
Topic 1 Molecular Dynamics 1

A simple MD program (continued)

The code md.cpp simulated the motion of 64 particles placed on a cubic lattice with random initial velocities
for 1000 time steps of size dt = 0.01.

Output of simple program md.cpp

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700 800 900 1000

In
st

an
ta

ne
ou

s
T

em
pe

ra
tu

re

�

Time step number

Output of md.cpp

"T.data"

The program output file was plotted using Gnuplot. The instantaneous temperature is approximately constant
for around one or two time units, and then it starts increasing with fluctuations. Can you understand this behavior?

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 2

Improving the MD program

#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

// simulation parameters

int N = 64; // number of particles
double rho = 1.2; // density (number per unit volume)
double T = 1.0; // temperature

// function declarations

void initialize(); // allocates memory, calls following 2 functions
void initPositions(); // places particles on an fcc lattice
void initVelocities(); // initial Maxwell-Boltzmann velocity distribution
void rescaleVelocities(); // adjust the instanteous temperature to T
double gasdev(); // Gaussian distributed random numbers

We will allocate particle arrays dynamically rather than statically

double **r; // positions
double **v; // velocities
double **a; // accelerations

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 3

void initialize() {
r = new double* [N];
v = new double* [N];
a = new double* [N];
for (int i = 0; i < N; i++) {

r[i] = new double [3];
v[i] = new double [3];
a[i] = new double [3];

}
initPositions();
initVelocities();

}

Position particles on a face-centered cubic lattice

The minimum energy configuration of this Lennard-Jones system is an fcc lattice. This has 4 lattice sites in
each conventional cubic unit cell. If the number of atoms N = 4M2, where M = 1, 2, 3, ..., then the atoms can fill
a cubical volume. So MD simulations are usually done with 32 = 4× 23, 108 = 4× 33, 256, 500, 864, ... atoms.

double L; // linear size of cubical volume

void initPositions() {

// compute side of cube from number of particles and number density
L = pow(N / rho, 1.0/3);

// find M large enough to fit N atoms on an fcc lattice

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 4

int M = 1;
while (4 * M * M * M < N)

++M;
double a = L / M; // lattice constant of conventional cell

The figure shows a conventional cubical unit cell:

x

y

z

The 4 atoms shown in red provide a basis for the conventional cell. Their positions in units of a are given by

(0, 0, 0) (0.5, 0.5, 0) (0.5, 0, 0.5) (0, 0.5, 0.5) .

In the following code we shift the basis by (0.5, 0.5, 0.5) so the all atoms are inside the volume and none are on its
boundaries.

// 4 atomic positions in fcc unit cell
double xCell[4] = {0.25, 0.75, 0.75, 0.25};
double yCell[4] = {0.25, 0.75, 0.25, 0.75};
double zCell[4] = {0.25, 0.25, 0.75, 0.75};

Next, the atoms are placed on the fcc lattice. If N 6= 4M3 then some of the lattice sites are left unoccupied.

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 5

int n = 0; // atoms placed so far
for (int x = 0; x < M; x++)

for (int y = 0; y < M; y++)
for (int z = 0; z < M; z++)

for (int k = 0; k < 4; k++)
if (n < N) {

r[n][0] = (x + xCell[k]) * a;
r[n][1] = (y + yCell[k]) * a;
r[n][2] = (z + zCell[k]) * a;
++n;

}
}

Draw initial velocities from a Maxwell-Boltzmann distribution

A more realistic initial velocity distribution is that of an ideal gas at temperature T :

P (v) =
(

m
2πkBT

)3/2

e−m
(

v2
x+v2

y+v2
z

)

/(2kBT) .

Note that each velocity component is Gaussian distributed with mean zero and width ∼
√

T .

The function gasdev from Numerical Recipes returns random numbers with a Gaussian probability distribution

P (x) =
e−(x−x0)2/(2σ2)

√
2πσ2

,

with center x0 = 0 and unit variance σ2 = 1. This function uses the Box-Müller algorithm, also explained in
Appendix B of Thijssen.

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 6

double gasdev () {
static bool available = false;
static double gset;
double fac, rsq, v1, v2;
if (!available) {

do {
v1 = 2.0 * rand() / double(RAND_MAX) - 1.0;
v2 = 2.0 * rand() / double(RAND_MAX) - 1.0;
rsq = v1 * v1 + v2 * v2;

} while (rsq >= 1.0 || rsq == 0.0);
fac = sqrt(-2.0 * log(rsq) / rsq);
gset = v1 * fac;
available = true;
return v2*fac;

} else {
available = false;
return gset;

}
}

void initVelocities() {

// Gaussian with unit variance
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
v[n][i] = gasdev();

Since these velocities are randomly distributed around zero, the total momentum of the system will be close to

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 7

zero but not exactly zero. To prevent the system from drifting in space, the center-of-mass velocity

vCM =
∑N

i=1 mvi
∑N

i=1 m

is computed and used to transform the atom velocities to the center-of-mass frame of reference.

// Adjust velocities so center-of-mass velocity is zero
double vCM[3] = {0, 0, 0};
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
vCM[i] += v[n][i];

for (int i = 0; i < 3; i++)
vCM[i] /= N;

for (int n = 0; n < N; n++)
for (int i = 0; i < 3; i++)

v[n][i] -= vCM[i];

// Rescale velocities to get the desired instantaneous temperature
rescaleVelocities();

}

After setting the CM velocity to zero, the velocities are scaled

vi −→ λvi

so that the instantaneous temperature has the desired value T

λ =

√

3(N − 1)kBT
∑N

i=1 mv2
i

.

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 8

void rescaleVelocities() {
double vSqdSum = 0;
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
vSqdSum += v[n][i] * v[n][i];

double lambda = sqrt(3 * (N-1) * T / vSqdSum);
for (int n = 0; n < N; n++)

for (int i = 0; i < 3; i++)
v[n][i] *= lambda;

}

Solving Newton’s equations of motion

The same algorithms are used as in md.cpp with two improvements:

• periodic boundary conditions will be used to ensure that the number of particles in the simulation volume
remains constant,

• the minimum image convention is used to compute the accelerations.

void computeAccelerations() {

for (int i = 0; i < N; i++) // set all accelerations to zero
for (int k = 0; k < 3; k++)

a[i][k] = 0;

for (int i = 0; i < N-1; i++) // loop over all distinct pairs i,j
for (int j = i+1; j < N; j++) {

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 9

double rij[3]; // position of i relative to j
double rSqd = 0;
for (int k = 0; k < 3; k++) {

rij[k] = r[i][k] - r[j][k];

Since we are using periodic boundary conditions, the system actually has an infinite number of copies of the N
particles contained in the volume L3. Thus there are an infinite number of pairs of particles, all of which interact
with one another! The forces between a particular particle and its periodic copies actually cancel, but this is not
true of pairs which are not images of one another. Since the Lennard Jones interaction is short ranged, we can safely
neglect forces between particles in volumes that are not adjacent to one another. For adjacent volumes, we have to
be more careful. It can happen that the separation rij = |ri− rj | is larger than the separation rij′ = |ri− r′j | where
j′ is an image in an adjacent volume of particle j. The figure illustrates this in one dimension:

j’ j j’’i’’ i i’

When this occurs we take into account the stronger force between i and the image j′ and neglect the weaker force
between i and j.

// closest image convention
if (abs(rij[k]) > 0.5 * L) {

if (rij[k] > 0)
rij[k] -= L;

else
rij[k] += L;

}

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 10

rSqd += rij[k] * rij[k];
}
double f = 12 * (pow(rSqd, -7) - pow(rSqd, -4));
for (int k = 0; k < 3; k++) {

a[i][k] += rij[k] * f;
a[j][k] -= rij[k] * f;

}
}

}

Velocity Verlet Integration Algorithm

The same algorithm

ri(t + dt) = ri(t) + vi(t)dt +
1
2
ai(t)dt2

vi(t + dt) = vi(t) +
1
2
[ai(t + dt) + ai(t)]dt

is used as in the simple program md.cpp. Periodic boundary conditions will be imposed as the time step is imple-
mented.

void velocityVerlet(double dt) {
computeAccelerations();
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++) {
r[i][k] += v[i][k] * dt + 0.5 * a[i][k] * dt * dt;

Once the atom is moved, periodic boundary conditions are imposed to move it back into the system volume if it
has exited. This done for each component of the position as soon as it has been updated:

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 11

// use periodic boundary conditions
if (r[i][k] < 0)

r[i][k] += L;
if (r[i][k] >= L)

r[i][k] -= L;
v[i][k] += 0.5 * a[i][k] * dt;

}
computeAccelerations();
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++)
v[i][k] += 0.5 * a[i][k] * dt;

}

The instantaneous temperature is computed as in md.cpp from the equipartition formula

3(N − 1)× 1
2
kBT =

〈

m
2

N
∑

i=1

v2
i

〉

.

by the function

double instantaneousTemperature() {
double sum = 0;
for (int i = 0; i < N; i++)

for (int k = 0; k < 3; k++)
sum += v[i][k] * v[i][k];

return sum / (3 * (N - 1));
}

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 12

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900 1000

In
st

an
ta

ne
ou

s
T

em
pe

ra
tu

re

�

Time step number

Output of md2.cpp

"T2.data"

Finally, here is the main function which steers the simulation:

int main() {
initialize();
double dt = 0.01;
ofstream file("T2.data");
for (int i = 0; i < 1000; i++) {

PHY 411-506 Computational Physics II Friday January 17, 2003

Topic 1 Molecular Dynamics 13

velocityVerlet(dt);
file << instantaneousTemperature() << ’\n’;
if (i % 200 == 0)

rescaleVelocities();
}
file.close();

}

The simulation is run for 1000 time steps. After every 200 steps, the velocities of the atoms are rescaled to drive
the average temperature towards the desired value. The output shows that

• The temperature rises rapidly from the desired value T = 1.0 when the simulation is started. Why?

• It takes a few rescaling to push the temperature back to the desired value, and then the system appears to be
in equilibrium.

PHY 411-506 Computational Physics II Friday January 17, 2003

