
Topic 4 Quantum Monte Carlo Methods 1

Diffusion equation approach to quantum systems

In this approach, the ground state of the system is found by modeling a diffusion process. There are several
approaches to implementing this idea: we will develop programs for the Fokker-Planck and Diffusion Monte Carlo
approaches.

Diffusion and random walks

Consider a random walk on a lattice with spacing a in one dimension. The rule for the walk is that if the walker
is at position x at time t, then at time t + h, the walker moves to the neighbor sites x± a with equal probabilities
α and remains at x with probability 1− 2α: the sum of the three probabilities add up to 1.

Let’s consider an ensemble of a large number of such walkers. The number density of walkers is ρ(x, t), which
means that, at time t, the number of walkers between x and x + dx is ρ(x, t)dx. Note: each walker moves on a
lattice, but the lattices of different walkers are in general different.

The master equation

ρ(x, t + h)− ρ(x, t) = αρ(x + a, t) + αρ(x− a, t)− 2αρ(x, t) ,

says that the density of walkers at x increases in one time step h due to walkers from x ± a moving to x with
probability α, and decreases due to walkers moving from x to x± a with probability α.

If h and a are both small, the we can use Taylor expansions

ρ(x, t + h) = ρ(x, t) + h
∂ρ
∂t

+ . . . ρ(x± a, t) = ρ(x, t)± a
∂ρ
∂x

+
1
2
a2 ∂2ρ

∂x2 + . . .

In the continuum limit h → 0, a → 0 with a2/h held constant, we obtain the diffusion equation

∂ρ
∂t

= γ
∂2ρ
∂x2 ,

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 2

where

γ ≡ lim
h,a→0

αa2

h
,

is called the diffusion constant for the system of walkers.

Green’s function for the diffusion equation

The density of walkers at time t can be computed from the initial density using the formula

ρ(y, t) =
∫

dx G(x, y; t)ρ(x, 0) , G(x, y; t) =
1√

4πγt
e−(x−y)2/(4γt) ,

where G(x, y; t) is a Green’s function with the properties

G(x, y; 0) = δ(x− y) , and
∫

dx G(x, y; t) = 1 .

In fact, G(x, y; t) is the probability that a walker at x (or y) at time t = 0 moves to y (or x) at time t. This
provides a way of implementing the random walk:

• Choose a step size ∆t in time

• A walker at x(t) at time t moves to x(t + ∆t) = x(t) + η
√

∆t, where η is chosen randomly from a Gaussian
distribution with variance σ2 = 2γ.

Let’s consider this step as a trial step in the Metropolis algorithm. Do we need to make a Metropolis type test
before accepting the step? The answer is no, because the step is chosen according to a probability function which
drives the distribution exactly to equilibrium as a function of time t.

Another way of seeing that every step can be accepted is from the physical meaning of diffusion. Typically,
we have a dilute collection of non-interacting particles in a medium which can be considered to be a heat bath at

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 3

0

0.5

1

1.5

2

2.5

3

3.5

4

-5 -4 -3 -2 -1 0 1 2 3 4 5

G
(x

,0
;t)

x

Green’s function for diffusion

t = 0.01
t = 0.10
t = 1.00
t = 10.0

constant temperature T . The particles undergo random thermal motion due to collisions with the molecules of the
medium. The temperature of the medium determines the diffusion constant via Einstein’s relation

γ =
kBT
β

,

where β is the drag coefficient, e.g., β = 6πηR for Brownian spheres of radius R moving in fluid with kinematic
viscosity η (not to be confused with the Gaussian deviate in the step). Since the diffusing particles are non-
interacting, there is no energy cost when they move.

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 4

Fokker-Planck equation

Suppose we wish to find the average energy of a quantum system with a trial wave function ΨT(x). This can
be done using a diffusion process with a density of walkers ρ(x, τ) such that

lim
t→∞

ρ(x, t) = ρ(x) = |ΨT(x)|2 .

Can we use the diffusion equation to generate ρ(x)? The problem with the diffusion equation is that the density
of walkers ρ(x, t) tends to a constant as t →∞.

There is a modified diffusion equation, however, for which the density of walkers tends to a non-constant funtion
as t →∞. This is the Fokker-Planck equation

∂ρ(x, t)
∂t

=
1
2

∂
∂x

[

∂
∂x

− F (x)
]

ρ(x, t) ,

where the “Force” is determined by the desired density at t = ∞:

F (x) =
1

ρ(x)
dρ(x)
dx

.

Note that the Fokker-Planck equation can be written

∂ρ(x, t)
∂t

=
1
2

[

∂2ρ(x, t)
∂x2 − ρ(x, t)

ρ(x)
d2ρ(x)
dx2 +

ρ(x, t)
ρ2(x)

(

dρ(x)
dx

)2

− 1
ρ(x)

dρ(x)
dx

∂ρ(x, t)
∂x

]

.

The right hand side vanishes if ρ(x, t) = ρ(x), and hence ∂ρ/∂t tends to zero, and the density becomes independent
of time in this limit.

Approximate Green’s function for the Fokker-Planck equation

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 5

Unfortunately, a closed form for the Green’s function cannot be obtained for arbitrary F (x). However, we can
use the following approximate form

G(x, y; ∆t) =
1√

2π∆t
e−[y−x−F (x)∆t/2]2/(2∆t) ,

which has the necessary properties

lim
∆t→0

G(x, y;∆t) = δ(x− y) ,
∫

dy G(x, y;∆t) = 1 ,

for a probability interpretation. This function does not however obey the Fokker-Planck equation: but if ∆t is
small, then the error is of order ∆t2.

To implement a random walk with this Green’s function, suppose the walker is at position x at time t, then he
moves to y which is Gaussian-distributed around x + F (x)∆t/2 with variance ∆t:

x(t + ∆t) = x(t) + F (x)∆t/2 + η
√

∆t ,

where η is chosen from a Gaussian distribution with unit variance.

Metropolis correction to Fokker-Planck walk

If the Green’s function for the Fokker-Planck equation were exact, then the random walk algorithm given above
would inevitably drive any initial distribution to the desired equilibrium distribution ρ(x), just as in the case of
the diffusion equation. However, the Green’s function is not exact, and there will be errors in the evolution of the
distribution of O(∆t2). If ∆t is chosen small, the errors will be small, but it will take a long time to generate ρ(x).

These errors can be corrected using the Metropolis algorithm. The Fokker-Planck step from x(t) to x(t + ∆t)
is considered as a trial step for the Metropolis algorithm. If the Green’s function were exact, then we would have
for the ratio of step probabilities

T (x → y)
T (y → x)

=
G(x, y; ∆t)
G(y, x; ∆t)

=
ρ(y)
ρ(x)

.

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 6

Since the Green’s function is not exact, we need to push the ratio

w =
T (y → x)ρ(y)
T (x → y)ρ(x)

=
G(y, x; ∆t)ρ(y)
G(x, y;∆t)ρ(x)

toward unity. If T (x → y) is too small compared with T (y → x), this will tend to make w > 1: in this case the
step from x to y should always be accepted. Conversely, if T (x → y) is too large compared with T (y → x), then
accepting the step conditionally by checking whether w is larger than a uniform deviate will tend to correct the
problem.

Fokker-Planck equation approach to VMC

The algorithms described above are coded in the following program vmc-fp.cpp. The system chosen is the
Harmonic Oscillator moving in one dimension. For trial wave function, we choose a Gaussian:

ΨT(x) ∼ e−αx2
, ρ(x) ∼ |ΨT(x)|2 ∼ e−2αx2

,

where α is a variational parameter. The “Force” in the Fokker-Planck equation is then

F (x) =
1

ρ(x)
dρ(x)
dx

= −4αx .

Note that this “Force” acts towards the equilibrium position x = 0 of the oscillator, which is reasonable!

// Fokker-Planck equation approach to VMC

#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include "rng.h"

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 7

using namespace std;

int N; // number of walkers
double *x; // positions of walkers
double alpha; // variational parameter
double tStep; // time step
int seed = -987654321; // for random ran2 and gasdev

double eSum; // accumulator to find energy
double eSqdSum; // accumulator to find fluctuations in E

void initialize() {

x = new double [N];
for (int i = 0; i < N; i++)

x[i] = qadran() - 0.5;
tStep = 0.1;

}

void zeroAccumulators() {
eSum = eSqdSum = 0;

}

double eLocal(double x) {

// compute the local energy
return alpha + x * x * (0.5 - 2 * alpha * alpha);

}

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 8

int nAccept; // accumulator for number of accepted steps

The changes from the simple VMC program vmc.cpp are in the following function. The chosen walker is
provisionally moved to to a new position

y = x + η
√

∆t +
1
2
F (x)∆t ,

where
F (x) = −4αx .

void MetropolisStep(int n) {

// make a trial move
double x = ::x[n]; // :: chooses the global x
double Fx = - 4 * alpha * x;
double y = x + gasdev(seed) * sqrt(tStep) + Fx * tStep / 2;

The Metropolis test involves the ratio

w =
G(y, x;∆t)ρ(y)
G(x, y;∆t)ρ(x)

=
e−(x−y−F (y)∆t/2)2/(2∆t)

e−(y−x−F (x)∆t/2)2/(2∆t)

e−2αy2

e−2αx2 ,

// compute ratio for Metropolis test
double rhoRatio = exp(- 2 * alpha * (y * y - x * x));
double oldExp = y - x - Fx * tStep / 2;
double Fy = - 4 * alpha * y;

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 9

double newExp = x - y - Fy * tStep / 2;
double GRatio = exp(-(newExp * newExp - oldExp * oldExp) / (2 * tStep));
double w = rhoRatio * GRatio;

// Metropolis test
if (w > ran2(seed)) {

::x[n] = x = y;
++nAccept;

}

// accumulate energy and wave function
double e = eLocal(x);
eSum += e;
eSqdSum += e * e;

}

void oneMonteCarloStep() {

// perform N Metropolis steps
for (int n = 0; n < N; n++) {

MetropolisStep(n);
}

}

The main function is almost identical to that in vmc.cpp. Following Thijssen’s Fortran program, time step size
∆t is adjusted in the thermalization phase of the Monte Carlo so that the acceptance ratio for the Metropolis tests
is 90%. This is reasonable because the Metropolis test would not be needed were it not for the fact that the Green’s
function is not exact.

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 10

int main() {

cout << " Fokker-Planck approach to VMC: Harmonic Oscillator\n"
<< " --\n"
<< " Enter number of walkers: ";

cin >> N;
cout << " Enter variational parameter alpha: ";
cin >> alpha;
cout << " Enter number of Monte Carlo steps: ";
int MCSteps;
cin >> MCSteps;

initialize();

// perform 20% of MCSteps as thermalization steps
// and adjust time step size so acceptance ratio ~90%
int thermSteps = int(0.2 * MCSteps);
int adjustInterval = int(0.1 * thermSteps) + 1;
nAccept = 0;
cout << " Performing " << thermSteps << " thermalization steps ..."

<< flush;
for (int i = 0; i < thermSteps; i++) {

oneMonteCarloStep();
if ((i+1) % adjustInterval == 0) {

tStep *= nAccept / (0.9 * N * adjustInterval);
nAccept = 0;

}
}
cout << "\n Adjusted time step size = " << tStep << endl;

PHY 411-506 Computational Physics II Monday March 3, 2003

Topic 4 Quantum Monte Carlo Methods 11

// production steps
zeroAccumulators();
nAccept = 0;
cout << " Performing " << MCSteps << " production steps ..." << flush;
for (int i = 0; i < MCSteps; i++)

oneMonteCarloStep();

// compute and print energy
double eAve = eSum / double(N) / MCSteps;
double eVar = eSqdSum / double(N) / MCSteps - eAve * eAve;
double error = sqrt(eVar) / sqrt(double(N) * MCSteps);
cout << "\n <Energy> = " << eAve << " +/- " << error

<< "\n Variance = " << eVar << endl;
}

PHY 411-506 Computational Physics II Monday March 3, 2003

