
Topic 3 Monte Carlo Methods 1

Importance Sampling

We have seen that uniform sampling can be used to estimate an integral

∫ b

a
f(x) dx ' b− a

N

N
∑

i=1

f(xi)±
(b− a)σf√

N
,

where the random numbers xi are uniformly distributed in the interval [a, b], and the variance of the function f is

σ2
f =

(

1
b− a

∫ b

a
f2(x) dx

)

−

(

1
b− a

∫ b

a
f(x) dx

)2

'

(

1
N

N
∑

i=1

f2(xi)

)

−

(

1
N

N
∑

i=1

f(xi)

)2

.

Consider however, the following integral:

1√
2π

∫ ∞

−∞
x2e−x2/2 dx = 1 .

There are two problems with using uniform sampling to estimate this integral:

• (b− a) = ∞, so a cut-off such as b = −a = L � 1 must be used, and

• f(x) is exponentially small almost everywhere except near x = 0, so the variance of f will be large.

These problems can be avoided by using importance sampling. Let w(x) be a weight function which is positive
definite everywhere in the integration interval and normalized to unity:

w(x) > 0 for a < x < b ,
∫ b

a
w(x) dx = 1 .

The weight function is chosen to reduce the variance of the integrand by means of a change of variable

y =
∫ x

a
w(x′) dx′ ,

∫ b

a
f(x) dx =

∫ 1

0

f(x(y))
w(x(y))

dy .

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 2

If w(x) is chosen to be large where |f(x)| is large, and small where |f(x)| is small, then f(x)/w(x) can have a much
smaller variance than f(x).

The integral can now be estimated by uniform sampling in y, or equivalently, by sampling in x with probability
w(x). For example, to estimate the Gaussian integral example on the previous page, let

w(x) =
e−x2/2
√

2π
, so

f(x)
w(x)

= x2 .

The function gasdev in the header file rng.h can be used to generate random numbers with probability w(x), as
shown in the following program in the file gauss.cpp:

// estimate Gaussian integral using uniform and importance sampling

#include <cmath>
#include <cstdlib>
#include <iostream>
#include "rng.h"

using namespace std;

const double pi = 4 * atan(1.0);

double f(double x) {
return x * x * exp(- x * x / 2) / sqrt(2 * pi);

}

double f_over_w(double x) {
return x * x;

}

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 3

int main() {

// get input parameters from user
cout << "Enter number of points N: ";
int N;
cin >> N;
cout << "Enter cut-off L for uniform sampling: ";
double L;
cin >> L;
cout << "Enter integer seed for ran2: ";
int seed;
cin >> seed;

// uniform sampling
double avg = 0;
double var = 0;
for (int i = 0; i < N; i++) {

double x = (2 * ran2(seed) - 1) * L;
double fx = f(x);
avg += fx;
var += fx * fx;

}
avg /= N;
var /= N;
var = var - avg * avg;
cout << "\n Uniform sampling: " << 2 * L * avg << " +- "

<< 2 * L * sqrt(var / N) << endl;

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 4

// importance sampling
avg = var = 0;
for (int i = 0; i < N; i++) {

double x = gasdev(seed);
double fx = f_over_w(x);
avg += fx;
var += fx * fx;

}
avg /= N;
var /= N;
var = var - avg * avg;
cout << "Importance sampling: " << avg << " +- "

<< sqrt(var / N) << endl;

cout << " Exact answer: " << 1.0 << endl;
}

Run this program and note the following:

• The error estimate for importance sampling agrees with the actual error, and decreases like 1/
√

N .

• If the cut-off L for uniform sampling is chose too small, i.e., ∼ 1, then the error estimate is small but does not
agree with the actual error which is much larger.

• If the cut-off L for uniform sampling is chosen � 1, then the error estimate agrees with the actual error, but
they are both much bigger than the error in importance sampling.

It is possible to get good results using uniform sampling by choosing the cut-off carefully so that it is not too big
or too small. By contrast, importance sampling does not require a cut-off.

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 5

The Metropolis Monte Carlo Algorithm

This algorithm was invented by N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller,
J. Chem. Phys., 21, 1087 (1953). It was listed as one of the The Top 10 Algorithms of the 20th Century in a recent
issue of Computing in Science and Engineering.

Suppose we wish to generate random numbers distributed according to a positive definite function in one
dimension, for example

P (x) = e−x2/2 .

The function need not be normalized for the algorithm to work, and the same algorithm works just as easily in a
many dimensional space. The random number sequence xi, i = 0, 1, 2, . . . is generated by a random walk as follows:

• Choose a starting point x0.

• Choose a fixed maximum step size δ.

• Given an xi, generate the next random number as follows:

◦ Choose xtrial uniformly and randomly in the interval [xi − δ, xi + δ].

◦ Compute the ratio

w =
P (xtrial)
P (xi)

.

Note that P need not be normalized to compute this ratio.

◦ If w > 1 the trial step is in the right direction, i.e., towards a region of higher probability. Accept the step
xi+1 = xtrial.

◦ If w < 1 the trial step is in the wrong direction, i.e., towards a region of lower probability. We should not
unconditionally reject this step! (Why?) So accept the step conditionally if the decrease in probability is
smaller than a random amount:

Generate a random number r in the interval [0, 1].

If r < w accept the trial step xi+1 = xtrial.

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 6

If w ≤ r reject the step xi+1 = xi. Note that we don’t discard this step! The two steps have the same
value.

This algorithm is implemented in the following program metropolis.cpp to compute the same Gaussian integral
as previously.

// estimate Gaussian integral using Metropolis algorithm

#include <cmath>
#include <cstdlib>
#include <iostream>
#include "rng.h"

using namespace std;

const double pi = 4 * atan(1.0);

double P(double x) {
return exp(- x * x / 2) / sqrt(2 * pi);

}

double f_over_w(double x) {
return x * x;

}

double x = 0; // initial position of walker
double delta = 1.0; // step size
int seed = -123456789; // seed for ran2

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 7

int accepts = 0; // number of steps accepted

void MetropolisStep() {
double xTrial = x + (2 * ran2(seed) - 1) * delta;
double w = P(xTrial) / P(x);
if (w >= 1) { // uphill

x = xTrial; // accept the step
++accepts;

} else { // downhill
if (ran2(seed) < w) { // but not too far

x = xTrial; // accept the step
++accepts;

}
}

}

int main() {

// get input parameters from user
cout << "Enter step size delta: ";
cin >> delta;
cout << "Enter number of trials: ";
int M;
cin >> M;
cout << "Enter steps per trial: ";
int N;
cin >> N;

double sum = 0; // accumulator for <f>

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 8

double sqdSum = 0; // accumulator for <f> * <f>
double errSum = 0; // accumulator error estimates
for (int i = 0; i < M; i++) {

double avg = 0; // accumulator for f(x)
double var = 0; // accumulator for f(x) * f(x)
for (int j = 0; j < N; j++) {

MetropolisStep();
double fx = f_over_w(x);
avg += fx;
var += fx * fx;

}
avg /= N;
var /= N;
var = var - avg * avg;
double err = sqrt(var / N);
sum += avg;
sqdSum += avg * avg;
errSum += err;

}
double ans = sum / M;
double stdDev = sqrt(sqdSum / M - ans * ans);
stdDev /= sqrt(double(M));
double err = errSum / M;
err /= sqrt(double(M));
cout << "\n Exact answer: " << 1.0 << endl;
cout << " Integral: " << ans << " +- " << err << endl;
cout << " Std. Dev.: " << stdDev << endl;
cout << " Accept ratio: " << accepts / double(N * M) << endl;

}

PHY 411-506 Computational Physics II Monday February 10, 2003

Topic 3 Monte Carlo Methods 9

There are essentially two important choices to be made:

• The initial point x0 must be chosen carefully. A good choice is close to the maximum of the desired probability
distribution. If this maximum is not known (as is usually the case in multi dimensional problems), then the
random walker must be allowed to thermalize i.e., to find a good starting configuration: the algorithm is run
for some large number of steps which are then discarded.

• The step size δ must be carefully chosen.

◦ If δ is too small, then most of the trial steps will be accepted, which will tend to give a uniform distribution
that converges very slowly to P (x).

◦ If δ is too large the random walker will step right over and not “see” important peaks in the probability
distribution. If the walker is at a peak, too many steps will be rejected.

A rough criterion for choosing the step size is for the

Acceptance ratio =
Number of steps accepted
Total number of trial steps

to be around 0.5.

PHY 411-506 Computational Physics II Monday February 10, 2003

