
Topic 4 Quantum Monte Carlo Methods 1

Diffusion Monte Carlo

We have seen that the diffusion and Fokker-Planck equations can be solved using random walks to generate
any desired trial wave function.

Connection with quantum mechanics

Consider the time-dependent Schrödinger equation for a free particle moving in one dimensions:

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m
∂2ψ(x, t)

∂x2 ,

where m is the mass of the particle. This equation can be written

∂ψ(x, t)
∂t

=
ih̄
2m

∂2ψ(x, t)
∂x2 = γim

∂2ψ(x, t)
∂x2 ,

which is exactly of the form of a diffusion equation, but with and imaginary diffusion constant

γim =
ih̄
2m

.

Another way to write this equation with a real diffusion constant is to analytically continue the time t → −iτ to
imaginary values:

∂ψ(x, τ)
∂τ

=
h̄

2m
∂2ψ(x, τ)

∂x2 .

Thus the motion of a quantum particle is equivalent to diffusion of a cloud of particles in imaginary time!

Diffusion leads the system into its ground state

Any initial wave function of the system can be expanded in a complete set of energy eigenfunctions:

Ψ(x, 0) =
∞
∑

n=0

cnψn(x) .

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 2

The solution of the real time Schrödinger equation is then

Ψ(x, t) =
∞
∑

n=0

cne−iEnt/h̄ψn(x) .

The solution of the imaginary time equation is got by analytically continuing this solution to imaginary time
t → −iτ :

Ψ(x, τ) =
∞
∑

n=0

cne−Enτ/h̄ψn(x) .

As τ → ∞, each mode in this equation is exponentially damped, with higher energies damped faster than lower
energies. The ground state wave function can be extracted using the following limit:

lim
τ→∞

eE0τ/h̄Ψ(x, τ) = lim
τ→∞

∑

n

cne−(En−E0)τ/h̄ψn(x) = c0ψ0(x) .

This result is the basis of the diffusion Monte Carlo approach.

Diffusion with a potential energy term

The equations considered above were for a free particle. A free particle is not very interesting, so let’s generalize
this approach to a particle moving in a potential V (x) for which the imaginary time equation to be solved is

∂ψ(x, τ)
∂τ

=
1
2

∂2ψ(x, τ)
∂x2 − V (x)ψ(x, τ) ,

where we have set h̄ = 1 and m = 1.

We have seen in the last lecture that if V = 0, then this equation can be solved using a Green’s function

ρ(y, τ) =
∫

dx G(x, y; τ)ρ(x, 0) , G(x, y; τ) =
1√
2πτ

e−(x−y)2/(2τ) ,

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 3

for the probability density ρ(x, τ) = |ψ(x, τ)|2. This solution preserves probability (or total number of particles in
the diffusion problem).

The problem with adding the potential energy term is that it spoils this conservation of probability. This can
be seen by neglecting the kinetic energy term:

∂ψ(x, τ)
∂τ

= −V (x)ψ(x, τ) , ψ(x, τ) = e−V (x)τψ(x, 0) ,

which implies that

lim
τ→∞

ψ(x, τ) =







0 where V (x) > 0
ψ(x, 0) where V (x) = 0
∞ where V (x) < 0

Depending on the potential, the net probability
∫

dx |ψ(x, τ)|2 could go to zero or to infinity!

In the diffusion Monte Carlo method, this problem with the potential energy term is solved by modifying the
equation as follows:

∂ψ(x, τ)
∂τ

=
1
2

∂2ψ(x, τ)
∂x2 − (V (x)− ET)ψ(x, τ) ,

where the quantity ET is adjusted as a function of τ so that the probability (number of walkers in the diffusion
approach) remains constant. If in the limit τ → ∞ the solution ψ(x, τ) → ψ(x) becomes independent of τ , i.e.,
∂ψ/∂τ = 0, then

−1
2

d2ψ(x)
dx2 + V (x)ψ(x) = ETψ(x) ,

that is, ψ(x, τ) tends to an eigenfunction of the quantum mechanical problem, and ET is the energy eigenvalue!

Diffusion Monte Carlo algorithm

The DMC algorithm is based on the ideas that the kinetic energy term can be represented by diffusion of
random walkers, and the potential energy causes the number of walkers at a given point x to grow or decay. A
simple form of the algorithm is as follows:

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 4

• Initialization: Choose a time step ∆τ and a target number NT of random walkers which are randomly located
in a region where the wave function is expected to be large. Also choose a value for the parameter ET.

• Time Step: The following two operations are carried out on each of the current number N of walkers:

◦ Diffusion Step: The kinetic energy shifts the walker to a new position with a step chosen at random
from a Gaussian distribution with variance ∆t, exactly as in the case of a free particle.

◦ Branching Step: The potential energy, modified by the ET parameter, causes a growth or decay in the
number of walkers. This effect is implemented by computing

q = e−∆τ [V (x)−ET] .

The value of q determines whether this walker dies, survives, or is cloned. Note that q > 0. Let bqc be
its integer part. Then q − bqc lies between 0 and 1. The walker is replaced with bqc identical copies with
probability 1− (q − bqc) and bqc+ 1 copies with probability q − bqc.

• Adjusting the value of ET: At the end of the time step, the number of walkers N will have changed due to
branching. If N > NT, then we need to increase ET which will tend to reduce q and hence tend to kill walkers.
Conversely, if N < NT, then reducing ET will increase q and hence tend to generate more clones. The textbook
suggests

ET −→ ET + α ln
(

NT

N

)

,

where α is a small positive parameter.

Diffusion Monte Carlo program for the 3-D harmonic oscillator

The following program implements the DMC algorithm outlined above for the 3-D harmonic oscillator which
has ground state energy an wave function

E0 =
3
2

, ψ0 =
e−r2/2

(2π)3/2 ,

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 5

using units with m = ω = h̄ = 1.

// Diffusion Monte Carlo program for the 3-D harmonic oscillator

#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include "rng.h"

using namespace std;

int seed = -987654321; // for ran2 and gasdev
const int DIM = 3; // dimensionality of space

Potential energy function

This function evaluates the potential energy of the harmonic oscillator in D dimensions given the position r of
the oscillator.

double V(double *r) { // harmonic oscillator in DIM dimensions
double rSqd = 0;
for (int d = 0; d < DIM; d++)

rSqd += r[d] * r[d];
return 0.5 * rSqd;

}

double dt; // Delta_t set by user
double E_T; // target energy

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 6

// random walkers
int N; // current number of walkers
int N_T; // desired target number of walkers
double **r; // x,y,z positions of walkers
bool *alive; // is this walker alive?

Dynamical adjustment of array storage

Since the number of walkers N will change with time, we can either allocated large-enough arrays to accomodate
this growth, or we can grow the arrays dynamically if necessary while the program is running. The following function
is called when the N might have changed and we wish to check whether an index is legal. If the array is too small
to accomodate that index, it is replaced with a larger array with the values of the original elements preserved.

void ensureCapacity(int index) {

static int maxN = 0; // remember the size of the array

if (index < maxN) // no need to expand array
return; // do nothing

int oldMaxN = maxN; // remember the old capacity
if (maxN > 0)

maxN *= 2; // double capacity
else

maxN = 1;
if (index > maxN - 1) // if this is not sufficient

maxN = index + 1; // increase it so it is sufficient

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 7

// allocate new storage
double **rNew = new double* [maxN];
bool *newAlive = new bool [maxN];
for (int n = 0; n < maxN; n++) {

rNew[n] = new double [DIM];
if (n < oldMaxN) { // copy old values into new arrays

for (int d = 0; d < DIM; d++)
rNew[n][d] = r[n][d];

newAlive[n] = alive[n];
delete [] r[n]; // release old memory

}
}
delete [] r; // release old memory
r = rNew; // point r to the new memory
delete [] alive;
alive = newAlive;

}

We need to measure the energy, its variance, and the wave function of the ground state.

// observables
double ESum; // accumulator for energy
double ESqdSum; // accumulator for variance
double rMax = 4; // max value of r to measure psi
const int NPSI = 100; // number of bins for wave function
double psi[NPSI]; // wave function histogram

void zeroAccumulators() {
ESum = ESqdSum = 0;

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 8

for (int i = 0; i < NPSI; i++)
psi[i] = 0;

}

void initialize() {
N = N_T; // set N to target number specified by user
for (int n = 0; n < N; n++) {

ensureCapacity(n);
for (int d = 0; d < DIM; d++)

r[n][d] = ran2(seed) - 0.5;
alive[n] = true;

}
zeroAccumulators();
E_T = 0; // initial guess for the ground state energy

}

One Diffusion Monte Carlo step

The following function implements the Diffusion Monte Carlo step algorithm on a particular walker. Recall
that

• A Gaussian diffusive step is taken with step size
√

∆t.

• A branching step is implemented with the walker dying, surviving or being cloned, depending on its potential
energy.

void oneMonteCarloStep(int n) {

// Diffusive step
for (int d = 0; d < DIM; d++)

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 9

r[n][d] += gasdev(seed) * sqrt(dt);

// Branching step
double q = exp(- dt * (V(r[n]) - E_T));
int survivors = int(q);
if (q - survivors > ran2(seed))

++survivors;

// append survivors-1 copies of the walker to the end of the array
for (int i = 0; i < survivors - 1; i++) {

ensureCapacity(N);
for (int d = 0; d < DIM; d++)

r[N][d] = r[n][d];
alive[N] = true;
++N;

}

// if survivors is zero, then kill the walker
if (survivors == 0)

alive[n] = false;
}

One time step ∆t

One time step ∆t consists in the following:

• One DMC step is performed on each walker in turn.

• To make the living walkers easier to access, dead walkers are removed from the arrays.

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 10

• ET is adjusted to drive N towards NT.

• Data is accumulated to measure 〈E〉, its variance, and the ground state wave function.

void oneTimeStep() {

// DMC step for each walker
int N_0 = N;
for (int n = 0; n < N_0; n++)

oneMonteCarloStep(n);

// remove all dead walkers from the arrays
int newN = 0;
for (int n = 0; n < N; n++)
if (alive[n]) {

if (n != newN) {
for (int d = 0; d < DIM; d++)

r[newN][d] = r[n][d];
alive[newN] = true;

}
++newN;

}
N = newN;

// adjust E_T
E_T += log(N_T / double(N)) / 10;

// measure energy, wave function
ESum += E_T;
ESqdSum += E_T * E_T;

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 11

for (int n = 0; n < N; n++) {
double rSqd = 0;
for (int d = 0; d < DIM; d++)

rSqd = r[n][d] * r[n][d];
int i = int(sqrt(rSqd) / rMax * NPSI);
if (i < NPSI)

psi[i] += 1;
}

}

The main function to steer the calculation

The user specifies the number of walkers, the time step size, and number of time steps. After initialization,
20% of the specified number of time steps are run to equilibrate the walkers. Then the production steps are taken.
The Monte Carlo wave function and the exact wave function, both normalized unity in the plotting interval, are
output to a file.

int main() {

cout << " Diffusion Monte Carlo for the 3-D Harmonic Oscillator\n"
<< " ---\n";

cout << " Enter desired target number of walkers: ";
cin >> N_T;
cout << " Enter time step dt: ";
cin >> dt;
cout << " Enter total number of time steps: ";
int timeSteps;
cin >> timeSteps;

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 12

initialize();

// do 20% of timeSteps as thermalization steps
int thermSteps = int(0.2 * timeSteps);
for (int i = 0; i < thermSteps; i++)

oneTimeStep();

// production steps
zeroAccumulators();
for (int i = 0; i < timeSteps; i++) {

oneTimeStep();
}

// compute averages
double EAve = ESum / timeSteps;
double EVar = ESqdSum / timeSteps - EAve * EAve;
cout << " <E> = " << EAve << " +/- " << sqrt(EVar / timeSteps) << endl;
cout << " <E^2> - <E>^2 = " << EVar << endl;
double psiNorm = 0, psiExactNorm = 0;
double dr = rMax / NPSI;
for (int i = 0; i < NPSI; i++) {

double r = i * dr;
psiNorm += r * r * psi[i] * psi[i];
psiExactNorm += r * r * exp(- r * r);

}
psiNorm = sqrt(psiNorm);
psiExactNorm = sqrt(psiExactNorm);
ofstream file("psi.data");
for (int i = 0; i < NPSI; i++) {

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 13

double r = i * dr;
file << r << ’\t’ << r * r * psi[i] / psiNorm << ’\t’

<< r * r * exp(- r * r / 2) / psiExactNorm << ’\n’;
}
file.close();

}

Output of the program

Diffusion Monte Carlo for the 3-D Harmonic Oscillator

Enter desired target number of walkers: 300
Enter time step dt: 0.05
Enter total number of time steps: 4000
<E> = 1.49113 +/- 0.0127478
<E^2> - <E>^2 = 0.650031

PHY 411-506 Computational Physics II Wednesday March 5, 2003

Topic 4 Quantum Monte Carlo Methods 14

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

r^
2

ps
i(r

)

�

r

DMC wave function for 3-D Harmonic Oscillator

Monte Carlo
Exact

PHY 411-506 Computational Physics II Wednesday March 5, 2003

