
Topic 1 Molecular Dynamics 1

Molecular Dynamics Simulation of Argon

Molecular Dynamics (MD) is widely used to simulate many-particle systems ranging from solids, liquids, gases,
and biomolecules on Earth, to the motion of stars and galaxies in the Universe.

Newton’s equations of motion for the system are integrated numerically. If the system is in equilibirium, static
properties such as temperature and pressure are measured as averages over time. Dynamical properties such as heat
transport, or relaxation of systems far from equilibrium, can also be studied.

The fundamental work on this problem was done by A. Rahman, Phys. Rev. 136, A405 (1964). It was extended
in many important ways by L. Verlet, Phys. Rev. 159, 98 (1967), who introduced the Verlet algorithm and the use
of a neighbor list to speed up the calculation.

Simple model of interacting Argon atoms

Consider N atoms of argon each with mass m = 6.69× 10−26 kg. Argon is an inert gas: argons atoms behave
approximately like hard spheres which attract one another with weak van der Waals forces. The forces between two
argon atoms can be approximated quite well by a Lennard-Jones potential energy function:

U(r) = ε
[

(σ
r

)12
− 2

(σ
r

)6
]

,

where r is the distance between the centers of the two atoms, ε/kB = 119.8 K is the strength of the potential energy,
and σ = 3.822 × 10−10 m is the value of r at which the energy is zero. The potential has its minimum U(σ) = −ε
at r = σ.

The shape of the potential and the strength of the Lennard-Jones force

F (r) = −dU(r)
dr

=
12ε
σ

[

(σ
r

)13
−

(σ
r

)7
]

,

are shown in the following figure:

PHY 411-506 Computational Physics II Wednesday January 15, 2003



Topic 1 Molecular Dynamics 2

-3

-2

-1

0

1

2

3

4

5

6

0.5 1 1.5 2 2.5

V
(r

),
 F

(r
)

r

Lennard-Jones Potential and Force

’Potential’
’Force’

We will choose units of mass, length and energy so that m = 1, σ = 1, and ε = 1. The unit of time in this
system is given by

τ =

√

mσ2

ε
= 2.43× 10−12 s ,

which shows that the natural time scale for the dynamics of this system is a few picoseconds!

A simple MD program

PHY 411-506 Computational Physics II Wednesday January 15, 2003



Topic 1 Molecular Dynamics 3

First include some standard headers

#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

Define data structures to describe the kinematics of the system

const int N = 64; // number of particles
double r[N][3]; // positions
double v[N][3]; // velocities
double a[N][3]; // accelerations

We next need to set the initial positions and velocities of the particles. This is actually a complicated problem!
Because the system can be simulated only for a few nanoseconds, the starting configuration must be very close to
equilibrium to get good results. For a dense system, the atoms are usually placed at the vertices of a face-centered
cubic lattice, which is tends to minimize the potential energy. The atoms are also given random velocities to
approximate the desired temerature.

In this preliminary program we will put the system in a cubical volume of side L and place the particles at the
vertices of a simple cubic lattice:

double L = 10; // linear size of cubical volume
double vMax = 0.1; // maximum initial velocity component

PHY 411-506 Computational Physics II Wednesday January 15, 2003



Topic 1 Molecular Dynamics 4

void initialize() {

// initialize positions
int n = int(ceil(pow(N, 1.0/3))); // number of atoms in each direction
double a = L / n; // lattice spacing
int p = 0; // particles placed so far
for (int x = 0; x < n; x++)

for (int y = 0; y < n; y++)
for (int z = 0; z < n; z++) {

if (p < N) {
r[p][0] = (x + 0.5) * a;
r[p][1] = (y + 0.5) * a;
r[p][2] = (z + 0.5) * a;

}
++p;

}

// initialize velocities
for (int p = 0; p < N; p++)

for (int i = 0; i < 3; i++)
v[p][i] = vMax * (2 * rand() / double(RAND_MAX) - 1);

}

Newton’s Equations of Motion

The vector forces between atoms with positions ri and rj are given by

Fon i by j = −Fon j by i = 12(ri − rj)

[

(

1
r

)−14

−
(

1
r

)−8
]

,

PHY 411-506 Computational Physics II Wednesday January 15, 2003



Topic 1 Molecular Dynamics 5

where r = |ri − rj |.
The net force on atom i due to all of the other N − 1 atoms is given by

Fi =
N

∑

j=1
j 6=i

Fon i by j .

The equation of motion for atom i is

ai(t) ≡
dvi(t)

dt
=

d2ri(t)
dt2

=
Fi

m
,

where vi and ai are the velocity and acceleration of atom i. These 3N second order ordinary differential equations
(ODE’s) have a unique solution as function of time t if initial conditions, that is, the values of positions ri(t0) and
velocities vi(t0) of the particles are specified at some initial time t0. The equations can be integrated numerically
by choosing a small time step h and a discrete approximation to the equations to advance the solution by one step
at a time.

The following function computes the accelerations of the particles from their current positions:

void computeAccelerations() {

for (int i = 0; i < N; i++) // set all accelerations to zero
for (int k = 0; k < 3; k++)

a[i][k] = 0;

for (int i = 0; i < N-1; i++) // loop over all distinct pairs i,j
for (int j = i+1; j < N; j++) {

double rij[3]; // position of i relative to j
double rSqd = 0;
for (int k = 0; k < 3; k++) {

PHY 411-506 Computational Physics II Wednesday January 15, 2003



Topic 1 Molecular Dynamics 6

rij[k] = r[i][k] - r[j][k];
rSqd += rij[k] * rij[k];

}
double f = 12 * (pow(rSqd, -7) - pow(rSqd, -4));
for (int k = 0; k < 3; k++) {

a[i][k] += rij[k] * f;
a[j][k] -= rij[k] * f;

}
}

}

Velocity Verlet Integration Algorithm

There are many algorithms which can be used to solve ODE’s. Verlet has developed several algorithms which
are very widely used in MD simulations. One of them is the velocity Verlet algorithm

ri(t + dt) = ri(t) + vi(t)dt +
1
2
ai(t)dt2

vi(t + dt) = vi(t) +
1
2
[ai(t + dt) + ai(t)]dt

It can be shown that the errors in this algorithm are of O(dt4), and that it is very stable in MD applications
and in particular conserves energy very well.

The following function advances the positions and velocities of the particles by one time step:

void velocityVerlet(double dt) {
computeAccelerations();
for (int i = 0; i < N; i++)

PHY 411-506 Computational Physics II Wednesday January 15, 2003



Topic 1 Molecular Dynamics 7

for (int k = 0; k < 3; k++) {
r[i][k] += v[i][k] * dt + 0.5 * a[i][k] * dt * dt;
v[i][k] += 0.5 * a[i][k] * dt;

}
computeAccelerations();
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++)
v[i][k] += 0.5 * a[i][k] * dt;

}

The instantaneous temperature

This is a simulation in which the number of particles N and the volume L3 of the system are fixed. Because
the Lennard-Jones force is conservative, the total energy of the system is also constant.

If the system is in thermal equilibrium, then Boltzmann’s Equipartition Theorem relates the absolute temper-
ature T to the kinetic energy:

3(N − 1)× 1
2
kBT =

〈

m
2

N
∑

i=1

v2
i

〉

.

Here the angle brackets 〈...〉 represent a thermal ensemble average. The factor 3(N − 1) is the number of internal
translational degrees of freedom which contribute to thermal motion: the motion of the center of mass of the system
does not represent thermal energy!

double instantaneousTemperature() {
double sum = 0;
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++)
sum += v[i][k] * v[i][k];

PHY 411-506 Computational Physics II Wednesday January 15, 2003



Topic 1 Molecular Dynamics 8

return sum / (3 * (N - 1));
}

Finally, here is the main function which steers the simulation:

int main() {
initialize();
double dt = 0.01;
ofstream file("T.data");
for (int i = 0; i < 1000; i++) {

velocityVerlet(dt);
file << instantaneousTemperature() << ’\n’;

}
file.close();

}

There are several ways in which this simple program needs to be improved:

• The volume is not really constant because the particles can move out of it! We need to impose suitable boundary
conditions, for example periodic boundary conditions.

• The initial positions and velocities need to be chosen more carefully. We will place the particles on a face-
centered cubic lattice, and use a Maxwell-Boltzmann distribution for the velocities.

• The system needs to be allowed to come to thermal equilibrium at the desired temperature.

• Thermal averages of various quantities need to be measured.

The next version of the program will include these improvements.

PHY 411-506 Computational Physics II Wednesday January 15, 2003


