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The Lattice Boltzmann Method (continued)

The Lattice Boltzmann Equation in the Bhatnagar-Gross-Krook approximation is

ni(r + ci, t + 1) = ni(r, t)−
ni − neq

i

τ
.

Here τ is a single relaxation time, and neq
i is the equilibrium configuration, which is given by

neq
i = ρwi

(

1 +
u · ci

c2
s

+
(u · ci)2 − c2

su
2

2c4
s

)

,

where cs is the speed of sound given by
∑

i

wi(ci)a(ci)b = δabc2
s ,

and wi are a set of directional weights normalized to unity. The discrete lattice velocities and weights are constrained
by conservation of mass, momentum, and angular momentum:

∑

i

neq
i = ρ ,

where ρ is the fluid density,
∑

i

neq
i ci = ρu ,

where u is the fluid velocity, and
∑

i

neq
i (ci)a(ci)b = ρ

[

(ui)a(ui)b + c2
sδab

]

.

The conservation laws imply the following conditions:
∑

i

wi = 1 ,
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∑

i

wici = 0 ,

∑

i

wi(ci)a(ci)b = Pδab ,

where P is the fluid pressure.

It can be shown that with these restriction the Navier-Stokes equations are obeyed with the fluid pressure given
by

P = ρc2
s ,

and the kinematic viscosity given by

ν = c2
s

(

1
ω
− δt

2

)

,

where ω = 1/τ is the relaxation frequency, and δt is the cellular automaton time step which we have choosen to be
δt = 1.

Choice of Discrete Velocities

The set of allowed velocites in the Lattice Boltzmann Models is restricted by conservation of mass and momen-
tum, and by rotational symmetry (isotropy). However, these restrictions turn out to be much less severe than in
the Lattice Gas Cellular Automaton Models.

The following table taken from Sauro Succi’s book gives some popular lattices. The weight of the velocity can
be thought of as the mass of the fluid particle. The magnitude of the velocity of the particle is determined such
that it moves to the the nearest lattice site in the direction of its velocity: this determines its kinetic energy.

The D1Q3 model has a 1-D lattice with one zero velocity and two oppositely directed velocities which move
the fluid particle to the left and right neighbor lattice sites. The D1Q5 model extends D1Q3 by moving particles to
the next-nearest neighbor sites in addition.
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Model c2 Energy Weight
D1Q3 1/3 0 4/6

1/2 1/6
D1Q5 1 0 6/12

1/2 2/12
2 1/12

D2Q9 1/3 0 16/36
1/2 4/36
1 1/36

D3Q15 1/3 0 16/72
1/2 8/72
3/2 1/72

D3Q19 1/3 0 12/36
1/2 2/36
1 1/36

The D2Q9 model is a 2-D lattice (D2) with 9 discrete velocities: 0, N, S, E, W, NE, NW, SE, SW.

The D3Q15 model is a 3-D lattice with 15 discrete velocities: 0, 6 towards face centers, and 8 towards vertices
of a cube.

The D3Q19 model is a 3-D lattice with 19 discrete velocities: 0, 6 velocities to the face centers, and 12 towards
edge centers of a cube.

Two-dimensional flow using the D2Q9 model

Dr. Sauro Succi’s program lbe.f simulates 2-D flow in a rectangular region. This program is translated in
lbe.cpp.

The discrete velocities are chosen according to the D2Q9 model is a 2-D lattice (D2) with 9 discrete velocities:
0, N, S, E, W, NE, NW, SE, SW. In the program, npop = 9 is this number of velocities.
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This velocites have

ci =

{ 0 for c = 0
1 for N, S, E, W√

2 for NE, NW, SE, SW
.

and weights

wi =







4
9 for c = 0
1
9 for N, S, E, W
1
36 for NE, NW, SE, SW

.

The speed of sound is given by

2c2
s = 1× 02 × 4

9
+ 4× 12 × 1

9
+ 4× (

√
2)2 × 1

36
=

2
3

.

We need to discuss some additional features of the Lattice Boltzmann Equation and its numerical implemen-
tation.

Boundary Conditions

Various types of boundary conditions are possible:

• Periodic boundary conditions are useful for modeling bulk systems because they tend to minimize finite size
edge effects.

• No-slip boundary conditions are appropriate for most fluids in contact with a wall.

• Frictional slip (or the limiting case of free-slip) boundary conditions may be appropriate for smooth boundaries
with small (or negligible) friction exerted on the flowing gas or liquid.

• Open inlets and outlets.

Periodic Boundary Conditions
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Boundary conditions are straightforward to derive once the model is specified. Consider the D2Q9 model with
a rectangular region. The discrete velocities are numbered as follows:

6 2 5

3 0 1

7 4 8

The boundary values at the West end of the region (x = 0, y) are implemented by transfering the densities with
positive x component of velocity from the East boundary (x = nx, y):

void pbc() {

// East
for (int j = 1; j <= ny; j++) {

n[1][0][j] = n[1][nx][j];
n[5][0][j] = n[5][nx][j];
n[8][0][j] = n[8][nx][j];

}

Note that it is only necessary to transfer three of the 9 densities that will then flow into the region.

No-slip Boundary Conditions

Let’s consider the North wall with lattice sites (x, y = ny + 1). The appropriate boundary conditions, which
will ensure that the fluid velocity at the wall is zero, are implemented as follows:
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void mbc() {

// North
for (int i = 1; i <= nx; i++) {

n[4][i][ny+1] = n[2][i][ny];
n[8][i][ny+1] = n[6][i][ny];
n[7][i][ny+1] = n[5][i][ny];

}

We only need to set the densities with negative y component of velocity, namely (4,7,8). The boundary
conditions are implemented by simply reversing these velocities. This fluid velocity normal to the wall is proportional
to

(n6 + n2 + n5)− (n7 + n4 + n8) = 0 .

The tangential fluid velocity component is proportional to

(n5 + n1 + n8)− (n6 + n3 + n7) = n1 − n3 .

Since the components n1,3 parallel to the wall do not change during the simulation, we can set n1 = n3 at the wall
initially so the parallel velocity component will remain zero.

Obstacle

Succi’s program also allows for a thin vertical obstacle with no-slip boundary conditions centered at (x =
nx/4, y = ny/2).

Poiseuille Flow Problem

This is viscous flow through a channel under the action of a pressure gradient. With no-slip boundary conditions
at the wall of the channel the flow develops a parabolic velocity profile which is stable up to Reynolds numbers of
about 2000.
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There is a problem with simulating Poiseuille flow using the Lattice Boltzmann Equation because the system
behaves like an ideal gas with equation of state

P = ρc2
s ,

where cs is the speed of sound. For the D2Q9 model c2
s = 1/3. In addition, the flow is incompressible with constant

ρ. Thus in equilibrium, the pressure P is constant and there cannot be a pressure gradient to drive the flow!

In a real incompressible fluid, the speed of sound is very large compared with the fluid velocity, and small
pressures gradients are consistent with almost constant density. But in the lattice model, the speed of sound is
comparable to the fluid velocity! A trick to simulate a constant pressure gradient is to introduce a body force which
transfers the same momentum to the fluid to overcome viscosity as would a pressure gradient. This is done in the
program as follows:

cs2 = 1.0 / 3.0; // speed of sound squared
visc = (1.0 / omega - 0.5) * cs2; // kinematic viscosity
fpois = 8.0 * visc * uf / ny / double(ny); // Poiseuille force
fpois = rho * fpois / 6;
for (int i = 1; i <= nx; i++)
for (int j = 1; j <= ny; j++) {

n[1][i][j] += fpois;
n[5][i][j] += fpois;
n[8][i][j] += fpois;

n[3][i][j] -= fpois;
n[6][i][j] -= fpois;
n[7][i][j] -= fpois;

}

Here visc = ν is the kinematic viscosity, and uf is the desired final fluid velocity in the +x direction. Note
that if uf > 0 then the densities n1,5,8 of particles moving in the +x direction are increased by a constant amount
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at each lattice site, and the densities n3,6,7 in the opposite direction are decreased correspondingly: thus momentum
in continually injected into the fluid which preserving constant density.
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