
Topic 3 Monte Carlo Methods 1

Random Numbers and Monte Carlo Methods

Methods which make use of random numbers are often called Monte Carlo Methods after the Casino Monte
Carlo in Monaco which has long been famous for games of chance.

Monte Carlo methods are useful in:

• Simulation: Random numbers are used to simulate natural phenomena. In nuclear physics, neutrons moving
through a reactor are subject to random collisions. In operations research, people enter an airport at random
intervals of time.

• Sampling: When it is not possible to examine all possible cases, typical cases chosen “at random” can be
useful in characterizing properties of the system.

• Numerical analysis: Many very complicated numerical problems can be solved approximately using random
numbers.

• Computer programming: Random input data is often used to test computer programs.

• Decision making: Random numbers are often used to construct optimal playing strategies in the theory of
games.

• Recreation: Many computer games make essential use of random numbers.

Random numbers

There is no such thing as one random number. A number has a definite value: there is no randomness associated
with it.

When we talk about random numbers, we mean a sequence of numbers xi chosen from a set according to some
probability distribution P (x). In a truly random sequence, xi does not depend on (i.e., cannot be predicted from)
the previous values xj , j < i.

A simple example is provided by tosses of a coin. The set has two members, heads (H) and tails (T). The
probability distribution is P (H) = P (T) = 1

2 . Given a sequence of coin tosses H, H, T,H, T, H , the next toss cannot

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 2

be predicted: it is equally likely to be heads or tails.

Uniform deviates

A sequence of uniform random deviates is one chosen from the set of real numbers in the interval [0, 1) with
constant probability

P (x)dx =
{

dx if 0 ≤ x < 1
0 otherwise

This is a very basic type of random sequence which can be used to generate more complicated sequences with non-
uniform probability distributions. For example, if xi are uniform deviates, then yi = −λ log(1−xi) are exponentially
distributed in [0,∞) with probability

P (y)dy =
1
λ

e−y/λdy .

Pseudo random number generators

Suppose that we need a sequence of uniform deviates in the form of random double’s in a numerical application.
We can obtain such a sequence using coin tosses as follows: Toss a coin 32 times and construct an unsigned long
int by filling the 32 bit positions with 0 for heads and 1 for tails. This provides a random integer xi in the range
[0, 232 = 4294967296) chosen with uniform probability P (x) = 1

4294967296.0 . The sequence xiP (xi) provides uniform
random deviates.

The problem with this algorithm is that it is too slow for practical calculations!

A faster way of generating such a sequence is to use a deterministic computer program. The following alogithm
from Numerical Recipes is coded in a header file called rng.h which can be included in application programs:

// Random Number Generators from "Numerical Recipes"

#ifndef RNG_H_DEFINED
#define RNG_H_DEFINED

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 3

// Quick and dirty random number generator
// returns a uniform deviate in the interval [0,1)
// To seed the generator, reset qadseed
unsigned long qadseed = 123456789;
inline double qadran () {

qadseed = qadseed*1664525L + 1013904223L;
return qadseed/4294967296.0;

}

This code uses a linear congruential generator. Given a seed x0 and fixed integers m (modulus), a (multiplier),
and c (increment), a uniform random sequence of integers in the range [0,m) is constructed using the recurrence
relation

xi = (axi−1 + c) mod m.

Note that this deterministic algorithm violates the essential property of true random numbers, namely xi cannot
be predicated in advance from the value of xi−1. Such a sequence is called pseudo-random.

Another property of a deterministic pseudo-random sequence is that it is periodic with maximum period equal
to the cardinality (number of distinct members) of the set. For the linear congruential algorithm, the set comprises
the integers 0, 1, 2, . . . , m−1 and the cardinality is the modulus m. By contrast, a true random sequence does not
have a finite period: the cardinality of the set of coin toss outcomes is 2, but a sequence of coin tosses has period
∞.

A good pseudo-random sequence is one which gives approximately the same results as a true random sequence
when used in a particular application. Much research has been done, and continues to be done, on finding good
pseudo-random algorithms for various applications.

A cleaner random number generator from Numerical Recipes

Chapter 7 of Numerical Recipes recommends several random number generators with good properties. The

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 4

code for ran2 is included in the header file rng.h:

// Long period >2x10^18 random number generator of L’Ecuyer with
// Bays-Durham shuffle. Return a uniform deviate in the interval (0,1).
// Call with int variable as argument set to a negative value, and
// don’t this variable variable unless you want to reseed the generator

double ran2 (int& idum) {
const int IM1 = 2147483563, IM2 = 2147483399;
const double AM=(1.0/IM1);
const int IMM1 = IM1-1;
const int IA1 = 40014, IA2 = 40692, IQ1 = 53668, IQ2 = 52774;
const int IR1 = 12211, IR2 = 3791, NTAB = 32;
const int NDIV = 1+IMM1/NTAB;
const double EPS = 3.0e-16, RNMX = 1.0-EPS;

int j, k;
static int idum2=123456789, iy = 0;
static int iv[NTAB];
double temp;

if (idum <= 0) {
idum = (idum == 0 ? 1 : -idum);
idum2=idum;
for (j=NTAB+7;j>=0;j--) {

k=idum/IQ1;
idum=IA1*(idum-k*IQ1)-k*IR1;
if (idum < 0) idum += IM1;

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 5

if (j < NTAB) iv[j] = idum;
}
iy=iv[0];

}
k=idum/IQ1;
idum=IA1*(idum-k*IQ1)-k*IR1;
if (idum < 0) idum += IM1;
k=idum2/IQ2;
idum2=IA2*(idum2-k*IQ2)-k*IR2;
if (idum2 < 0) idum2 += IM2;
j=iy/NDIV;
iy=iv[j]-idum2;
iv[j] = idum;
if (iy < 1) iy += IMM1;
if ((temp=AM*iy) > RNMX) return RNMX;
else return temp;

}

Gaussian deviates using the Box-Muller algorithm

Gaussian deviates are random numbers on the interval (−∞,∞) distributed according to the probability

P (x)dx =
1√
2π

e−x2/2dx .

This is a Gaussian with mean 〈x〉 = 0 and unit variance
〈

(x− 〈x〉)2
〉

= 1.

The Box-Muller algorithm is based on a product of two such Gaussians

P (x)dx P (y)dy =
1
2π

e−(x2+y2)/2dxdy = re−r2/2dr
dθ
2π

,

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 6

where
x = r cos θ , y = r sin θ .

Make a change of variable

u =
1
2
r2 , re−r2/2dr = e−udu .

Thus we have a product of an exponential distribution in u and a uniform distribution in θ.

The following code from Numerical Recipes implements this algorithm: as follows:

• Generate a point (v1, v2) chosen at random inside a circle of unit radius with the origin excluded. This is done
in a loop:

◦ Generate a point uniformly and randomly inside a square −1 < v1 < 1, −1 < v2 < 1. This is done by
stretching and shifting a uniform deviate with the algorithm 2.0*ran2(idum)-1.0.

◦ Repeat the above step until 0 < v2 < 1.

Such points are obviously distributed uniformly in the angle θ = tan−1(v2/v1).

• These points are distributed with probability

2πv dv
π × 12 = 2v dv = dv2

i.e., uniformly in 0 < v2 < 1. Then u = − log v2 will be distributed exponentially in (0,∞). The desired
Gaussian points are recovered by scaling

(x, y) = r ×
(

v1√
v2

,
v2√
v2

)

=

√

2u
v2 × (v1, v2) =

√

−2 log v2

v2 × (v1, v2) .

#include <cmath>

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 7

// Returns a normally distributed deviate with zero mean and unit variance

double gasdev (int& idum) {
static int iset = 0;
static double gset;
double fac, rsq, v1, v2;
if (idum < 0) iset = 0;
if (iset == 0) {

do {
v1 = 2.0*ran2(idum)-1.0;
v2 = 2.0*ran2(idum)-1.0;
rsq = v1*v1 + v2*v2;

} while (rsq >= 1.0 || rsq == 0.0);
fac = std::sqrt(-2.0*std::log(rsq)/rsq);
gset = v1*fac;
iset = 1;
return v2*fac;

} else {
iset = 0;
return gset;

}
}

#endif /* RNG_H_DEFINED */

Note that each call to gasdev generates two independent gaussian deviates: one of these is returned to the
caller, and the other is saved for the next call to the function.

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 8

Monte Carlo integration

The simplest Monte Carlo algorithm to estimate a one-dimensional integral is:

I =
∫ b

a
dx f(x) ' b− a

N

N
∑

n=1

f(xi) ,

where xn, n = 1 . . . N is a sequence of N uniformly distributed random numbers in the interval [a, b].

It is important to estimate the error in this result. One way of doing this is to repeat the “measurement” many
times. If we use independent random number sequences for each measurement we will obtain a different result each
time:

Im =
b− a
N

N
∑

n=1

f(xm,n) , m = 1 . . . M ,

where xm,n, n = 1 . . . N is the m-th sequence of random numbers. Just like is done in a real experiment, the error
in a measurment repeated many times is estimated as the standard deviation from the mean

σM =

√

√

√

√
1
M

M
∑

m=1

I2
m −

(

1
M

M
∑

m=1

Im

)2

=

√

√

√

√
1
M

M
∑

m=1

(

Im − 1
M

M
∑

m′=1

Im′

)2

.

Let’s denote the average of all M ×N function evaluations as

f̄ =
1

MN

M
∑

m=1

N
∑

n=1

f(xm,n) ,

and let the deviation from this average be denoted

δfm,n = f(xm,n)− f̄ .

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 9

Then we can write

σ2
M =

(b− a)2

MN2

M
∑

m=1

(

N
∑

n=1

δfm,n

)2

=
(b− a)2

MN2

M
∑

m=1

(

N
∑

n=1

δfm,n

)(

N
∑

n′=1

δfm,n′

)

We divide the double sum over n, n′ into two sets of terms, the first in which n = n′ and the second in which n 6= n′.
Consider first the terms with n 6= n′ which involves:

N
∑

n=1

N
∑

n′ 6=n

M
∑

m=1

δfm,nδfm,n′ .

Since the deviations δfm,n and δfm,n′ are independent and randomly distributed around zero, the sum will vanish,
or strictly speaking be of O(1/

√

MN(N − 1)/2). The terms with n = n′ however are all positive:

σ2
M =

(b− a)2

MN2

M
∑

m=1

N
∑

n=1

δf2
m,n =

(b− a)2

N

[

1
MN

M
∑

m=1

N
∑

n=1

δf2
m,n

]

=
(b− a)2

N
σ2

f ,

where

σ2
f = f2 − (f̄)2 =

1
MN

M
∑

m=1

N
∑

n=1

f(xm,n)2 −

(

1
MN

M
∑

m=1

N
∑

n=1

f(xm,n)

)2

.

Thus, the simple Monte Carlo result with error estimate is

I =
∫ b

a
dx f(x) ' (b− a)

[

1
N

N
∑

n=1

f(xi)±
σf√
N

]

.

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 10

Example: computing π in 1 dimension

Consider the integral
∫ 1

0

dx
1 + x2 = tan−1(1)− tan−1(0) =

π
4

.

The following program pi.cpp evaluates this integral using the simple Monte Carlo algorithm and estimates the
error in two different ways:

• using the Monte Carlo error estimate
(b− a)σf√

N
,

for a single trial with N integration points, and

• repeating the trial M times and computing the mean and standard deviation from the mean.

// Monte Carlo integration in 1 dimension

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

#include "rng.h"

const double pi = 4*atan(1.0);
double a = 0, b = 1;
double f (double x) {

return 4/(1+x*x);
}

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 11

int main () {
cout << "Enter number of integration points N: ";
int N;
cin >> N;
cout << "Enter number of trials M: ";
int M;
cin >> M;
cout << "Enter negative integer seed to initialize ran2: ";
int seed;
cin >> seed;
double I_M = 0, sigma_M = 0, sigmaAverage = 0;
cout << " Trial " << "Integral "

<< "MC Error " << "Actual Error" << "\n ";
for (int i = 0; i < 50; i++) cout << ’-’; cout << endl;
for (int m = 1; m <= M; m++) {

double I = 0, sigma = 0;
for (int n = 1; n <= N; n++) {

double x = a + (b-a)*ran2(seed);
double fx = f(x);
I += fx;
sigma += fx*fx;

}
I /= N;
sigma /= N;
sigma -= I*I;
I *= b-a;
sigma = (b-a)*sqrt(sigma/N);
cout.setf(ios::left);

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 12

cout << ’ ’ << setw(8) << m << setw(15) << I
<< setw(15) << sigma << I-pi << endl;

I_M += I;
sigma_M += I*I;
sigmaAverage += sigma;

}
cout << " ";
for (int i = 0; i < 50; i++) cout << ’-’; cout << endl;
I_M /= M;
sigma_M /= M;
sigma_M -= I_M*I_M;
sigma_M = sqrt(sigma_M);
sigmaAverage /= M;
cout << " Average " << setw(15) << I_M << setw(15) << sigmaAverage

<< setw(15) << I_M-pi << ’\n’
<< " Standard Deviation " << sigma_M << ’\n’
<< " (Std. Dev.)/sqrt(M) " << sigma_M/sqrt(double(M)) << "\n ";

for (int i = 0; i < 50; i++) cout << ’-’; cout << endl;
}

The two error estimates should agree if the integration points are genuinely random. The output of the program
is shown on the next page. Note that

• The Monte Carlo error estimates for each trial are in the ballpark of 0.0020 with an average of 0.00203415. The
standard deviation error estimate of 0.0025356 is consitent with the average Monte Carlo error estimate.

• The average of the actual errors over the 10 trials has magnitude 0.0000931473, which is somewhat smaller than
the standard deviation estimate divided by

√
10 = 0.000801829. This is an anomaly. With a larger number of

trials, these two estimates are also generally consistent.

PHY 411-506 Computational Physics II Friday February 7, 2003

Topic 3 Monte Carlo Methods 13

Enter number of integration points N: 100000
Enter number of trials M: 10
Enter negative integer seed to initialize ran2: -78903
Trial Integral MC Error Actual Error
--
1 3.14295 0.00203401 0.00136188
2 3.14646 0.0020283 0.00487098
3 3.14371 0.00202878 0.00212204
4 3.13896 0.00204009 -0.00263496
5 3.14179 0.00203735 0.000193409
6 3.14032 0.00203623 -0.00126935
7 3.13847 0.0020362 -0.00312668
8 3.14382 0.00202985 0.00222704
9 3.13912 0.00203721 -0.00247249
10 3.13939 0.00203346 -0.00220335
--
Average 3.1415 0.00203415 -9.31473e-05
Standard Deviation 0.0025356
(Std. Dev.)/sqrt(M) 0.000801829
--

PHY 411-506 Computational Physics II Friday February 7, 2003

