
Topic 3 Monte Carlo Methods 1

Reducing critical slowing down

The Metropolis Monte Carlo method works very well in simulating the properties of the 2-D Ising model.
However, close to the Curie temperature Tc, the simulations suffer from critical slowing down, and more efficient
algorithms are needed. These cluster algorithms are useful in many applications involving graphs and lattices, and
they are also very interesting to study.

Critical divergences and spin-spin correlations

At the Curie temperature, some observables like the heat capacity per spin and magnetic susceptibility per spin
become divergent (infinite) in the thermodynamic limit of an infinite system. These critical divergences are due to
long range correlations between spins.

Consider two spins, s0 at the origin of coordinates and sn at some other lattice site labeled by the index n.
The correlation between the pair of spins is defined to be

〈s0sn〉 .

If the two spins are uncorrelated then this average will be zero or very small.

At T = 0 the spins are all lined up and so
〈s0sn〉 = 1 .

However, this is a somewhat trivial correlation because flipping s0 will hardly affect sn if it is not a neighbor of s0.

Near Tc, the situation is very different: the spins are constantly changing, but not independently; there are
large domains (droplets) of parallel spins which persist for long periods of time. Thus, spins far apart from one
another are strongly correlated.

At high temperatures, the spins fluctuate rapidly but almost independently of other spins.

To describe these properties of spin correlations, it is conventional to define the pair correlation function as

g(r) = 〈s0sn〉 − 〈s0〉〈sn〉 ,

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 2

that is, by subtracting out the average values of the spins considered independently. Here we have defined the
distance between the two spins

r = a
√

n2
x + n2

y ,

where a is the lattice spacing of the 2-D square lattice. For a translationally invariant system, e.g., with the use of
periodic boundary conditions on a finite lattice, the choice of s0 is not significant: any other spin would do. The
important variable is the distance r between the two spins. For a large system, r can considered to be a continuous
variable.

The pair correlation function can be parametrized as follows for large r � a:

g(r) ∼ e−r/ξ

rd−2+η ,

where ξ(T) is the correlation length, d = 2 is the dimensionality of space, and η is a critical exponent (η = 1/4 for
the 2-D Ising model).

The correlation length diverges at the critical temperature:

ξ(T) ∼ 1
|T − Tc|ν

,

which accounts for long range spin correlations as T approaches Tc. In the 2-D Ising model, ν = 1. At T = Tc the
correlation function decays algebraically:

g(r) ∼ 1
rd−2+η .

Critical slowing down

The Ising model does not have dynamics built into it: there is no kinetic energy term associated with the spins
si. The Metropolis Monte Carlo method generates successive configurations of spins, but this does not represent
the real time evolution of a system of spins.

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 3

In a real system, the dynamical variables are functions of time. An interesting quantity is the relaxation time,
which is the time scale over which the system approaches equilibrium. If A(t) is a quantity which relaxes towards
its equilibrium value Ā, the the relaxation time can be theoretically as

τ =

∫∞
0 dt t[A(t)− Ā]
∫∞
0 dt [A(t)− Ā]

.

Near the critical temperature, the relaxation time becomes very large and can be shown to diverge for an
infinite system:

τ ∼ ξz ∼ 1
|T − Tc|νz .

Here z is the dynamical critical exponent associated with the observable A. This phenomenon is called critical
slowing down.

Autocorrelation time in Metropolis simulations

In a Metropolis simulation, the successive spin configurations also exhibit a type of critical slowing down near
the phase transition temperature Tc(L) of the finite lattice. This is not the same as relaxation in a real system.
However, it is useful to measure a relaxation time for the Metropolis “dynamics” because it helps to determine how
many steps to skip in order to generate statistically independent configurations.

Recall that one Monte Carlo step per spin is taken conventionally to be N Metropolis steps. If the correlation
time is of the order of a single Monte Carlo step, then every configuration can be used in measuring averages. But
if the correlation time is longer, then approximately τ Monte Carlo steps should be discarded between every data
point.

The time autocorrelation function

cAA(k) = 〈(An − 〈An〉)(An+k − 〈An+k〉)〉 = 〈AnAn+k〉 − 〈An〉2 ,

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 4

where n labels the Monte Carlo time step. If Monte Carlo steps separated in time by k intermediate steps are truly
uncorrelated, then cAA(k) should be zero (i.e., of O(1/

√
M) where M is the number of steps used in computing the

averages 〈〉).
If the correlation function decays exponentially

cAA(t) ∼ e−t/τ ,

then the exponential correlation time can be computed as the average

τexp = −

〈

t

log
∣

∣

∣

cAA(t)
cAA(0)

∣

∣

∣

〉

.

If the decay is exponential, then
∫ ∞

0
dt cAA(t) =

∫ ∞

0
dt cAA(0)e−t/τ =

1
1/τ

cAA(0) .

This suggests another measure of correlation

τint =
∑

k

cAA(k)
cAA(0)

,

which is called the integrated correlation time.

In Monte Carlo simulations, the autocorrelation time is often measured as the simulation is running:

• Create an array called c with K double elements and initialize it to zero.

• Maintain a list of the K most recently computed values of the observable A. This can be an array of length K
in which the value of An is stored at index n mod K.

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 5

• At each step n ≥ K accumulate the values of An−KAn−K+k for k = 0, 1, . . .K − 1 in the array elements c[k].

• At the end of the run, divide each c[k] by n−K and subtract c[0].

Code to measure the autocorrelation time

// Autocorrelation time in the 2-D Ising Model

#include <cmath>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <list> // to save values for autocorrelations
#include "rng.h"

using namespace std;

double J = +1; // ferromagnetic coupling
int Lx, Ly; // number of spins in x and y
int N; // number of spins
int **s; // the spins
double T; // temperature
double H = 0; // magnetic field

double w[17][3]; // Boltzmann factors

void computeBoltzmannFactors () {
for (int i = -8; i <= 8; i += 4) {

w[i + 8][0] = exp(- (i * J + 2 * H) / T);
w[i + 8][2] = exp(- (i * J - 2 * H) / T);

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 6

}
}

Variables and functions to measure autocorrelation times

double eAv, mAv; // accumulators to compute <e> and <m>
int nSave = 10; // values to save for autocorrelations
list<double> eSave, mSave; // saved energy and magnetization values
double *cee, *cmm; // energy and magnetization correlation sums
int nCorr; // number of values accumulated in sums

void initializeCorrelations() {
eAv = mAv = 0;
eSave.clear();
mSave.clear();
if (cee != NULL) delete [] cee;
if (cmm != NULL) delete [] cmm;
cee = new double [nSave + 1];
cmm = new double [nSave + 1];
for (int i = 0; i <= nSave; i++)

cee[i] = cmm[i] = 0;
nCorr = 0;

}

Continue with functions from ising.cpp:

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 7

int steps = 0; // steps so far

void initialize () {
s = new int* [Lx];
for (int i = 0; i < Lx; i++)

s[i] = new int [Ly];
for (int i = 0; i < Lx; i++)

for (int j = 0; j < Ly; j++)
s[i][j] = qadran() < 0.5 ? +1 : -1; // hot start

computeBoltzmannFactors();
steps = 0;

}

bool MetropolisStep () {

// choose a random spin
int i = int(Lx*qadran());
int j = int(Ly*qadran());

// find its neighbors using periodic boundary conditions
int iPrev = i == 0 ? Lx-1 : i-1;
int iNext = i == Lx-1 ? 0 : i+1;
int jPrev = j == 0 ? Ly-1 : j-1;
int jNext = j == Ly-1 ? 0 : j+1;

// find sum of neighbors
int sumNeighbors = s[iPrev][j] + s[iNext][j] + s[i][jPrev] + s[i][jNext];
int delta_ss = 2*s[i][j]*sumNeighbors;

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 8

// ratio of Boltzmann factors
double ratio = w[delta_ss+8][1+s[i][j]];
if (qadran() < ratio) {

s[i][j] = -s[i][j];
return true;

} else return false;
}

double acceptanceRatio;

void oneMonteCarloStepPerSpin () {
int accepts = 0;
for (int i = 0; i < N; i++)

if (MetropolisStep())
++accepts;

acceptanceRatio = accepts/double(N);
++steps;

}

double magnetizationPerSpin () {
int sSum = 0;
for (int i = 0; i < Lx; i++)
for (int j = 0; j < Ly; j++) {

sSum += s[i][j];
}
return sSum / double(N);

}

double energyPerSpin () {

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 9

int sSum = 0, ssSum = 0;
for (int i = 0; i < Lx; i++)
for (int j = 0; j < Ly; j++) {

sSum += s[i][j];
int iNext = i == Lx-1 ? 0 : i+1;
int jNext = j == Ly-1 ? 0 : j+1;
ssSum += s[i][j]*(s[iNext][j] + s[i][jNext]);

}
return -(J*ssSum + H*sSum)/N;

}

Accumulating correlation data

void accumulateCorrelations() {

// calculate current energy and magnetization
double e = energyPerSpin();
double m = magnetizationPerSpin();

// accumulate averages and correlation products
if (eSave.size() == nSave) { // if nSave values have been saved

++nCorr;
eAv += e;
mAv += m;
cee[0] += e * e;
cmm[0] += m * m;
list<double>::const_iterator ie = eSave.begin(), im = mSave.begin();

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 10

for (int i = 1; i <= nSave; i++) {
cee[i] += *ie++ * e;
cmm[i] += *im++ * m;

}

// discard the oldest values
eSave.pop_back();
mSave.pop_back();

}

// save the current values
eSave.push_front(e);
mSave.push_front(m);

}

Computing autocorrelation times

double tau_e, tau_m;

void computeAutocorrelationTimes() {

// energy correlation
double av = eAv / nCorr;
double c0 = cee[0] / nCorr - av * av;
tau_e = 0;
for (int i = 1; i <= nSave; i++)

tau_e += (cee[i] / nCorr - av * av) / c0;

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 11

// magnetization correlation
av = mAv / nCorr;
c0 = cmm[0] / nCorr - av * av;
tau_m = 0;
for (int i = 1; i <= nSave; i++)

tau_m += (cmm[i] / nCorr - av * av) / c0;
}

Steering the calculation: the main function

The main function starts by getting input from the user.

int main (int argc, char *argv[]) {

cout << " Two-dimensional Ising Model - Autocorrelation times\n"
<< " ---\n"
<< " Enter number of spins L in each direction: ";

cin >> Lx;
Ly = Lx;
N = Lx * Ly;
double T1, T2;
cout << " Enter starting temperature: ";
cin >> T1;
cout << " Enter ending temperature: ";
cin >> T2;
cout << " Enter number of temperature steps: ";
int TSteps;

PHY 411-506 Computational Physics II Friday February 14, 2003

Topic 3 Monte Carlo Methods 12

cin >> TSteps;
cout << " Enter number of Monte Carlo steps: ";
int MCSteps;
cin >> MCSteps;

initialize();
ofstream file("auto.data");
int thermSteps = int(0.2 * MCSteps);
for (int i = 0; i <= TSteps; i++) {

T = T1 + i * (T2 - T1) / double(TSteps);
computeBoltzmannFactors();
for (int s = 0; s < thermSteps; s++)

oneMonteCarloStepPerSpin();
initializeCorrelations();
for (int s = 0; s < MCSteps; s++) {

oneMonteCarloStepPerSpin();
accumulateCorrelations();

}
computeAutocorrelationTimes();
cout << " T = " << T << "\ttau_e = " << tau_e

<< "\ttau_m = " << tau_m << endl;
file << T << ’\t’ << tau_e << ’\t’ << tau_m << ’\n’;

}
file.close();

}

PHY 411-506 Computational Physics II Friday February 14, 2003

