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The Schrödinger equation and wave packets

The numerical solution of the time-dependent Schrödinger equation for a particle of mass m in one dimension

ih̄
∂
∂t

ψ(x, t) = − h̄2

2m
∂2

∂x2 ψ + V (x)ψ ,

is discussed in Section A.7.2.1 of Thijssen’s book. This equation has the formal solution

ψ(x, t) = e−
i
h̄Htψ(x, 0) , H ≡ − h̄2

2m
∂2

∂x2 + V (x) = H† ,

where H is the hermitian Hamiltonian operator. Note that the time evolution is unitary, which implies that
probability is conserved:

(

e−
i
h̄Ht

)†
=

(

e−
i
h̄Ht

)−1
,

∫

|ψ(x, t)|2dx =
∫

|ψ(x, 0)|2dx .

This can be compared a diffusion-type equation:

∂
∂t

n(x, t) = D
∂2

∂x2 n(x, t) + Cn(x, t) ,

which we encounted in Chapter 12. In contrast to the unitary time evolution of quantum mechanics, diffusion
is characterized by damped evolution. A mode with wavenumber k is damped like ∼ exp(−k2Dt), whereas the
wavefunction of a free particle with momentum p = h̄k and energy E = p2/(2m) behaves ∼ exp(−iEt/h̄).

We see by comparing the two equations that quantum mechanics of a free particle is mathematically equivalent
to diffusion with an imaginary diffusion constant D = ih̄/(2m). The Schrödinger equation can also be considered
to represent diffusion in imaginary time:

∂ψ
∂(it)

=
h̄

2m
∂2ψ
∂x2 −

1
h̄

V (x)ψ ,
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as we saw in Chapter 12 on Quantum Monte Carlo methods.

Discretization using a Forward Time Centered Space (FTCS) Scheme

To solve this equation, we discretize space xj = (j−1)h−L/2, j = 1, 2, . . . N in the spatial region −L/2 ≤ x ≤
L/2, and time tn = (n−1)τ, n = 1, 2, . . ., and define ψn

j ≡ ψ(xj , tn) and Vj ≡ V (xj).

The discretized equation

ih̄
ψn+1

j − ψn
j

τ
= − h̄2

2m
ψn

j+1 + ψn
j−1 − 2ψn

j

h2 + Vjψn
j ,

can be solved explicitly for the solution at the next time step

ψn+1
j = ψn

j −
iτ
h̄

[

− h̄2

2m
ψn

j+1 + ψn
j−1 − 2ψn

j

h2 + Vjψn
j

]

.

If we introduce the column vector of values of ψ

Ψn ≡











ψn
1

ψn
2
.
.

ψn
N











,

this equation can be written in matrix form

Ψn+1 =
(

I− iτ
h̄

H
)

Ψn .

Here I is the N×N unit matrix, and H is the discrete matrix representation of the Hamiltonian. Unfortunately,
this scheme in unconditionally unstable. For example, is Ψ1 happens to be an eigenvector

HΨ1 = EΨ1 ,
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then

Ψn+1 =
(

1− iτE
h̄

)

Ψn =
(

1− iτE
h̄

)2

Ψn−1 = . . . =
(

1− iτE
h̄

)n

Ψ1 ,

and the magnitude of the wavefunction

∣

∣Ψn+1
∣

∣ =

(
√

1 +
τ2E2

h̄2

)n
∣

∣Ψ1
∣

∣ −→∞ , as n →∞ .

Backward Time Space Centered (BTCS) Implicit Differencing

If we choose to discretize the equation as follows

ih̄
ψn+1

j − ψn
j

τ
= − h̄2

2m
ψn+1

j+1 + ψn+1
j−1 − 2ψn+1

j

h2 + Vjψn+1
j ,

then it cannot be solved explicitly for the solution at the next time step because there are now three unknown
quantities on the left hand side of

ψn+1
j +

iτ
h̄

[

− h̄2

2m
ψn+1

j+1 + ψn+1
j−1 − 2ψn+1

j

h2 + Vjψn+1
j

]

= ψn
j .

We need more equations to find the unknowns Ψn+1
j , Ψn+1

±j . In fact we need to use all N equations, which can be
written in matrix form

(

I +
iτ
h̄

H
)

Ψn+1 = Ψn ,

in order to obtain the solution at the next time step

Ψn+1 =
(

I +
iτ
h̄

H
)−1

Ψn .
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It is easy to see that BTCS is unconditionally stable by considering an eigenvector of H with eigenvalue E:

Ψn+1 =
(

1 +
iτE
h̄

)−1

Ψn =
(

1 +
iτE
h̄

)−2

Ψn−1 = . . . =
(

1 +
iτE
h̄

)−n

Ψ1 ,

which implies that
∣

∣Ψn+1
∣

∣ =

(
√

1 +
τ2E2

h̄2

)−n
∣

∣Ψ1
∣

∣ −→ 0 , as n →∞ .

Unfortunately, this stability implies that probability is not conserved!

Symmetric Time Space Centered (STCS) Crank-Nicolson Differencing

This scheme averages the FTCS and BTCS formulas

Ψn+1 = Ψn − iτ
2h̄

H
(

Ψn + Ψn+1) ,

which leads to the matrix solution

Ψn+1 =
(

I +
iτ
2h̄

H
)−1 (

I− iτ
2h̄

H
)

Ψn .

It is easy to see that this scheme is unitary

Ψn+1 =

[

1− iτE
2h̄

1 + iτE
2h̄

]n

Ψ1 ,

and conserves probability exactly:
∣

∣Ψn+1
∣

∣ =
∣

∣Ψ1
∣

∣ .
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An additional advantage of this scheme is that it is one order of magnitude more accurate in time than FTCS
or BTCS. Let us write the exact evolution operator for one time step τ schematically as

e−
i
h̄Hτ ≡ e−z = 1− z +

z2

2
− z3

6
+ . . . ,

where z = O(τ). The FTCS scheme corresponds to the following approximation

1− z = e−z +O(τ2) ,

while BTCS corresponds to
1

1 + z
= 1− z + z2 − z3 + . . . = e−z +O(τ2) ,

and the Crank-Nicolson scheme to

1
1 + z

2

(

1− z
2

)

=
(

1− z
2

+
z2

4
− z3

8
+ . . .

)

(

1− z
2

)

= 1− z +
z2

2
− z3

4
+ . . . = e−z +O(τ3) .

Sparse matrix methods for solving the Schrödinger equation

We have seen that solving the time-dependent Schrödinger equation

ih̄
∂
∂t

ψ(x, t) = − h̄2

2m
∂2

∂x2 ψ + V (x)ψ .

using the Crank-Nicolson algorithm is essentially a matrix inversion problem:

Ψn+1 =
(

I +
iτ
2h̄

H
)−1 (

I− iτ
2h̄

H
)

Ψn .
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The standard Gaussian elimination techniques, see Appendix A, section A.8.1 of Thijssen’s book, for solving a
system of N linear equations for N unknowns, e.g., for finding the inverse of an N×N matrix, require O(N3)
operations. Assuming 106 operations per second, the CPU time required to evolve the initial wave packet through
1,000 time steps on a lattice with N = 1, 000 points is 106 secs = 11.6 days. Clearly this is unacceptably long.

In fact, the discrete lattice Hamiltonian matrix H is a sparse matrix: most of its elements are zero, and the
number of non-zero elements is O(N) and not O(N2). There are very efficient algorithms for manipulation sparse
matrices of particular types. These methods are discussed for example in Section 2.4 and Section 2.7 of Numerical
Recipes.

Dirichlet Boundary Conditions: Tridiagonal Matrix

Let’s examine the form of the matrix H in the case of homogeneous Dirichlet boundary conditions ψ(±L/2, t) =
0, which would be the appropriate choice for a particle in an infinitely deep potential well. Since the boundary
values ψn

−1 = ψn
N+1 = 0, the discretized Laplacian operator acting on ψ takes the following form:

(

∂2ψ
∂x2

)n

j
=

1
h2







ψn
2 − 2ψn

1 , for j = 1
ψn

j−1 + ψn
j+1 − 2ψn

j , for 1 < j < N
ψn

N−1 − 2ψn
N , for j = N

.

As an example, if N = 5, the form of H is

HDirichlet = − h̄2

2mh2











−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2











+











V1 0 0 0 0
0 V2 0 0 0
0 0 V3 0 0
0 0 0 V4 0
0 0 0 0 V5











.

This matrix is tridiagonal in form.

Since most of the matrix elements of a large tridiagonal matrix A are zero, it should be possible to solve a
linear equation

A~x = ~b

PHY 411-506 Computational Physics II Wednesday April 16, 2003



Topic 7 Waves and Fluid Dynamics 7

with much fewer than O(N3) operations. The Thomas algorithm for doing this is discussed in Section A.8.1.2 of
the textbook.

Periodic Boundary Conditions: Cyclic-Tridiagonal Matrix

In the case of periodic boundary conditions ψ(x+L, t) = ψ(x, t), which would be appropriate to describe a
particle confined to a ring of circumference L, ψn

−1 = ψn
N and ψn

N+1 = ψn
1 . In this case,

(

∂2ψ
∂x2

)n

j
=

1
h2







ψn
N + ψn

2 − 2ψn
1 , for j = 1

ψn
j−1 + ψn

j+1 − 2ψn
j , for 1 < j < N

ψn
N−1 + ψn

1 − 2ψn
N , for j = N

.

As an example, if N = 5, the form of H is

HPeriodic = − h̄2

2mh2











−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2











+











V1 0 0 0 0
0 V2 0 0 0
0 0 V3 0 0
0 0 0 V4 0
0 0 0 0 V5











.

A matrix of this type is said to be cyclic-tridiagonal in form.

A cyclic tridiagonal matrix is very close to being tridiagonal: only the two elements A1N and AN1 differ
from tridiagonal elements. The Sherman-Morrison formula can be used to obtain the solution of a linear equation
involving a cyclic-tridiagonal matrix very efficiently in O(N) operations.
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