cubes. Tree-code methods typically scale like
O(N log N).

• Fast multipole methods: These methods use multipole expansions of the long range potential. A finite
number of terms in the expansions are retained, and the algorithm then allows an accurate approximate
determination of the forces which scales like O(N). The Fast Multipole Algorithm was named one of the top
ten algorithms of the twentieth century by the magazine Computers in Science and Engineering.

Applications of N-body methods

There are many areas in which N -body methods are used, for example:

• Astrophysics: The dynamical evolution of stars within galaxies, and collisions between galaxies involve thou-
sands of bodies all interacting through long range forces. Many of the N -body algorithms were developed to
solve astrophysical problems.

• Plasma physics: In a plasma, atoms are ionized into electons and positively charged ions which interact
through long range Coulomb forces. Particle mesh methods were developed to solve the dynamics of uniform
plasmas.

• Molecular dynamics: Interactions between rare gas atoms such as Argon fall off like 1/r6. However, in
materials made up of polar molecules (which have a permanent dipole moment), the Coulomb field falls off like
1/r3: while this is not strictly a long range force, the number of interacting particles which need to be taken
into account can be very large, and N -body methods then become very useful. Such methods can also be useful
is studying an electron gas confined in solid state devices.

• Fluid dynamics: It can be shown that elliptic partial differential equations with Dirichlet boundary conditions
can be solved using N -body techniques. In this approach, the solution is determined by a finite number of
discrete sources on the boundary of the region.

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 3

Hut-Makino starter code for N-body simulations

Astrophysics is an interesting area in which to learn about N -body methods. Piet Hut and Jun Makino have a
website with a nice tutorial program for doing N -body simulations. It is good to learn how to locate public domain
programs, to understand how they work, and to use them to solve computational problems. One can learn many
useful programming techniques by studying good code written by others.

The key functions of the code are explained briefly below: the full code is explained in a PostScript file on
Hut’s website.

The main function

The starter code solves Newton’s equations of motion for N bodies, each of which can have a different mass,
given initial positions and velocities. The bodies interact through Newton’s inverse square law of gravity.

typedef double real; // "real" as a general name for the
// standard floating-point data type

const int NDIM = 3; // number of spatial dimensions

int main(int argc, char *argv[])
{

real dt_param = 0.03; // control parameter to determine time step size
real dt_dia = 1; // time interval between diagnostics output
real dt_out = 1; // time interval between output of snapshots
real dt_tot = 10; // duration of the integration
bool init_out = false; // if true: snapshot output with start at t = 0

// with an echo of the input snapshot
bool x_flag = false; // if true: extra debugging diagnostics output

if (! read_options(argc, argv, dt_param, dt_dia, dt_out, dt_tot, init_out,
x_flag))

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 4

return 1; // halt criterion detected by read_options()

int n; // N, number of particles in the N-body system
cin >> n;

real t; // time
cin >> t;

real * mass = new real[n]; // masses for all particles
real (* pos)[NDIM] = new real[n][NDIM]; // positions for all particles
real (* vel)[NDIM] = new real[n][NDIM]; // velocities for all particles

get_snapshot(mass, pos, vel, n);

evolve(mass, pos, vel, n, t, dt_param, dt_dia, dt_out, dt_tot, init_out,
x_flag);

delete[] mass;
delete[] pos;
delete[] vel;

}

The get snapshot function reads the values of the masses of the bodies and the initial positions and velocities.
The evolve function integrates Newton’s equations of motion for the desired number of time steps.

Fourth-order Hermite integration algorithm

The program uses an integration algorithm that the authors have found works well for various astrophysical
problems.

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 5

First some definitions: The vector distance between particles i and j is defined to be

rji = rj − ri ,

and the relative velocity of the two particles is

vji = vj − vi ,

According to Newton’s law of gravity, the acceleration of particle i due to particle j is

aji =
Mj

r3
ji

rji .

Here we use units such that Newton’s constant G = 1. Note that the acceleration is directed towards particle j:
gravity is an attractive force. The algorithm also makes use of the rate of change of the acceleration, which is called
the “jerk”

jji =
Mj

r3
ji

[

vji − 3
vji · rji

r2
ji

rji

]

.

The acceleration and jerk of particle i are then given by

ai =
∑

j 6=i

aji , ji =
∑

j 6=i

jji .

The Hermite algorithm used by Hut and Makino is a type of “predictor-corrector” algorithm. During a time
step of size δt, the next position and velocity of the particle are “predicted” using the known acceleration and jerk:

rp = r + vδt +
1
2
aδt2 +

1
6
jδt3

vp = v + aδt +
1
2
jδt2

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 6

These predicted positions and velocities are used to compute the predicted accelerations ap and jerks jp. By making
Taylor series expansions of the various formulas, it can be shown that the next two derivatives of the acceleration
are given by

k ≡ 1
2
a′′δt2 = 2(a− ap) + δt(j− jp)

l ≡ 1
2
a′′′δt2 = −3(a− ap)− δt(2j + jp)

This information is then used to get the “corrected” positions and velocities at the next time step:

rc = rp +
(

1
12

k +
1
20

l
)

δt2

vc = vp +
(

1
3
k +

1
4
l
)

δt

This algorithm is implemented in the program as follows:

Taking a single time step δt

void evolve_step(const real mass[], real pos[][NDIM], real vel[][NDIM],
real acc[][NDIM], real jerk[][NDIM], int n, real & t,
real dt, real & epot, real & coll_time)

{
real (* old_pos)[NDIM] = new real[n][NDIM];
real (* old_vel)[NDIM] = new real[n][NDIM];
real (* old_acc)[NDIM] = new real[n][NDIM];
real (* old_jerk)[NDIM] = new real[n][NDIM];

for (int i = 0; i < n ; i++)

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 7

for (int k = 0; k < NDIM ; k++){
old_pos[i][k] = pos[i][k];
old_vel[i][k] = vel[i][k];
old_acc[i][k] = acc[i][k];
old_jerk[i][k] = jerk[i][k];

}

predict_step(pos, vel, acc, jerk, n, dt);
get_acc_jerk_pot_coll(mass, pos, vel, acc, jerk, n, epot, coll_time);
correct_step(pos, vel, acc, jerk, old_pos, old_vel, old_acc, old_jerk,

n, dt);
t += dt;

delete[] old_pos;
delete[] old_vel;
delete[] old_acc;
delete[] old_jerk;

}

Taking the predictor step

void predict_step(real pos[][NDIM], real vel[][NDIM],
const real acc[][NDIM], const real jerk[][NDIM],
int n, real dt)

{
for (int i = 0; i < n ; i++)

for (int k = 0; k < NDIM ; k++){

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 8

pos[i][k] += vel[i][k]*dt + acc[i][k]*dt*dt/2
+ jerk[i][k]*dt*dt*dt/6;

vel[i][k] += acc[i][k]*dt + jerk[i][k]*dt*dt/2;
}

}

Computing the accelerations and jerks

This is similar to the computeAccelerations function in the MD programs. It is the most time consuming part
of the computation because one must examine all N(N − 1)/2 pairs of particles. The following code also computes
the total potential energy of the system

U = −
∑

pairs

MiMj

rji
,

as well as two estimates of the “least collision time”, which are used to adjust the time step δt as the computation
proceeds.

void get_acc_jerk_pot_coll(const real mass[], const real pos[][NDIM],
const real vel[][NDIM], real acc[][NDIM],
real jerk[][NDIM], int n, real & epot,
real & coll_time)

{
for (int i = 0; i < n ; i++)

for (int k = 0; k < NDIM ; k++)
acc[i][k] = jerk[i][k] = 0;

epot = 0;
const real VERY_LARGE_NUMBER = 1e300;
real coll_time_q = VERY_LARGE_NUMBER; // collision time to 4th power

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 9

real coll_est_q; // collision time scale estimate
// to 4th power (quartic)

for (int i = 0; i < n ; i++){
for (int j = i+1; j < n ; j++){ // rji[] is the vector from

real rji[NDIM]; // particle i to particle j
real vji[NDIM]; // vji[] = d rji[] / d t
for (int k = 0; k < NDIM ; k++){

rji[k] = pos[j][k] - pos[i][k];
vji[k] = vel[j][k] - vel[i][k];

}
real r2 = 0; // | rji |^2
real v2 = 0; // | vji |^2
real rv_r2 = 0; // (rij . vij) / | rji |^2
for (int k = 0; k < NDIM ; k++){

r2 += rji[k] * rji[k];
v2 += vji[k] * vji[k];
rv_r2 += rji[k] * vji[k];

}
rv_r2 /= r2;
real r = sqrt(r2); // | rji |
real r3 = r * r2; // | rji |^3

// add the {i,j} contribution to the total potential energy for the system:

epot -= mass[i] * mass[j] / r;

// add the {j (i)} contribution to the {i (j)} values of acceleration and jerk:

real da[3]; // main terms in pairwise

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 10

real dj[3]; // acceleration and jerk
for (int k = 0; k < NDIM ; k++){

da[k] = rji[k] / r3; // see equations
dj[k] = (vji[k] - 3 * rv_r2 * rji[k]) / r3; // in the header

}
for (int k = 0; k < NDIM ; k++){

acc[i][k] += mass[j] * da[k]; // using symmetry
acc[j][k] -= mass[i] * da[k]; // find pairwise
jerk[i][k] += mass[j] * dj[k]; // acceleration
jerk[j][k] -= mass[i] * dj[k]; // and jerk

}

// first collision time estimate, based on unaccelerated linear motion:

coll_est_q = (r2*r2) / (v2*v2);
if (coll_time_q > coll_est_q)

coll_time_q = coll_est_q;

// second collision time estimate, based on free fall:

real da2 = 0; // da2 becomes the
for (int k = 0; k < NDIM ; k++) // square of the

da2 += da[k] * da[k]; // pair-wise accel-
double mij = mass[i] + mass[j]; // eration between
da2 *= mij * mij; // particles i and j

coll_est_q = r2/da2;
if (coll_time_q > coll_est_q)

coll_time_q = coll_est_q;

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 11

}
} // from q for quartic back
coll_time = sqrt(sqrt(coll_time_q)); // to linear collision time

}

Taking the corrector step

void correct_step(real pos[][NDIM], real vel[][NDIM],
const real acc[][NDIM], const real jerk[][NDIM],
const real old_pos[][NDIM], const real old_vel[][NDIM],
const real old_acc[][NDIM], const real old_jerk[][NDIM],
int n, real dt)

{
for (int i = 0; i < n ; i++)

for (int k = 0; k < NDIM ; k++){
vel[i][k] = old_vel[i][k] + (old_acc[i][k] + acc[i][k])*dt/2

+ (old_jerk[i][k] - jerk[i][k])*dt*dt/12;
pos[i][k] = old_pos[i][k] + (old_vel[i][k] + vel[i][k])*dt/2

+ (old_acc[i][k] - acc[i][k])*dt*dt/12;
}

}

Steering the calculation

The evolve function steers the calculation using the functions described above.

void evolve(const real mass[], real pos[][NDIM], real vel[][NDIM],

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 12

int n, real & t, real dt_param, real dt_dia, real dt_out,
real dt_tot, bool init_out, bool x_flag)

{
cerr << "Starting a Hermite integration for a " << n

<< "-body system,\n from time t = " << t
<< " with time step control parameter dt_param = " << dt_param
<< " until time " << t + dt_tot
<< " ,\n with diagnostics output interval dt_dia = "
<< dt_dia << ",\n and snapshot output interval dt_out = "
<< dt_out << "." << endl;

real (* acc)[NDIM] = new real[n][NDIM]; // accelerations and jerks
real (* jerk)[NDIM] = new real[n][NDIM]; // for all particles
real epot; // potential energy of the n-body system
real coll_time; // collision (close encounter) time scale

get_acc_jerk_pot_coll(mass, pos, vel, acc, jerk, n, epot, coll_time);

int nsteps = 0; // number of integration time steps completed
real einit; // initial total energy of the system

write_diagnostics(mass, pos, vel, acc, jerk, n, t, epot, nsteps, einit,
true, x_flag);

if (init_out) // flag for initial output
put_snapshot(mass, pos, vel, n, t);

real t_dia = t + dt_dia; // next time for diagnostics output
real t_out = t + dt_out; // next time for snapshot output
real t_end = t + dt_tot; // final time, to finish the integration

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 13

while (true){
while (t < t_dia && t < t_out && t < t_end){

real dt = dt_param * coll_time;
evolve_step(mass, pos, vel, acc, jerk, n, t, dt, epot, coll_time);
nsteps++;

}
if (t >= t_dia){

write_diagnostics(mass, pos, vel, acc, jerk, n, t, epot, nsteps,
einit, false, x_flag);

t_dia += dt_dia;
}
if (t >= t_out){

put_snapshot(mass, pos, vel, n, t);
t_out += dt_out;

}
if (t >= t_end)

break;
}

delete[] acc;
delete[] jerk;

}

The remaining functions in the program are:

• get snapshot reads an initial configuration of particles

• put snapshot write the current configuration of particles

PHY 411-506 Computational Physics II Friday January 24, 2003

Topic 2 The N-Body Problem 14

• read options parses parameters specified by the user on the command line

• write diagnostics writes more detailed output including the total and potential energies, etc.

PHY 411-506 Computational Physics II Friday January 24, 2003

