
Topic 5 Multigrid Methods 1

Multigrid Methods

The multigrid method provides algorithms which can be used to accelerate the rate of convergence of iterative
methods, such as Jacobi or Gauss-Seidel, for solving elliptic partial differential equations.

Iterative methods start with an approximate guess for the solution to the differential equation. In each iteration,
the difference between the approximate solution and the exact solution is made smaller.

One can analyze this difference or error into components of different wavelengths, for example by using Fourier
analysis. In general the error will have components of many different wavelengths: there will be short wavelength
error components and long wavelength error components.

Algorithms like Jacobi or Gauss-Seidel are local because the new value for the solution at any lattice site depends
only on the value of the previous iterate at neighboring points. Such local algorithms are generally more efficient in
reducing short wavelength error components.

The basic idea behind multigrid methods is to reduce long wavelength error components by updating blocks
of grid points. This strategy is similar to that employed by cluster algorithms in Monte Carlo simulations of the
Ising model close to the phase transtion temperature where long range correlations are important. In fact, multigrid
algorithms can also be combined with Monte Carlo simulations.

Multigrid method for Poisson’s equation in 2-D

With a small change in notation, Poisson’s equation in 2-D can be written:

∂2u
∂x2 +

∂2u
∂y2 = −f(x, y) ,

where the unknown solution u(x, y) is determined by the given source term f(x, y) in a closed region. Let’s consider
a square domain 0 ≤ x, y ≤ 1 with homogeneous Diriclet boundary conditions u = 0 on the perimeter of the square.
The equation is discretized on a grid with L + 2 lattice points, i.e., L interior points and 2 boundary points, in the
x and y directions. At any interior point, the exact solution obeys

ui,j =
1
4

[

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 + h2fi,j
]

.

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 2

The algorithm uses a succession of lattices or grids. The number of different grids is called the number of
multigrid levels `. The number of interior lattice points in the x and y directions is then taken to be 2`, so that
L = 2` + 2, and the lattice spacing h = 1/(L − 1). L is chosen in this manner so that the downward multigrid
iteration can construct a sequence of coarser lattices with

2`−1 → 2`−2 → . . . → 20 = 1

interior points in the x and y directions.

Suppose that u(x, y) is the approximate solution at any stage in the calculation, and uexact(x, y) is the exact
solution which we are trying to find. The multigrid algorithm uses the following definitions:

• The correction
v = uexact − u

is the function which must be added to the approximate solution to give the exact solution.

• The residual or defect is defined as
r = ∇2u + f .

Notice that the correction and the residual are related by the equation

∇2v =
[

∇2uexact + f
]

−
[

∇2u + f
]

= −r .

This equation has exactly the same form as Poisson’s equation with v playing the role of unknown function and r
playing the role of known source function!

Simple V−cycle algorithm

The simplest multigrid algorithm is based on a two-grid improvement scheme. Consider two grids:

• a fine grid with L = 2` + 2 points in each direction, and

• a coarse grid with L = 2`−1 + 2 points.

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 3

We need to be able to move from one grid to another, i.e., given any function on the lattice, we need to able to

• restrict the function from fine → coarse, and

• prolongate or interpolate the function from coarse → fine.

Given these definitions, the multigrid V−cycle can be defined recursively as follows:

• If ` = 0 there is only one interior point, so solve exactly for

u1,1 = (u0,1 + u2,1 + u1,0 + u1,2 + h2f1,1)/4 .

• Otherwise, calculate the current L = 2` + 2.

• Perform a few pre-smoothing iterations using a local algorithm such as Gauss-Seidel. The idea is to damp or
reduce the short wavelength errors in the solution.

• Estimate the correction v = uexact − u as follows:

◦ Compute the residual

ri,j =
1
h2 [ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j] + fi,j .

◦ Restrict the residual r → R to the coarser grid.

◦ Set the coarser grid correction V = 0 and improve it recursively.

◦ Prolongate the correction V → v onto the finer grid.

• Correct u → u + v.

• Perform a few post-smoothing Gauss-Seidel interations and return this improved u.

How does this recursive algorithm scale with L? The pre-smoothing and post-smoothing Jacobi or Gauss-Seidel
iterations are the most time consuming parts of the calculation. Recall that a single Jacobi or Gauss-Seidel iteration
scales like O(L2). The operations must be carried out on the sequence of grids with

2` → 2`−1 → 2`−2 → . . . → 20 = 1

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 4

interior lattice points in each direction. The total number of operations is of order

L2
∑̀

n=0

1
22n ≤ L2 1

1− 1
4

.

Thus the multigrid V−cycle scales like O(L2), i.e., linearly with the number of lattice points N!

Restricting the Residual to a Coarser Lattice

The coarser lattice with spacing H = 2h is constructed as shown. A simple algorithm for restricting the
residual to the coarser lattice is to set its value to the average of the values on the four surrounding lattice points
(cell-centered coarsening):

RI,J =
1
4

[ri,j + ri+1,j + ri,j+1 + ri+1,j+1] , i = 2(I − 1) , j = 2(J − 1) .

Prolongation of the Correction to the Finer Lattice

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 5

Having restricted the residual to the coarser lattice with spacing H = 2h, we need to solve the equation

∇2V = −R(x, y) ,

with the initial guess V (x, y) = 0. This is done by two-grid iteration

V = twoGrid(H, V, R) .

The output must now be interpolated or prolongated to the finer lattice. The simplest procedure is to copy the value
of VI,J on the coarse lattice to the 4 neighboring cell points on the finer lattice:

vi,j = vi+1,j = vi,j+1 = vi+1,j+1 = VI,J , i = 2(I − 1) , j = 2(J − 1) .

Cell-centered and Vertex-centered Grids and Coarsenings

In the cell-centered prescription, the spatial domain is partitioned into discrete cells. Lattice points are defined
at the center of each cell as shown in the figure:

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 6

The coarsening operation is defined by doubling the size of a cell in each spatial dimension and placing a coarse
lattice point at the center of the doubled cell.

Note that the number of lattice points or cells in each dimension must be a power of 2 if the coarsening operation
is to terminate with a single cell. In the figure, the finest lattice has 23 = 8 cells in each dimension, and 3 coarsening
operations reduce the number of cells in each dimension

23 = 8 → 22 = 4 → 21 = 2 → 20 = 1 .

Note also that with the cell-centered prescription, the spatial location of lattice sites changes with each coars-
ening: coarse lattice sites are spatially displaced from fine lattice sites.

A vertex-centered prescription is defined by partitioning the spatial domain into discrete cells and locating the
discrete lattice points at the vertices of the cells as shown in the figure:

The coarsening operation is implemented simply by dropping every other lattice site in each spatial dimension.

Note that the number of lattice points in each dimension must be one greater than a power of 2 if the coarsening
operation is to reduce the number of cells to a single coarsest cell. In the example in the figure the finest lattice
has 23 + 1 = 9 lattice sites in each dimension, and 2 coarsening operations reduce the number of vertices in each
dimension

23 + 1 = 9 → 22 + 1 = 5 → 21 + 1 = 3 .

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 7

The vertex-centered prescription has the property that the spatial locations of the discretization points are not
changed by the coarsening operation.

Boundary points

Let’s assume that the outermost perimeter points are taken to be the boundary points. The behavior of these
boundary points is different in the two prescriptions:

• Cell-centered Prescription: The boundary points move in space towards the center of the region at each
coarsening. This implies that one has to be careful in defining the “boundary values” of the solution.

• Vertex-centered Prescription: The boundary points do not move when the lattice is coarsened. This make
it easier in principle to define the boundary values.

These two different behaviors of the boundary points make the vertex-centered prescription a little more con-
venient to use in multigrid applications. However, there is no reason why the cell-centered prescription should not
work as well.

Restriction and Prolongation Operators

In the multigrid method it is necessary to move functions from a fine grid to the next coarser grid (Restriction),
and from a coarse grid to the next finer grid (Prolongation). Many prescriptions for restricting and prolongating
functions have been studied. Let’s consider two of the simplest prescriptions appropriate for cell- and vertex-centered
coarsening:

• Cell-centered Coarsening: In this prescription, a coarse lattice point is naturally associated with 2d neigh-
boring fine lattice points in d-dimensions.

• Suppose that f(~x) is a function on the fine lattice at spatial position ~x, and F (~X) is the corresponding function
on the coarse lattice, then this diagram suggests a simple prescription for restriction and prolongation.

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 8

◦ Restriction: Average the function values at the 4 neighboring fine lattice sites ~xi:

F (~X) =
1
4

4
∑

i=1

f(~xi) .

◦ Prolongation: Inject the value of the function at the coarse lattice site to the 4 neighboring fine lattice
sites:

f(~xi) = F (~X) , i = 1 . . . 4

• Vertex-centered Coarsening: Consider a coarse lattice point and the 9 neighboring fine lattice points shown
in the figure:

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 9

In this prescription, a coarse lattice point can naturally associated (in 2-D) with

◦ the corresponding fine lattice point, or

◦ the four nearest neighbor fine lattice points, left, right, up, and down, or

◦ with the four diagonally nearest fine lattice points, etc.

It is a little more complicated here to define transfer operators. The problem is that the fine lattice points are
associated with more than one coarse lattice point, unlike the cell-centered case:

◦ The single red fine lattice point in the center coincides with an unique coarse lattice point.

◦ Each of the 4 black fine lattice points however is equidistant from two coarse lattice points.

◦ Each of the 4 red fine lattice points is equidistant from four coarse lattice points.

This sharing of lattice points suggests the following prescriptions:

• Prolongation: use bilinear interpolation in which the value of F at a coarse grid point is copied to 9 neighboring
fine-grid points with the following weights:

1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 .

This matrix is called the stencil for the prolongation.

• Restriction: The restriction operator is taken to be the adjoint of the prolongation operator:

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 .

This choice of restriction operator is called full weighting.

Improvements and More Complicated Multigrid Algorithms

PHY 411-506 Computational Physics II Wednesday March 19, 2003

Topic 5 Multigrid Methods 10

The algorithm implemented above is the simplest multigrid scheme with a single V-cycle. Section 19.6 of
Numerical Recipes discusses various ways of improving this algorithm:

• One can repeat the two-grid iteration more than once. If it is repeated twice in each multigrid level one obtains
a W-cycle type of algorithm.

• The Full Multigrid Algorithm starts with the coarsest grid on which the equation can be solved exactly. It then
proceeds to finer grids, performing one or more V-cycles at each level along the way. Numerical Recipes gives a
program mglin(u,n,ncycle) which accepts the source function −f in the first argument and implements the
full multigrid algorithm with ` = log2(n − 1) levels, performing ncycle V-cycles at each level, and returning
the solution in the array parameter u. Note that this program assumes that the number of lattice points in
each dimension L is odd, which leads to vertex centered coarsening:

PHY 411-506 Computational Physics II Wednesday March 19, 2003

