
Topic 4 Quantum Monte Carlo Methods 1

Choice of variational trial wave function

The choice of variational wave function is the most important step in doing a variational Monte Carlo calculation.

With a well-chosen trial wave function, writing the computer code is very straightforward. Obtaining accurate
results requires large amounts of computer time because Monte Carlo errors scale like 1/

√
N , where N is the number

of steps.

With a poorly chosen wave function, the random walk may difficulty finding the global minimum. The local
energy can also have singularities which might result in large fluctuations in the average energy and hence large
errors.

Slater-Jastrow functions

A very popular way of choosing a trial wave function is to start with single-particle wavefunctions. For example,
the ground state wave function of a Helium nucleus with one electron is

ψ0(r) ∼ e−2r .

The Slater-Jastrow function is a product of single-particle wave functions multiplied by an exponential of
many-particle correlation factors:

Ψ(x1, . . . ,xN) = ΨAS(x1, . . . ,xN) exp





1
2

N
∑

i,j

φ(rij)



 .

Here x denotes the position r and spin coordinates of an electron. ΨAS is an antisymmetric product, or Slater
Determinant of single-particle functions. The exponential is a two-body Jastrow wave function: note that it is
symmetric under exchange of any two particles. Thus this trial wave function satisfies Pauli’s exclusion principle.

Why did we not use a Slater determinant in writing

Ψ(r1, r2) = e−2r1e−2r2e
r12

2(1+αr12)

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 2

for the He trial function? The reason we can use a symmetric product is that the required antisymmetry can be
provided by the spins of the electrons. The Slater determinant in this instance is

1√
2

∣

∣

∣

∣

φ0(r1)|1↑〉 φ0(r2)|2↑〉
φ0(r1)|1↓〉 φ0(r2)|2↓〉

∣

∣

∣

∣

= φ0(r1)φ0(r2)
1√
2

[|1↑〉|2↓〉| − |1↓〉|2↑〉] ,

i.e., the spin wave function is an antisymmetric singlet state, thus ensuring the overall wave function obeys the Pauli
principle. Since we have neglected spin-dependent terms in the Hamiltonian, the spin wave function does not affect
the local energy.

In the Helium VMC, φ(rij) is taken to be a Padé function

φ(rij) =
rij

1 + αrij
.

A Padé approximant is simply a rational function (i.e., a ratio of two polynomials) which is used to approximate a
function that can be expanded in a power series. Rational functions are very useful in representing a power series
in certain limits: for example,

φ(rij → 0) = 0, and φ(rij →∞) = 1/α ,

for the He Padé exponent. Thus, if α � 1, then the trial wave function is enhanced when the two electrons are far
apart (rij →∞) relative to when they are close together (rij → 0):

Ψ(r1, r2) =
{

e−2r1e−2r2 when r12 = 0
e−2r1e−2r2 × e1/α when rij � 1

Searching for a minimum with α � 1 will tend to minimize the repulsive Coulomb interaction energy between the
two electrons.

Coulomb singularities and cusp conditions

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 3

The potential energy contribution

− 2
r1
− 2

r2
+

1
r12

to the total energy is singular when any of r1, r2, or r12 become very small, i.e., when an electron approaches the
nucleus or when the two electrons approach one another.

These singularities can cause instabilities in the random work and give rise to large errors. It is therefore very
important to choose the trial wave function so that these Coulomb singularities do not occur in the expression for
the local energy. This requirement leads to cusp conditions on the parameters in the trial wave function.

Consider a Hydrogen-like atom in its ground state. The equation for the wave function is

−1
2

[

d2

dr2 +
2
r

d
dr

]

ψ(r)− Z
r

ψ(r) = Eψ(r) .

If the energy of the atom is to be finite, the divergent negative potential energy at r = 0 must be cancelled by a
divergence in the kinetic energy, i.e.,

−1
r

[

d
dr

+ Z
]

ψ(r) = finite .

Consider a trial wave function of the form

Ψ(r) = e−αr .

This function has a cusp (Latin for a point, or the tip of a spear) at r = 0. A cusp is a point on a curve at which
the tangent changes sign. Consider Ψ(r) as a function of x for y = z = 0. Its slope at r = 0 is discontinuous:

d
dx

e−α|x| =
{

−αe−α|x| for x > 0
+αe−α|x| for x < 0

.

The discontinuity from negative to positive x is 2α.

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 4

Substituting the trial function in singular part of the wave equation

−1
r

[

d
dr

+ Z
]

e−αr = −1
r

[−α + Z] e−αr = finite ,

give the cusp condition
α = Z .

To further illustrate the cusp conditions, let’s consider the following generalized wave function for the Helium
atom problem:

Ψ(r1, r2) = e−Zr1e−Zr2e
βr12

(1+αr12) ,

where Z and β are taken to be two additional variational parameters. With a little effort, it is straightforward to
obtain an expression for the local energy:

EL(r1, r2) =− Z2 +
(Z − 2)

r1
+

(Z − 2)
r2

+
1

r12

[

1− 2β
(1 + αr12)2

]

+
2αβ

(1 + αr12)3
− β2

(1 + αr12)4
+

Zβ
(1 + αr12)2

r̂12 · (r̂1 − r̂2) .

This expression has obvious Coulomb singularities. However, if we impose the cusp conditions

Z = 2 , β =
1
2

,

then all the singular terms cancel and we obtain the local energy used in the Helium VMC program:

EL(r1, r2) =− 4 +
α

(1 + αr12)
+

α
(1 + αr12)2

+
α

(1 + αr12)3

− 1
4(1 + αr12)4

+
r̂12 · (r̂1 − r̂2)
(1 + αr12)2

.

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 5

Note: Eqn. (12.10) in the textbook is not correct.

Basically, the cusp conditions ensure that the trial wave function satisfies the singular terms in Schrödinger’s
equation exactly: for the true wave function, a singular negative potential energy contribution is cancelled by a large
positive kinetic energy.

VMC for Helium with parameters Z and β

The program vmc-he2.cpp uses the same code as vmc-he.cpp but with the parameters Z and β included in
the trial wave function and the local energy.

double Z = 2; // effective nuclear charge parameter
double beta = 0.5; // effective electron-electron coupling parameter

double Psi(double *rElectron1, double *rElectron2) {

// value of trial wave function for walker n
double r1 = 0, r2 = 0, r12 = 0;
for (int d = 0; d < 3; d++) {

r1 += rElectron1[d] * rElectron1[d];
r2 += rElectron2[d] * rElectron2[d];
r12 += (rElectron1[d] - rElectron2[d])

* (rElectron1[d] - rElectron2[d]);
}
r1 = sqrt(r1);
r2 = sqrt(r2);
r12 = sqrt(r12);
double Psi = - Z*r1 - Z*r2 + beta * r12 / (1 + alpha*r12);
return exp(Psi);

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 6

}

double eLocal(double *rElectron1, double *rElectron2) {

// value of trial wave function for walker n
double r1 = 0, r2 = 0, r12 = 0;
for (int d = 0; d < 3; d++) {

r1 += rElectron1[d] * rElectron1[d];
r2 += rElectron2[d] * rElectron2[d];
r12 += (rElectron1[d] - rElectron2[d]) *

(rElectron1[d] - rElectron2[d]);
}
r1 = sqrt(r1);
r2 = sqrt(r2);
r12 = sqrt(r12);
double dotProd = 0;
for (int d = 0; d < 3; d++) {

dotProd += (rElectron1[d] - rElectron2[d]) / r12 *
(rElectron1[d] / r1 - rElectron2[d] / r2);

}
double denom = 1 / (1 + alpha * r12);
double denom2 = denom * denom;
double denom3 = denom2 * denom;
double denom4 = denom2 * denom2;
double e = - Z * Z + (Z - 2) *(1 / r1 + 1 / r2)

+ 1 / r12 * (1 - 2 * beta * denom2) + 2 * alpha * beta * denom3
- beta * beta * denom4 + Z * beta * dotProd * denom2;

return e;
}

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 7

New function to do a Monte Carlo run

Let’s add a new function which does a complete Monte Carlo run and computes the average energy and its
variance.

double eAve; // average energy
double eVar; // variance in the energy
int MCSteps = 10000; // number of Monte Carlo steps per walker

void runMonteCarlo() {

// perform 20% of MCSteps as thermalization steps
// and adjust step size so acceptance ratio ~50%
int thermSteps = int(0.2 * MCSteps);
int adjustInterval = int(0.1 * thermSteps) + 1;
nAccept = 0;
for (int i = 0; i < thermSteps; i++) {

oneMonteCarloStep();
if ((i+1) % adjustInterval == 0) {

delta *= nAccept / (0.5 * N * adjustInterval);
nAccept = 0;

}
}

// production steps
zeroAccumulators();
nAccept = 0;
for (int i = 0; i < MCSteps; i++)

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 8

oneMonteCarloStep();
eAve = eSum / double(N) / MCSteps;
eVar = eSqdSum / double(N) / MCSteps - eAve * eAve;

}

Modified main function to steer the calculation

In the main function we will generate 3 sets of data by varying each of the three parameters Z, β, α holding
the other two constant.

int main() {

cout << " Variational Monte Carlo for Helium Atom\n"
<< " ---------------------------------------\n";

N = 300;
cout << " Number of walkers = " << N << endl;
cout << " Number of MCSteps = " << MCSteps << endl;
initialize();

// Vary Z holding beta and alpha fixed
ofstream file("Z.data");
beta = 0.5;
alpha = 0.1;
Z = 0.5;
cout << " Varying Z with beta = 0.5 and alpha = 0.1" << endl;
while (Z < 3.6) {

runMonteCarlo();
file << Z << ’\t’ << eAve << ’\t’ << eVar << ’\n’;
cout << " Z = " << Z << "\t<E> = " << eAve

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 9

<< "\tVariance = " << eVar << endl;
Z += 0.25;

}
file.close();

// Vary beta holding Z and alpha fixed
file.open("beta.data");
Z = 2;
beta = 0;
cout << " Varying beta with Z = 2 and alpha = 0.1" << endl;
while (beta < 1.1) {

runMonteCarlo();
file << beta << ’\t’ << eAve << ’\t’ << eVar << ’\n’;
cout << " beta = " << beta << "\t<E> = " << eAve

<< "\tVariance = " << eVar << endl;
beta += 0.1;

}
file.close();

// Vary alpha holding Z and beta fixed
file.open("alpha.data");
beta = 0.5;
Z = 2;
alpha = 0;
cout << " Varying alpha with Z = 2 and beta = 0.5" << endl;
while (alpha < 0.6) {

runMonteCarlo();
file << alpha << ’\t’ << eAve << ’\t’ << eVar << ’\n’;
cout << " alpha = " << alpha << "\t<E> = " << eAve

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 10

<< "\tVariance = " << eVar << endl;
alpha += 0.05;

}
file.close();

}

Output of the program

The following plots show the effects of varying Z with α = 0.1 and β = 0.5, varying β with Z = 2 and α = 0.1,
and varying α with Z = 2 and β = 0.5, respectively.

-3

-2.5

-2

-1.5

-1

-0.5

0.5 1 1.5 2 2.5 3 3.5

<
E

>�

Z

Variational Monte Carlo for Helium

"Z.data"

-2.9

-2.85

-2.8

-2.75

-2.7

-2.65

0 0.2 0.4 0.6 0.8 1 1.2

<
E

>�

beta

Variational Monte Carlo for Helium

"beta.data"

-2.88

-2.875

-2.87

-2.865

-2.86

-2.855

-2.85

0 0.1 0.2 0.3 0.4 0.5 0.6

<
E

>�

alpha

Variational Monte Carlo for Helium

"alpha.data"

Note that the average energy is most sensitive to variations in the parameter Z: this shows that it is most important
to use the cusp condition on the single particle trial functions. The β dependence of the average energy is not as
dramatic as the Z dependence: this shows that the electron-electron interaction is not as important as the electron-
nucleus interactions, as might be expected. With the cusp conditions Z = 2 and β = 0.5 imposed, the α dependence
of the average energy is very small: this shows the importance of using the cusp conditions.

The following plots show the variance in the energy for the corresponding runs:

PHY 411-506 Computational Physics II Friday February 28, 2003

Topic 4 Quantum Monte Carlo Methods 11

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5 3 3.5

<
E

^2
>

 -
 <

E
>

^2

�

Z

Variational Monte Carlo for Helium

"Z.data" using 1:3

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

<
E

^2
>

 -
 <

E
>

^2

�

beta

Variational Monte Carlo for Helium

"beta.data" using 1:3

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 0.1 0.2 0.3 0.4 0.5 0.6

<
E

^2
>

 -
 <

E
>

^2

�

alpha

Variational Monte Carlo for Helium

"alpha.data" using 1:3

Note the very large dependence on Z, the moderate dependence on β and the relatively small dependence on α.
Once again, this shows the importance of using the cusp conditions on Z and β: if this is done, one does not need
to waste a lot of computer time searching for the minimum in α or trying to reduce the variance.

PHY 411-506 Computational Physics II Friday February 28, 2003

