
Topic 5 Multigrid Methods 1

Multigrid program for Poisson’s equation in 2-D

The following program poisson-mg.cpp implements a simple V-cycle multigrid method to find the electrostatic
potential due to a point charge by solving Poisson’s equation.

// Multigrid program for Poisson’s equation in 2-D

#include <cmath>
#include <cstdio>
#include <fstream>
#include <iostream>

double accuracy; // desired relative accuracy in solution
int L; // number of interior points in each dimension

A simple matrix class to simplify the programming

To code the multigrid algorithm, we need to compute and store various matrices representing the solution, the
source function, the residual, and the correction at each level of coarser lattices with

2`−1 → 2`−2 → . . . → 20 = 1

interior points in each direction.

To simplify allocating and freeing memory for all of these object, we define a simple C++ Matrix class as
follows:

class Matrix {

public:

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 2

First define a set of three constructors:

• the default constructor constructs an empty matrix with no elements,

• the constructor Matrix(int N) constructs an N ×N matrix,

• and, the copy constructor Matrix(const Matrix& mat) is defined so memory is properly allocated and freed
when temporary objects are constructed by the compiler (for example in function arguments).

Also defined is a destructor which correctly frees memory allocated by any constructor.

Matrix() { N = 0; m = 0; } // default constructor

Matrix(int N) { // allocate new NxN matrix
this->N = N;
allocateStorage();

}

Matrix(const Matrix& mat) { // copy constructor
N = mat.N;
allocateStorage();
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

m[i][j] = mat[i][j];
}

~Matrix() { // destructor
freeStorage();

}

Next, a convenient operator is defined which correctly manages memory when when one Matrix is assigned to

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 3

another. Note that nothing happens with self-assignment, and the Matrix is re-sized if the dimensions do not agree.

Matrix& operator=(const Matrix& mat) {
if (this != &mat) {

if (N != mat.N) {
freeStorage();
N = mat.N;
allocateStorage();

}
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

m[i][j] = mat[i][j];
}
return *this;

}

Next, define a couple of convenience functions:

void zero() { // set matrix elements to zero
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

m[i][j] = 0;
}

int rowsCols() { // return the number of rows or columns
return N;

}

The following two operators allow access to Matrix elements using array notation [i][j].

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 4

double* operator[] (const int i) { return m[i]; }
const double* operator[] (const int i) const { return m[i]; }

The private section of the class holds the number of rows or columns N and a 1-D array of N pointers **m. The
acutal matrix elements are held in a 1-D array of N * N doubles, with m[i] pointing to the start of the i-th row.

private:
int N; // matrix is NxN
double **m; // the matrix elements

void allocateStorage() {
m = new double* [N];
m[0] = new double [N * N];
for (int i = 1; i < N; i++)

m[i] = m[i - 1] + N;
}

void freeStorage() {
if (m != 0) {

delete [] m[0];
delete [] m;

}
}

};

Continuing with the program

The Matrix class can now be used to declare Matrix instances. This declaration produces zero matrices, which
will later be assigned to (L + 2)× (L + 2) matrices.

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 5

Matrix psi; // solution to be found
Matrix psiNew; // approximate solution after 1 iteration
Matrix rho; // given source function

double h; // step size
int steps; // number of iteration steps

void initialize() {

// check that L is a power of 2 as required by multigrid
int pow2 = 1;
while (pow2 < L)

pow2 *= 2;
if (pow2 != L) {

L = pow2;
cout << " Setting L = " << L << " (must be a power of 2)" << endl;

}

// create (L+2)x(L+2) matrices and zero them
psi = Matrix(L + 2);
psi.zero();
psiNew = rho = psi;

h = 1 / double(L + 1); // assume physical size in x and y = 1
double q = 10; // point charge
int i = L / 2; // center of lattice
rho[i][i] = q / (h * h); // charge density

steps = 0;

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 6

}

Here is an application of Matrix objects passed by reference to a function: this avoids creating local copies of the
objects. The function implements checkerboard updating for the pre- and post-smoothing multigrid steps.

void GaussSeidel(double h, Matrix& u, const Matrix& f) {

int L = u.rowsCols() - 2;

// use checkerboard updating
for (int color = 0; color < 2; color++)

for (int i = 1; i <= L; i++)
for (int j = 1; j <= L; j++)

if ((i + j) % 2 == color)
u[i][j] = 0.25 * (u[i - 1][j] + u[i + 1][j] +

u[i][j - 1] + u[i][j + 1] +
h * h * f[i][j]);

}

Implementing the recursive two-grid algorithm

The following function implements the recursive two-grid algorithm discussed in the previous lecture. The recursion
results in a V-cycle.

void twoGrid(double h, Matrix& u, Matrix& f) {

// solve exactly if there is only one interior point
int L = u.rowsCols() - 2;
if (L == 1) {

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 7

u[1][1] = 0.25 * (u[0][1] + u[2][1] + u[1][0] + u[1][2] +
h * h * f[1][1]);

return;
}

// do a few pre-smoothing Gauss-Seidel steps
int nPreSmooth = 3;
for (int i = 0; i < nPreSmooth; i++)

GaussSeidel(h, u, f);

Recall the definition of the residual:
r = ∇2u + f .

// find the residual
Matrix r = f;
for (int i = 1; i <= L; i++)
for (int j = 1; j <= L; j++)

r[i][j] += (u[i + 1][j] + u[i - 1][j] +
u[i][j + 1] + u[i][j - 1] - 4 * u[i][j]) / (h * h);

A simple cell-centered coarsening is used to restrict the residual to the coarser grid:

RI,J =
1
4

[ri,j + ri+1,j + ri,j+1 + ri+1,j+1] , i = 2(I − 1) , j = 2(J − 1) .

// restrict residual to coarser grid
int L2 = L / 2;
Matrix R(L2 + 2);

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 8

for (int I = 1; I <= L2; I++) {
int i = 2 * I - 1;
for (int J = 1; J <= L2; J++) {

int j = 2 * J - 1;
R[I][J] = 0.25 * (r[i][j] + r[i + 1][j] + r[i][j + 1] +

r[i + 1][j + 1]);
}

}

The residual is the source function to compute the correction on the coarser grid by solving

∇2V = −R(x, y) ,

with the initial guess V (x, y) = 0. This is done by calling twoGrid recursively.

// initialize correction V on coarse grid to zero
Matrix V(L2 + 2);
V.zero();

// call twoGrid recursively

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 9

twoGrid(2 * h, V, R);

Prolongation of the correction V from the coarser grid to the finer is done using simple injection

vi,j = vi+1,j = vi,j+1 = vi+1,j+1 = VI,J , i = 2(I − 1) , j = 2(J − 1) .

// prolongate V to fine grid using simple injection
Matrix v(L + 2);
v.zero();
for (int I = 1; I <= L2; I++) {

int i = 2 * I - 1;
for (int J = 1; J <= L2; J++) {

int j = 2 * J - 1;
v[i][j] = v[i + 1][j] = v[i][j + 1] = v[i + 1][j + 1] = V[I][J];

}
}

Finally, the correction is applied, and followed by a few post-smoothing Gauss-Seidel steps.

// correct u
for (int i = 1; i <= L; i++)
for (int j = 1; j <= L; j++)

u[i][j] += v[i][j];

// do a few post-smoothing Gauss-Seidel steps
int postSmooth = 3;
for (int i = 0; i < postSmooth; i++)

GaussSeidel(h, u, f);

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 10

}

Steering the calculation

A relative error is defined as in the program poisson.cpp, and the main function is defined in a similar way.

double relativeError() {

double error = 0; // average relative error per lattice point
int n = 0; // number of non-zero differences

for (int i = 1; i <= L; i++)
for (int j = 1; j <= L; j++) {

if (psiNew[i][j] != 0)
if (psiNew[i][j] != psi[i][j]) {

error += abs(1 - psi[i][j] / psiNew[i][j]);
++n;

}
}
if (n != 0)

error /= n;

return error;
}

int main() {

cout << " Multigrid solution of Poisson’s equation\n"
<< " --\n";

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 11

cout << " Enter desired accuracy in the solution: ";
cin >> accuracy;
cout << " Enter number of interior points in x or y: ";
cin >> L;

initialize();
while (true) {

psiNew = psi;
twoGrid(h, psi, rho);
++steps;
double error = relativeError();
cout << " Step No. " << steps << "\tError = " << error << endl;
if (steps > 1 && error < accuracy)

break;
}

// write potential to file
cout << " Potential in file poisson-mg.data" << endl;
ofstream file("poisson.data");
for (int i = 0; i < L + 2; i++) {

double x = i * h;
for (int j = 0; j < L + 2; j++) {

double y = j * h;
file << x << ’\t’ << y << ’\t’ << psi[i][j] << ’\n’;

}
file << ’\n’;

}
file.close();

}

PHY 411-506 Computational Physics II Friday March 21, 2003

Topic 5 Multigrid Methods 12

Results from running the program

Multigrid solution of Poisson’s equation
--
Enter desired accuracy in the solution: 0.001
Enter number of interior points in x or y: 50
Setting L = 64 (must be a power of 2)

Step No. 15 Error = 0.000672391
Potential in file poisson-mg.data

These results can be compared with the methods used in poisson.cpp:

Iterative solution of Poisson’s equation
--
Enter number of interior points in x or y: 64
Enter desired accuracy in solution: 0.001
Enter 1 for Jacobi, 2 for Gauss Seidel, 3 for SOR: 0
Jacobi:
Number of steps = 1336
Gauss-Seidel:
Number of steps = 668
Successive Over Relaxation with theoretical optimum omega = 1.90642
Number of steps = 76
Potential in file poisson.data

PHY 411-506 Computational Physics II Friday March 21, 2003

