
Chapter 13

Fractals and Kinetic Growth
Models

c©2004 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
17 December 2004

We introduce the concept of fractal dimension and discuss several processes that generate
fractal objects.

13.1 The Fractal Dimension

One of the more interesting geometrical properties of objects is their shape. As an example, we
show in Figure 13.1 a spanning cluster generated at the percolation threshold. Although the visual
description of such a cluster is subjective, such a cluster can be described as ramified, airy, tenuous,
and stringy, and would not be described as compact or space-filling.

In the 1970’s a new fractal geometry was developed by Mandelbrot and others to describe the
characteristics of ramified objects. One quantitative measure of the structure of these objects is
their fractal dimension D. To define D, we first review some simple ideas of dimension in ordinary
Euclidean geometry. Consider a circular or spherical object of mass M and radius R. If the radius
of the object is increased from R to 2R, the mass of the object is increased by a factor of 22 if the
object is circular, or by 23 if the object is spherical. We can express this relation between mass
and the radius or a length as

M(R) ∼ RD, (mass dimension) (13.1)

where D is the dimension of the object. Equation (13.1) implies that if the linear dimensions of
an object are increased by a factor of b while preserving its shape, then the mass of the object is
increased by bD. This mass-length scaling relation is closely related to our intuitive understanding
of dimension.

521

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 522

If the dimension of the object, D, and the dimension of the Euclidean space in which the
object is embedded, d, are identical, then the mass density ρ = M/Rd scales as

ρ(R) ∝ M(R)/Rd ∼ R0. (13.2)

An example of a two-dimensional object is shown in Figure 13.2. An object whose mass-length
relation satisfies (13.1) with D = d is said to be compact.

Figure 13.1: Example of a percolation cluster generated at p = 0.5927 on a L = 61 square lattice.
Occupied sites that are not part of the spanning cluster are shown as points; unoccupied sites are
not shown. [xx need a better figure xx]

Equation (13.1) can be used to define the fractal dimension. We denote objects as fractals if
they satisfy (13.1) with a value of D different from the spatial dimension d. If an object satisfies
(13.1) with D < d, its density is not the same for all R, but scales as

ρ(R) ∝ M/Rd ∼ RD−d. (13.3)

Because D < d, a fractal object becomes less dense at larger length scales. The scale dependence
of the density is a quantitative measure of the ramified or stringy nature of fractal objects. That
is, one characteristic of fractal objects is that they have holes of all sizes.

The percolation cluster shown in Figure 13.1 is an example of a random or statistical fractal
because the mass-length relation (13.1) is satisfied only on the average, that is, only if the quantity
M(R) is averaged over many different origins in a given cluster and over many clusters.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 523

Figure 13.2: The number of dots per unit area in each circle is uniform. How does the total number
of dots (mass) vary with the radius of the circle?

In physical systems, the relation (13.1) does not extend over all length scales, but is bounded
by both upper and lower cut-off lengths. For example, a lower cut-off length is provided by a
microscopic distance such as a lattice spacing or the mean distance between the constituents of
the object. In computer simulations a maximum length usually is provided by the finite system
size. The presence of these cut-offs complicates the determination of the fractal dimension.

Another important characteristic of fractal objects is that they look the same over a range
of length scales. This property of self-similarity or scale invariance means that if we take part of
a fractal object and magnify it by the same magnification factor in all directions, the magnified
picture is indistinguishable from the original.

In Problem 13.1 we compute the fractal dimension of percolation clusters using straightforward
Monte Carlo methods. Remember that data extending over several decades is required to obtain
convincing evidence for a power law relationship between M and R and to determine accurate
estimates for the fractal dimension. Hence, conclusions based on the limited simulations posed in
the problems need to be interpreted with caution. A renormalization group method for estimating
the fractal dimension is considered in Problem 13.2.

Problem 13.1. The fractal dimension of percolation clusters

a. Generate a site percolation configuration on a square lattice with L = 61 at p = pc ≈ 0.5927.
Why might it be necessary to generate a number of configurations before a spanning cluster is
obtained? Obtain a feel for the ramified nature of the spanning cluster by printing a configura-
tion and marking the positions of the sites in the spanning cluster as in Figure 13.1. Does the
spanning cluster have many dangling ends?

b. Choose a point on the spanning cluster and count the number of points in the spanning cluster
M(b) within a square of area b2 centered about that point. Then double b and count the number
of points within the larger box. Repeat this procedure until you can estimate the b-dependence
of the number of points. Can you repeat this procedure indefinitely? Use the b-dependence of

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 524

M(b) to estimate D according to the definition, M(b) ∼ bD (see (13.1)). Choose another point
in the cluster and repeat this procedure. Are your results similar? A better estimate for D can
be found by averaging M(b) over several origins in each spanning cluster and averaging over
many spanning clusters.

c. If you have not done Problem 12.10a, compute D by determining the mean size (mass) M of
the spanning cluster at p = pc as a function of the linear dimension L of the lattice. Consider
L = 11, 21, 41, and 61 and estimate D from a log-log plot of M versus L.

∗Problem 13.2. Renormalization group calculation of the fractal dimension
Compute 〈M2〉, the average of the square of the number of occupied sites in the spanning cluster
at p = pc, and the quantity 〈M ′2〉, the average of the square of the number of occupied sites in the
spanning cluster on the renormalized lattice of linear dimension L′ = L/b. Because 〈M2〉 ∼ R2D

and 〈M ′2〉 ∼ (R/b)2D, we can obtain D from the relation b2D = 〈M2〉/〈M ′2〉. Choose the length
rescaling factor to be b = 2 and adopt the same blocking procedure as was used in Section 12.6. An
average over ten spanning clusters for L = 16 and p = 0.5927 is sufficient for qualitative results.

In Problems 13.1 and 13.2 we were interested only in the properties of the spanning clusters.
For this reason, our algorithm for generating percolation configurations by randomly occupying
each site is inefficient because it generates many clusters. There is a more efficient way of generating
single percolation clusters due independently to Hammersley, Leath, and Alexandrowicz. This
algorithm, commonly known as the Leath algorithm, is equivalent to the following steps (see
Figure 13.3):

1. Occupy a single seed on the lattice. The nearest neighbors (four on the square lattice) of the
seed represent the perimeter sites.

2. For each perimeter site, generate a random number r in the unit interval. If r ≤ p, the site
is occupied and added to the cluster; otherwise the site is not occupied. In order that sites
be unoccupied with probability 1 − p, these sites are not tested again.

3. For each site that is occupied, determine if there are any new perimeter sites, that is, untested
neighbors. Add the new perimeter sites to the perimeter list.

4. Continue steps 2 and 3 until there are no untested perimeter sites to test for occupancy.

Class Cluster implements this algorithm and computes the number of occupied sites within
a radius r of the seed particle. The seed site is placed at the center of a square lattice. Two
one-dimensional arrays, pxs and pys, store the x and y positions of the perimeter sites. The status
of a site is stored in the array s with s(x,y) = 1 an occupied site, s(x,y) = 2 a perimeter site, and
s(x,y) = −1 a site that has already been tested and not occupied, and s(x,y) = 0 an untested
and unvisited site. To avoid checking for the boundaries of the lattice, we add an extra row and
column at the boundary and set these sites equal to −1.

Listing 13.1: Class for generating and analyzing a clsuster.
/∗ Creates percolation cluster with probability p and computes mass distribution ∗/

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 525

p

p

p

p x
p

p

p x

p

p

p

p

p p

x

p

p

p

p

p

p

x

p

p

p

x

p p

p
x

p

p

p

p
x

p p

p

p
x

p

p

p
x

p p

p

p
x

p

p

p

x

p

p

Figure 13.3: An example of the growth of a percolation cluster. Sites are occupied with probability
p = 0.5927. Occupied sites are represented by a shaded square, perimeter sites are labeled by ‘p,’
and tested unoccupied sites are labeled by ‘x.’ Because the seed site is occupied but not tested,
we have represented it differently than the other occupied sites. The perimeter sites are chosen at
random.

package org.opensourcephysics.sip.ch13. cluster ;
import org.opensourcephysics.display.∗;
import java.awt.∗;

public class Cluster implements Drawable{

public int s [][];
public int xs [], ys [], pxs [], pys [];
public int L;
public double p; //site occupation probability
int occupiedNumber;
int perimeterNumber;
int nx[] = {1,−1,0,0};
int ny[] = {0,0,1,−1};
double mass[];

public void initialize () {
s = new int[L+2][L+2];
xs = new int[L∗L]; //location of occupied sites
ys = new int[L∗L];
pxs = new int[L∗L]; //location of perimeter sites
pys = new int[L∗L];
for(int i = 0; i < L+2; i++) {

s [0][i] = −1; // don’t occupy edge sites
s [L+1][i] = −1;

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 526

s [i][0] = −1;
s [i][L+1] = −1;

}
xs[0] = 1 + (L/2);
ys[0] = xs [0];
s [xs [0]][ys [0]] = 1; // occupy center site
occupiedNumber = 1;
for(int n = 0; n < 4; n++) { // perimeter sites

pxs[n] = xs[0] + nx[n];
pys[n] = ys[0] + ny[n];
s [pxs[n]][pys[n]] = 2;

}
perimeterNumber = 4;

}

public void step() {
if (perimeterNumber > 0) {

int perimeter = (int)(Math.random()∗perimeterNumber);
int x = pxs[perimeter];
int y = pys[perimeter];
perimeterNumber−−;
pxs[perimeter] = pxs[perimeterNumber];
pys[perimeter] = pys[perimeterNumber];
if (Math.random() < p) { //occupy site

s [x][y] = 1;
xs[occupiedNumber] = x;
ys[occupiedNumber] = y;
occupiedNumber++;
for(int n = 0; n < 4; n++) { // find new perimeter sites

int px = x + nx[n];
int py = y + ny[n];
if (s [px][py] == 0) {

pxs[perimeterNumber] = px;
pys[perimeterNumber] = py;
s [px][py] = 2;
perimeterNumber++;

}
}

}
else

s [x][y] = −1;
}

}

public void massDistribution() {
mass = new double[L];
double xcm = 0;
double ycm = 0;
for(int n = 0; n < occupiedNumber; n++) {

xcm += xs[n];

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 527

ycm += ys[n];
}
xcm /= occupiedNumber;
ycm /= occupiedNumber;
for(int n = 0; n < occupiedNumber; n++) {

double dx = xs[n] − xcm;
double dy = ys[n] − ycm;
int r = (int)Math.sqrt(dx∗dx + dy∗dy);
if ((r > 1) && (r < L)) mass[r]++;

}
}

public void draw (DrawingPanel myWorld, Graphics g) {
if (s == null) return;
int sizeX = Math.abs(myWorld.xToPix(0.8) − myWorld.xToPix(0));
int sizeY = Math.abs(myWorld.yToPix(0.8) − myWorld.yToPix(0));
for(int i = 1; i < L+1; i++)
for(int j = 1; j < L+1; j++) {
int xpix = myWorld.xToPix(i) − sizeX;
int ypix = myWorld.yToPix(j) − sizeY;
switch (s[i][j]) {
case 0:
g.setColor(Color.black);
g. fillRect (xpix + sizeX/2,ypix + sizeY/2,1,1);
break;

case 1:
g.setColor(Color.blue);
g. fillOval (xpix,ypix,sizeX,sizeY);
break;

case −1:
g.setColor(Color.yellow);
g. fillOval (xpix,ypix,sizeX,sizeY);
break;

case 2:
g.setColor(Color.green);
g. fillOval (xpix,ypix,sizeX,sizeY);
break;

}
}

}

}

We use the growth algorithm in Problem 13.3 to generate a spanning cluster at the percolation
threshold. The fractal dimension is determined by counting the number of sites M in the cluster
within a distance r of the center of mass of the cluster. The center of mass is defined by

rcm =
1
N

∑
i

ri, (13.4)

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 528

where N is the total number of particles in the cluster. A typical plot of lnM versus ln r is shown
in Figure 13.4. Because the cluster cannot grow past the edge of the lattice, we do not include
data for r ≈ L.

0

2

4

6

8

10

0 1 2 3 4 5
ln r

ln M

Figure 13.4: Plot of lnM versus ln r for a single spanning percolation cluster generated at p =
0.5927 on a L = 129 square lattice. The straight line is a linear least squares fit to the data. The
slope of this line is 1.91 and is an estimate of the fractal dimension D. The exact value of D for a
percolation cluster is D = 91/48 ≈ 1.896.

Problem 13.3. Single cluster growth and the fractal dimension

a. Explain how the Leath algorithm generates single clusters in a way that is equivalent to the
multiple clusters that are generated by visiting all sites. More precisely, the Leath algorithm
generates percolation clusters with a distribution of cluster sizes, sns. The additional factor
of s is due to the fact that each site of the cluster has an equal chance of being the seed of
the cluster, and hence the same cluster can be generated in s ways. See Project 13.18 for a
discussion of the scaling form of ns.

b. Use class Cluster to grow percolation clusters using the Leath algorithm, and write a target
class that shows the cluster as it grows and plots the mass distribution when the animation is
stopped. Consider a spanning cluster to be one that connects the top and bottom rows of the
lattice. Can you grow a spanning cluster for p = 0.4 or does the growth usually stop after a few
sites are occupied? Choose L ≥ 31.

c. Choose p = 0.5927 and L ≥ 31 and generate several pictures of spanning clusters. Do all your
trials generate a spanning cluster? Explain. Determine the number of occupied sites M(r)
within a distance r of the center of mass of the cluster. Determine M for several values of r

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 529

and average M(r) over at least ten spanning clusters. Estimate D from the log-log plot of M
versus r (see Figure 13.4). If time permits, generate percolation clusters on larger lattices.

d. Grow as large a spanning cluster as you can and look at it on different length scales. One
way to do so is to divide the screen into four windows, each of which magnifies a part of the
cluster shown in the previous window. Does the part of the cluster shown in each window look
approximately self-similar?

e. Generate clusters at p = 0.65, a value of p greater than pc, for L = 61. Make a log-log plot of
M(r) versus r. Is the slope approximately equal to the value of D found in part (b)? Does the
slope increase or decrease for larger r? Repeat for p = 0.80. Is a spanning cluster generated at
p > pc a fractal?

f. The fractal dimension of percolation clusters is not an independent exponent, but satisfies the
scaling law

D = d − β/ν, (13.5)

where β and ν are defined in Table 12.1. The relation (13.5) can be understood by a finite-size
scaling argument which we now summarize. The number of sites in the spanning cluster on a
lattice of linear dimension L is given by

M(L) ∼ P∞(L)Ld, (13.6)

where P∞ is the probability that an occupied site belongs to the spanning cluster and Ld is the
total number of sites in the lattice. In the limit of an infinite lattice and p near pc, we know
that P∞(p) ∼ (p− pc)β and ξ(p) ∼ (p− pc)−ν independent of L. Hence for L ∼ ξ, we have that
P∞(L) ∼ L−β/ν (see (12.13)), and we can write

M(L) ∼ L−β/νLd ∼ LD. (13.7)

The relation (13.5) follows. Use the exact values of β and ν from Table 12.1 to find the exact
value of D for d = 2. Is your estimate for D consistent with this value?

g.∗ Estimate the fractal dimension for percolation clusters on a simple cubic lattice. Take pc =
0.3117.

13.2 Regular Fractals

As we have seen, one characteristic of random fractal objects is that they look the same on a
range of length scales. To gain a better understanding of the meaning of self-similarity, consider
the following example of a regular fractal, a mathematical object that is self-similar on all length
scales. Begin with a line one unit long (see Figure 13.5a). Remove the middle third of the line and
replace it by two lines of length 1/3 each so that the curve has a triangular bump in it and the total
length of the curve is 4/3 (see Figure 13.5b). In the next stage, each of the segments of length 1/3
is divided into lines of length 1/9 and the procedure is repeated as shown in Figure 13.5c. What
is the length of the curve shown in Figure 13.5c?

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 530

(a)

(b)

(c)

Figure 13.5: The first three stages (a)–(c) of the generation of a self-similar Koch curve. At each
stage the displacement of the middle third of each segment is in the direction that increases the
area under the curve. The curves were generated using Class Koch. The Koch curve is an example
of a continuous curve for which there is no tangent defined at any of its points. The Koch curve
is self-similar on each length scale.

The three stages shown in Figure 13.5 can be extended an infinite number of times. The
resulting curve is infinitely long and containsan infinite number of infinitesimally small segments.
Such a curve is known as the triadic Koch curve. A Java class that uses a recursive procedure (see
Section 6.3) to draw this curve is given in the following. Note that method iterate calls itself.
Use Class KochApp to generate the curves shown in Figure 13.5.

Listing 13.2: Class for drawing the Koch curve.
/∗ Draws Koch curve ∗/

package org.opensourcephysics.sip.ch13;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.display2d.∗;
import javax.swing.∗;
import java.awt.geom.∗;
import java.awt.∗;
import java.util .∗;

public class KochApp extends AbstractCalculation implements Drawable {
DrawingPanel drawingPanel = new DrawingPanel();
DrawingFrame frame = new DrawingFrame(drawingPanel);
int n = 0;

public KochApp() {
frame.show();
drawingPanel.addDrawable(this);

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 531

drawingPanel.setPreferredMinMax(−100, 600,−100,600);
drawingPanel.setSquareAspect(true);
drawingPanel.repaint();

}

public void calculate() {
n = control.getInt(”Number of iterations”);
drawingPanel.repaint();

}

public void iterate(double x1, double y1, double x2, double y2, int n,
DrawingPanel myWorld, Graphics g) {

if (n > 0) {
double dx = (x2−x1)/3;
double dy = (y2−y1)/3;
double xOneThird = x1 + dx; // new endpoint at 1/3 of line segment
double yOneThird = y1 + dy;
double xTwoThird = x1 + 2∗dx; // new endpoint at 2/3 of line segment
double yTwoThird = y1 + 2∗dy;
// rotate line segment (dx, dy) by 60 degrees and add to (xOneThird,yOneThird)
double xMidPoint = (0.5∗dx − 0.866∗dy + xOneThird);
double yMidPoint = (0.5∗dy + 0.866∗dx + yOneThird);
// each line segment generates 4 new ones
iterate (x1,y1,xOneThird,yOneThird,n−1,myWorld,g);
iterate (xOneThird,yOneThird,xMidPoint,yMidPoint,n−1,myWorld,g);
iterate (xMidPoint,yMidPoint,xTwoThird,yTwoThird,n−1,myWorld,g);
iterate (xTwoThird,yTwoThird,x2,y2,n−1,myWorld,g);

}
else {
int ix1 = myWorld.xToPix(x1);
int iy1 = myWorld.yToPix(y1);
int ix2 = myWorld.xToPix(x2);
int iy2 = myWorld.yToPix(y2);
g.drawLine(ix1,iy1,ix2, iy2);

}
}

public void draw (DrawingPanel myWorld, Graphics g) {
iterate (0,0,500,0, n,myWorld,g);

}

public void resetCalculation(){
super.resetCalculation();
control .setValue(”Number of iterations” , 3);

}

public static void main(String args[]) {
KochApp app = new KochApp();
Control control = new CalculationControl(app);
app.setControl(control);

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 532

}
}

How can we determine the fractal dimension of the Koch and similar mathematical objects? In
Section 13.5 we will see that there are several generalizations of the Euclidean dimension that lead
naturally to a definition of the fractal dimension. Here we consider a definition based on counting
boxes. Consider a one-dimensional curve of unit length that has been divided into N equal segments
of length � so that N = 1/� (see Figure 13.6). As � is decreased, N increases linearly — the expected
result for a one-dimensional curve. Similarly if we divide a two-dimensional square of unit area
into N equal subsquares of length �, we have N = 1/�2, the expected result for a two-dimensional
object (see Figure 13.6). In general, we can write that N = 1/�D, where D is the fractal dimension
of the object. If we take the logarithm of both sides of this relation, we can express the fractal
dimension as

D =
log N

log(1/�)
. (box dimension) (13.8)

d = 1 d = 2

Figure 13.6: Examples of one-dimensional and two-dimensional objects.

Now let us apply these ideas to the Koch curve. We found that each time the length � of our
measuring unit is reduced by a factor of 3, the number of segments is increased by a factor of 4.
Hence, we have N = 4 and � = 1/3, and the fractal dimension of the triadic Koch curve is given
by

D =
log 4
log 3

≈ 1.2619. (triadic Koch curve) (13.9)

From (13.9) we see that the Koch curve has a dimension between that of a line and a plane. Is
this statement consistent with your visual interpretation of the degree to which the triadic Koch
curve fills space?

Problem 13.4. The recursive generation of regular fractals

a. The concept of recursive programming as illustrated in KochApp is probably one of the most
difficult programming concepts you will encounter. Explain the nature of recursion and the way
it is implemented in KochApp.

b. Regular fractals can be generated from a pattern that is used in a self-replicating manner.
Write a program to generate the quadric Koch curve shown in Figure 13.7a. What is its fractal
dimension?

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 533

c. What is the fractal dimension of the Sierpiński gasket shown in Figure 13.7b? Write a program
that generates the next several iterations.

d. What is the fractal dimension of the Sierpiński carpet shown in Figure 13.7c? How does the
fractal dimension of the Sierpiński carpet compare to the fractal dimension of a percolation
cluster? Are the two fractals visually similar?

(a)

(b)

(c)

Figure 13.7: (a) The first few iterations of the quadric Koch curve; (b) The first few iterations of
the Sierpiński gasket; (c) The first few iterations of the Sierpiński carpet.

13.3 Fractal Growth Processes

Many systems occurring in nature exhibit fractal geometry. Fractals have been used to describe
the irregular shapes of such varied objects as coastlines, clouds, coral reefs, and the human lung.
Why are fractal structures so common? How do fractal structures form? In this section we discuss
several simple growth models that generate structures which show a remarkable similarity to forms
observed in nature. The first two models are already familiar to us and exemplify the flexibility
and general utility of kinetic growth models.

zzzz Epidemic model. In the context of the spread of disease, we usually want to know the
conditions for an epidemic. A simple lattice model of the spread of a disease can be formulated
as follows. Suppose that an occupied site corresponds to an infected person. Initially there is
a single infected site and the four nearest neighbor perimeter sites (on the square lattice) are

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 534

susceptible. At the next time step, we visit the four susceptible sites and occupy (infect) each site
with probability p. If a susceptible site is not occupied, we say that the site is immune and we do
not test it again. We then find the new susceptible sites and continue until either the disease is
controlled or reaches the boundary of the lattice. Convince yourself that this growth model of a
disease generates a cluster of infected sites that is identical to a percolation cluster at probability
p. The only difference is that we have introduced a discrete time step into the model. Some of the
properties of this model are explored in Problem 13.5.

Problem 13.5. A simple epidemic model

a. Explain why the simple epidemic model discussed in the text generates the same clusters as
the Leath algorithm if the probability that a susceptible site becomes infected is p. What is
the minimum value of p necessary for an epidemic to occur? Recall that in one time step, all
susceptible sites are visited simultaneously and infected with probability p. Determine how N ,
the number of infected sites, depends on the time t (the number of time steps) for various values
of p. A straightforward way to proceed is to extend Class Cluster with a new method step
so that all perimeter sites are visited and occupied with probability p before new perimeter sites
are found. In Chapter 14 we will learn that this model is an example of a cellular automaton.

b. The susceptible (or growth) sites S are the only sites from which the disease can spread. Verify
that for p near p+

c , S increases as f(p)N δs with f(p) ∝ (p−pc)y. Estimate the numerical values
of the exponents δs and y. How does S depend on the time? Does δs have a different value at
pc for clusters that grow indefinitely? Choose L ≥ 61 and average over at least 10 realizations.

c. A similar growth exponent can be defined for p < pc. In this case the number of susceptible
sites does not increase without bound, and S usually first increases and then goes to zero.
Determine the maximum number Smax of susceptible sites and show that Smax ∝ (pc − p)−x

near pc. Estimate the numerical value of the exponent x.

Eden model. An even simpler example of a growth model was proposed by Eden in 1958
to simulate the growth of cell colonies. Although we will find that the resultant mass distribution
is not a fractal, the description of the Eden growth algorithm illustrates the general nature of the
fractal growth models we discuss.

The algorithm can be summarized as follows. Place a seed site at the origin, for example, the
center of the lattice. The unoccupied nearest neighbors of the occupied sites are denoted as growth
or perimeter sites. In the simplest version of the model, a growth site is chosen at random and
occupied. The newly occupied site is removed from the list of growth sites and the new growth sites
are added to the list. This growth process is repeated many times until a large cluster of occupied
sites are formed (see Figure 13.8). The basic difference between this model and the previous one
is that all tested sites are occupied. In other words, no sites are ever “immune.” Some of the
properties of Eden clusters are investigated in Problem 13.6.

Problem 13.6. Eden model

a. Use Class Cluster so that clusters are generated on a square lattice according to the Eden
model. A straightforward procedure is to occupy perimeter sites with probability p = 1. The
simulation should be stopped when the cluster reaches the edge of the lattice. What would

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 535

12 3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30

3132

33

34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

51

52p

p

p

p

p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pp

p

p

p

p

pp

p

p

p

Figure 13.8: An example of a cluster grown on the square lattice according to the Eden model.
The numbers on the sites denote the order in which these sites were occupied and the growth sites
are denoted by the letter p.

happen if we were to occupy perimeter sites indefinitely? Follow the procedure of Problem 13.3
and determine the number of occupied sites M(r) within a distance r of the seed site. Assume
that M(r) ∼ rD for sufficiently large r, and estimate D from the slope of a log-log plot of M
versus r. A typical log-log plot is shown in Figure 13.9 for L = 61. Can you conclude from your
data that Eden clusters are compact?

b. Modify your program so that only the perimeter or growth sites are shown. Where are the
majority of the perimeter sites relative to the center of the cluster? Grow as big a cluster as
your time and patience permits.

Invasion percolation. A dynamical process known as invasion percolation can be used to
model the shape of the oil-water interface which occurs when water is forced into a porous medium
containing oil. The idea is to use the water to recover as much oil as possible. In this process
a water cluster grows into the oil through the path of least resistance. Consider a lattice of size
L × 2L, with the water (the invader) initially occupying the left edge (see Figure 13.10). The
resistance to the invader is given by uniformly distributed random numbers between 0 and 1 which
are assigned to each site in the lattice and held fixed throughout the invasion. Sites that are nearest
neighbors of the invader sites are the perimeter sites. At each time step, the perimeter site with

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 536

0

2

4

6

8

10

0 1 2 3 4
ln r

ln M

Figure 13.9: Plot of lnM versus ln r for a single Eden cluster generated on a L = 61 square lattice.
A least squares fit to the data from r = 2 to r = 32 yields a slope of approximately 2.01.

the lowest random number is occupied by the invader and the oil (the defender) is displaced. The
invading cluster grows until a path forms which connects the left and right edges of the lattice.
Note that after this path forms, there is no need for the water to occupy any additional sites. To
minimize boundary effects, periodic boundary conditions are used for the top and bottom edges
and all quantities are measured only over the central L × L region of the lattice.

Class invasion implements the invasion percolation algorithm. The two-dimensional array
element site(i,j) initially stores a random number for the site at (i,j). If the site at (i,j)
is occupied, then site(i,j) is increased by 1. If the site at (i,j) is a perimeter site, then
site(i,j) is increased by 2, and is inserted into its proper ordered position in the perimeter lists
perx and pery. The perimeter lists are ordered with the site with the largest random number at
the beginning of the list.

Two searching routines are provided in Class Invasion for determining the position of a new
perimeter site in the perimeter lists. In a linear search we go through the list in order until the
random number associated with the new perimeter site is between two random numbers in the
list. In a binary search we divide the list in two, and determine the half in which the new random
number belongs. Then we divide this half into half again and so on until the correct position is
found. A comparison of the linear and binary search methods is investigated in Problem 13.7d.
The binary search is the default method used in Class Invasion.

The main quantities of interest are the fraction of sites occupied by the invader, and the
probability P (r) dr that a site with a random number between r and r + dr is occupied. The
properties of the invasion percolation model are explored in Problem 13.7.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 537

Listing 13.3: Class for simulating invasion percolation.
package org.opensourcephysics.sip.ch13.invasion;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;
import java.awt.∗;

public class Invasion {

public int Lx,Ly;
public double s[][];
public int perimeterListX[],perimeterListY[];
public int numberOfPerimeterSites;
public boolean ok = true;
public LatticeFrame lattice;

public Invasion(LatticeFrame latticeFrame) {
lattice = latticeFrame;
lattice .setIndexToColor(0,Color.blue);
lattice .setIndexToColor(1,Color.black);

}

public void initialize () {
Lx = 2∗Ly;
s = new double[Lx][Ly];
perimeterListX = new int[Lx∗Ly];
perimeterListY = new int[Lx∗Ly];
for(int y = 0; y < Ly; y++){

s [0][y] = 1; // occupy first column
lattice .setValue(0,y ,1);

}
for(int y = 0; y < Ly; y++)

for(int x = 1; x < Lx; x++) {
s [x][y] = Math.random();
lattice .setValue(x,y ,0);

}
numberOfPerimeterSites = 0;
for(int y = 0; y < Ly; y++) { //second column are perimeter sites

s [1][y] += 2; // perimeter sites have s > 2;
numberOfPerimeterSites++;
insert (1,y); // insert site in perimeter list in order.

}
ok = true;

}

public void insert(int x, int y) {
int insertionLocation = binarySearch(x,y);
for(int i = numberOfPerimeterSites−1; i > insertionLocation; i−−) {

perimeterListX[i] = perimeterListX[i−1];
perimeterListY[i] = perimeterListY[i−1];

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 538

}
perimeterListX[insertionLocation] = x;
perimeterListY[insertionLocation] = y;

}

public int binarySearch(int x, int y) {
int firstLocation = 0;
int lastLocation = numberOfPerimeterSites−2;
if (lastLocation < 0) lastLocation = 0;
int middleLocation = (firstLocation + lastLocation)/2;
// determine which half of list new number is in
while(lastLocation − firstLocation > 1) {

int middleX = perimeterListX[middleLocation];
int middleY = perimeterListY[middleLocation];
if (s [x][y] > s [middleX][middleY])

lastLocation = middleLocation;
else

firstLocation = middleLocation;
middleLocation = (firstLocation + lastLocation)/2;

}
return lastLocation;

}

public int linear search(int x, int y) {
if (numberOfPerimeterSites == 1)

return 0;
else

for(int i = 0; i < numberOfPerimeterSites−1; i++)
if (s [x][y] > s [perimeterListX[i]][perimeterListY[i]])

return i;
return numberOfPerimeterSites−1;

}

public void step() {
if (ok) {
int nx[] = {1,−1,0,0};
int ny[] = {0,0,1,−1};
int x = perimeterListX[numberOfPerimeterSites−1];
int y = perimeterListY[numberOfPerimeterSites−1];
if (x > Lx −3) ok = false;
numberOfPerimeterSites−−;
s [x][y] −= 1;
lattice .setValue(x,y ,1);
for(int i = 0; i < 4; i++) { // find new perimeter sites

int perimeterX = x + nx[i];
int perimeterY = (y + ny[i]) % Ly;
if (perimeterY == −1) perimeterY = Ly−1;
if (s [perimeterX][perimeterY] < 1) { // new perimeter site

s [perimeterX][perimeterY] += 2;
numberOfPerimeterSites++;

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 539

insert (perimeterX,perimeterY);
}

}
}

}

public void computeDistribution(PlotFrame data) {
int numberOfBins = 20;
int numberOccupied = 0;
double occupied[] = new double[numberOfBins];
double number[] = new double[numberOfBins];
double binSize = 1.0/numberOfBins;
int minX = Lx/3;
int maxX = 2∗minX;
for(int x = minX; x <= maxX; x++)

for(int y = 0; y < Ly; y++) {
int bin = (int)(numberOfBins∗(s[x][y] % 1));
number[bin]++;
if ((s [x][y] >= 1) && (s[x][y] < 2)){

numberOccupied++;
occupied[bin]++;

}
}

data.setMessage(”Number occupied = ” + numberOccupied);
for(int bin = 0; bin < numberOfBins; bin++)

data.append(0,(bin+0.5)∗binSize, occupied[bin]/number[bin]);
}
}

Problem 13.7. Invasion percolation

a. Use Class Invasion to generate an invasion percolation cluster on a 20×40 lattice and describe
the qualitative nature of the cluster.

b. Calculate M(L), the number of sites occupied by the invader in the central L × L region of
the L × 2L lattice at the time that the invader first reaches the right edge, is averaged over
at least twenty trials. Assume that M(L) ∼ LD and estimate D from a plot of lnM versus
lnL. Compare your estimate for D with the fractal dimension of ordinary percolation. (The
published results for M(L) by Wilkinson and Willemsen are for 2000 realizations each for L in
the range 20 to 100.)

c. Determine the probability P (r) dr that a site with a random number between r and r + dr is
occupied. It is sufficient to choose dr = 0.05. Plot P (r) versus r for L = 20 and also for larger
values of L up to L = 50. Can you define a critical value of r near which P (r) changes rapidly?
How does this critical value of r compare to the value of pc for ordinary site percolation on the
square lattice? On the basis of your numerical estimate for the exponent D found in part (b)
and the qualitative behavior of P (r), make an hypothesis about the relation between the nature
of the geometrical properties of the invasion percolation cluster and the spanning percolation
cluster at p = pc.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 540

d. Explain the nature of the two searching algorithms given in Class Invasion. Which method
yields the fastest results on a 30× 60 lattice? Verify that the CPU time for a linear and binary
search is proportional to n and log n respectively, where n is the number of items in the list to
be searched. Hence, for sufficiently large n, a binary search usually is preferred.

e.∗ Modify your program so that the invasion percolation clusters are grown from a seed at the
origin. Grow a cluster until it either occupies a given fraction of the lattice or it reaches a
boundary of the lattice. Estimate the fractal dimension as you did for the spanning percolation
clusters in Problem 13.3 and compare your two estimates. On the basis of this estimate and
your results from part (b) and (c), can you conclude that the spanning cluster is a fractal?
Note that this process of occupying the minimum number of sites to obtain a spanning cluster
is an example of a self-organized critical phenomenon (see Chapter 14).

Diffusion in disordered media. In Chapter 7 we considered random walks on perfect lattices and
on simple continuum systems. We found that the mean-square displacement of a random walker,
〈R2(t)〉, is proportional to the time t for sufficiently large t. (For a simple random walk this relation
holds for all t.) Now let us suppose that the random walker is restricted to a disordered lattice,
for example, the occupied sites of a percolation cluster. What is the asymptotic t-dependence of
〈R2(t)〉 in this case? This simple model of a random walk on a percolation cluster is known as the
“ant in the labyrinth” problem.

There are at least two reasons for our interest in random walks on disordered lattices. Just as
a random walk on a lattice is a simple model of diffusion, a random walk on a disordered lattice is
a simple example of the general problem of diffusion and transport in disordered media. Because
most materials of interest are noncrystalline and disordered, there are many physical phenomena
that can be related to the motion of an ant in the labyrinth. Another reason for the interest
in diffusion in disordered media is that the diffusion coefficient is proportional to the electrical
conductivity of the medium. This relation between the conductivity and the diffusion coefficient is
known as the Einstein relation (cf. Reif). We can understand this relation as follows. Consider for
example, a system of electrons. Classically, we can follow the individual motion of the electrons and
determine their mean square displacement. In the absence of external forces we can measure the
self-diffusion coefficient D. In the presence of a “small” electric field, we can measure the electron’s
mean velocity in the direction of the field and deduce the electron’s mobility µ, the ratio of the
mean velocity to the applied force. Einstein’s contribution was to show that µ is proportional
to D, that is, the linear response of the system is related to an equilibrium quantity. Because
the mean velocity of the electrons is proportional to the electron current and the applied force is
proportional to the voltage, the mobility and the electrical conductivity are proportional. Hence,
we conclude that the conductivity is proportional to the self-diffusion coefficient.

In the usual formulation of the ant in the labyrinth problem we place a walker (the ant) at
random on one of the occupied sites of a percolation cluster generated with probability p. At each
time step, the ant tosses a coin with four possible outcomes (on a square lattice). If the outcome
corresponds to a step to an occupied site, the ant moves; otherwise it remains in its present position.
Either way, the time t is increased by one unit. The main quantity of interest is R2(t), the square
of the distance between the ant’s position at t = 0 and its position at time t. We can generate
many walks with different initial positions on the same cluster as well as over many percolation
clusters to obtain the ant’s mean square displacement 〈R2(t)〉. How does 〈R2(t)〉 depend on p and

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 541

t? How do the laws of diffusion change on a fractal lattice (for example, the percolation cluster at
p = pc)? We consider these questions in Problem 13.8.

Problem 13.8. The ant in the labyrinth

a. For p = 1, the ants walk on a perfect lattice, and hence, 〈R2(t)〉 ∝ t. Suppose that an
ant does a random walk on a two-dimensional percolation cluster with p > pc. Assume that
〈R2(t)〉 ∼ 4Ds(p)t for p > pc. We have denoted the diffusion coefficient by Ds to remind
ourselves that we are considering random walks on spanning clusters only and are not considering
walks on the finite clusters that also exist for p > pc. Generate a percolation cluster at p = 0.7
using the growth algorithm considered in Problem 13.3. Choose the initial position of the ant
to be the seed site and modify your program to observe the motion of the ant on the screen.
Where does the ant spend much of its time? If the ant diffuses, what can you say qualitatively
about the ratio Ds(p)/D(p = 1)?

b. Compute 〈R2(t)〉 for p = 0.4 and confirm that for p < pc, the clusters are finite, 〈R2(t)〉 is
bounded, and diffusion is impossible.

c. As in part (a) compute the mean square displacement for p = 1.0, 0.8, 0.7, 0.65, and 0.62 with
L = 61. If time permits, average over several clusters. Make a log-log plot of 〈R2(t)〉 versus
t. What is the qualitative t-dependence of 〈R2(t)〉 for relatively short times? Decide whether
〈R2(t)〉 is proportional to t for longer times. (Remember that the maximum value of 〈R2〉
is bounded by the finite size of the lattice.) If 〈R2(t)〉 ∼ t, estimate Ds(p). Plot the ratio
Ds(p)/D(p = 1) as a function of p and discuss its qualitative behavior.

d. Because there is no diffusion for p < pc, we might expect that Ds vanishes as p → pc, that is,
Ds(p) ∼ (p− pc)µs for p ≥ pc. Extend your calculations of part (c) to larger L and more values
of p near pc and estimate the dynamical exponent µs.

e. At p = pc, we might expect a different type of t-dependence of 〈R2(t)〉 to be observed, for
example, 〈R2(t)〉 ∼ t2/z for large t. Do you expect the exponent z to be greater or less than
two? Do a Monte Carlo simulation of 〈R2(t)〉 at p = pc and estimate z. Choose L ≥ 61 and
average over several spanning clusters.

f. The chicken wire measurements by Watson and Leath (see Section 12.1) found that the dc
electrical conductivity σ vanishes near the percolation threshold as σ ∼ (p − pc)µ, with µ ≈
1.38± 0.12. More precise estimates give µ ≈ 1.30. The difficulty of doing a direct Monte Carlo
calculation of σ was considered in Project 12.17. From the Einstein relation we know that the
electrical conductivity and the self-diffusion coefficient behave in the same way. However, we
measured the self-diffusion coefficient Ds by always placing the ant on a spanning cluster rather
than on any cluster. In contrast, the conductivity is measured for the entire system including
all finite clusters. Hence, the self-diffusion coefficient D that enters into the Einstein relation
should be determined by placing the ant at random anywhere on the lattice, including sites
that belong to the spanning cluster and sites that belong to the many finite clusters. Because
only those ants that start on the spanning cluster can contribute to D, D is related to Ds by
D = P∞Ds, where P∞ is the probability that the ant would land on a spanning cluster. Because
P∞ scales as P∞ ∼ (p − pc)β , we have that (p − pc)µ ∼ (p − pc)β(p − pc)µs or µs = µ − β. Use
your result for µs found in part (d) and the exact result β = 5/36 (see Table 12.1) to estimate µ
and compare your result to the critical exponent for the dc electrical conductivity given above.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 542

g.∗ We have found that Ds(p) ∼ (p − pc)µs for p > pc and 〈R2(t)〉 ∼ t2/z for p = pc. We now
give a simple scaling argument to find a relation between z and µs. For p > pc, we know that
〈R2(t)〉 ∼ (p−pc)µst in the limit of t
 1 such that the root mean square displacement is much
larger than the connectedness length ξ. We also know that 〈R2(t)〉 ∼ t2/z for shorter time
scales that satisfy the condition 〈R2(t)〉 � ξ2. We expect that the crossover between the two
dependencies on t occurs when 〈R2〉 ∼ ξ2 or when t ∼ ξz. Hence we have ξ2 ∼ (p− pc)µsξz, or
because ξ ∼ (p − pc)−ν , we have (p − pc)ν(z−2) ∼ (p − pc)µs . If we equate powers of (p − pc),
we have

z = 2 +
µs

ν
= 2 +

µ − β

ν
. (13.10)

Is it easier to determine µs or z accurately from a Monte Carlo simulation on a finite lattice?
That is, if our real interest is estimating the best value of the critical exponent µ for the
conductivity, should we determine the conductivity directly or should we measure the self-
diffusion coefficient at p = pc or at p > pc? What is your best estimate of the conductivity
exponent µ?

h.∗ A better method for treating random walks on a random lattice is to use an exact enumeration
approach. The essence of the exact enumeration method is that Wt+1(i), the probability that
the ant is at site i at time t + 1, is determined solely by the probabilities of the ant being
at the neighbors of site i at time t. Store the positions of the occupied sites in an array and
introduce two arrays corresponding to Wt+1(i) and Wt(i) for all sites i in the cluster. Use the
probabilities Wt(i) to obtain Wt+1(i) (see Figure 13.11). Spatial averages such as the mean
square displacement can be calculated from the probability distribution function at different
times. Details of the method and the results are discussed in Majid et al. These workers
considered walks of 5000 steps on clusters with ∼ 103 sites and averaged their results over 1000
different clusters.

Diffusion-limited aggregation (DLA). Many objects in nature grow by the random ad-
dition of subunits. Examples include snow flakes, lightning, crack formation along a geological
fault, and the growth of bacterial colonies. Although it might seem unlikely that such phenomena
have much in common, the behavior observed in many models that have been developed in recent
years gives us clues that these and many other natural phenomena can be understood in terms
of a few unifying principles. One model that has provided much insight is known as diffusion
limited aggregation or DLA. The model provides an example of how random motion can give rise
to beautiful self-similar clusters.

The first step is to occupy a site with a seed particle. Next, a particle is released from the
perimeter of a large circle whose center coincides with the seed. The particle undergoes a random
walk, that is, diffuses, until it reaches a perimeter site of the seed and sticks. Then another random
walker is released and allowed to walk until it reaches a perimeter site of one of the two particles
in the cluster and sticks. The process is repeated many times (typically on the order of several
thousand to several million) until a large cluster is formed. A typical DLA cluster is shown in
Figure 13.12. Some of the properties of DLA clusters are explored in Problem 13.9.

Problem 13.9. Diffusion limited aggregation

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 543

a. Write a program to generate diffusion limited aggregation clusters on a square lattice. Let each
walker begin at a random site on a circle of radius r = Rmax + 2, where Rmax is the maximum
distance of any cluster particle from the origin. To save computer time, assume that a walker
that reaches a distance 2Rmax from the seed site is removed and a new walker is placed at
random on the circle of radius r = Rmax +2. Choose a lattice of linear dimension L ≥ 31. Color
code the cluster sites according to their time of arrival, for example, choose the first 100 sites
to be blue, the next 100 sites to be yellow, etc. Which parts of the cluster grow faster? If the
clusters appear to be fractals, make a visual estimate of the fractal dimension. (Experts can
make a visual estimate of D to within a few percent!)

b. At t = 0 the four perimeter (growth) sites on the square lattice each have a probability pi = 1/4
of growing, that is, of becoming part of the cluster. At t = 1, the cluster has mass two and six
perimeter sites. Identify the perimeter sites and convince yourself that their growth probabilities
are not uniform. Do a Monte Carlo simulation and verify that two perimeter sites have pi = 2/9
and the other four have pi = 5/36. We discuss a more direct way of determining the growth
probabilities in Problem 13.10.

c. It is likely that your program generates DLA clusters inefficiently, because most of the CPU
time is spent while the random walker is wandering far from the perimeter sites of the cluster.
There are several ways of overcoming this problem. One way is to let the walker take bigger
steps the further the walker is from the cluster. For example, if the random walker is at a
distance R > Rmax, a step of length greater than or equal to R−Rmax − 1 may be permitted if
this distance is greater than one lattice unit. If the walker is very close to the cluster, the step
length is one lattice unit. Another possibility is to start the walk over if the walker moves too
far away. Other possible modifications are discussed by Meakin (see references). Modify your
program (or see Class DLA listed below) and estimate the fractal dimension of diffusion limited
clusters generated on a square lattice.

d.∗ Modify your program so that DLA clusters are generated on a triangular lattice. Do the clusters
have the same visual appearance as on the square lattice? Estimate the fractal dimension and
compare your estimate to your result for the square lattice.

e.∗ In Chapter 12 we found that the exponents describing the percolation transition are indepen-
dent of the symmetry of the lattice, for example, the exponents for the square and triangular
lattices are the same. We might expect that the fractal dimension of DLA clusters would also
show such universal behavior. However, the presence of a lattice introduces a small anisotropy
that becomes apparent only when very large clusters with on the order of 106 sites are grown.
We again are reminded of the difficulty of extrapolating from finite L to infinite L. The best
estimates of D for the square and triangular lattices are D ≈ 1.5 and D ≈ 1.7 respectively. We
consider the growth of diffusion-limited aggregation clusters in a continuum in Project 13.16.

The following class provides a reasonably efficient simulation of DLA. Walkers begin just
outside a circle of radius startRadius enclosing the existing cluster and centered at the seed site
(0, 0). If the walker moves away from the cluster, the step size for the random walker increases. If
the walker wonders too far away (further than maxRadius), then the walk is started over.

Listing 13.4: Class for simulating diffusion limited aggregation.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 544

package org.opensourcephysics.sip.ch13.dla;
import org.opensourcephysics.display.∗;
import java.awt.∗;

public class DLA implements Drawable {
public int s [][]; // lattice on which cluster lives
public int xOccupied[],yOccupied[]; // location of occupied sites
public int L; // linear lattice dimension
public int halfL; // L/2
public int ringSize ; // ring size in which walkers can move
public int numberOfParticles; // number of particles in cluster
public int startRadius; // radius of cluster where walkers are started
public int maxRadius; // maximum radius walker can go to before a new walk is started

public void initialize () {
s = new int[L][L];
halfL = L/2;
ringSize = L/10;
xOccupied = new int[L∗halfL];
yOccupied = new int[L∗halfL];
s [halfL][halfL] = 1;
xOccupied[0] = halfL;
yOccupied[0] = halfL;
numberOfParticles = 1;
startRadius = 3;
maxRadius = startRadius + ringSize;

}

public void step() {
int x = 0, y = 0;
if (startRadius < halfL) {

// find random initial position of new walker
do{
double theta = 2∗Math.PI∗Math.random();
x = halfL + (int)(startRadius∗Math.cos(theta));
y = halfL + (int)(startRadius∗Math.sin(theta));
}
while(walk(x,y)); // random walk, returns true if new walk is needed

}
}

/∗∗ Walk until next to perimeter site
∗ @param x,y initial walker location
∗
∗/

public boolean walk(int x, int y) {
do {

double rSquared = (x−halfL)∗(x−halfL) + (y−halfL)∗(y−halfL);
int r = 1 + (int)Math.sqrt(rSquared);

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 545

if (r > maxRadius) return true; // start walk over
if ((r < halfL) &&

(s [x+1][y] + s[x−1][y] + s[x][y+1] + s[x][y−1] > 0)) {
s [x][y] = 1;
xOccupied[numberOfParticles] = x;
yOccupied[numberOfParticles] = y;
numberOfParticles++;
if (r >= startRadius) startRadius = r + 2;
maxRadius = startRadius + ringSize;
return false; // walk is finished

}
else { // take a step

double random = Math.random();
if (random < 0.25) {

x++;
}
else if (random < 0.5) {

x−−;
}

else if (random < 0.75){
y++;

}
else{

y−−;
}
} // end else if

}
while(true); // end do loop

}

public void draw (DrawingPanel myWorld, Graphics g) {
if (s == null) return;
int sizeX = Math.abs(myWorld.xToPix(0.8) − myWorld.xToPix(0));
int sizeY = Math.abs(myWorld.yToPix(0.8) − myWorld.yToPix(0));
for(int i = 0; i < numberOfParticles; i++){

int xpix = myWorld.xToPix(xOccupied[i]) − sizeX;
int ypix = myWorld.yToPix(yOccupied[i]) − sizeY;
g. fillRect (xpix + sizeX/2,ypix + sizeY/2,sizeX,sizeY);
}

}

}

∗Laplacian growth model. As we discussed in Section 10.8, we can formulate the solution
of Laplace’s equation in terms of a random walk. We now do the converse and formulate the
DLA algorithm in terms of a solution to Laplace’s equation. Consider the probability P (r) that
a random walker reaches a site r between the external boundary and the growing cluster without

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 546

having visited the cluster or the external boundary. This probability satisfies the relation

p(r) =
1
4

∑
a

p(r + a), (13.11)

where the sum in (13.11) is over the four nearest neighbor sites (on a square lattice). If we set p = 1
on the boundary and p = 0 on the cluster, then (13.11) also applies to sites that are neighbors
of the external boundary and the cluster. A comparison of the form of (13.11) with the form of
(10.12) shows that the former is a discrete version of Laplace’s equation, ∇2p = 0. Hence p(r)
has the same behavior as the electrical potential between two electrodes connected to the outer
boundary and the cluster respectively, and the growth probability at a perimeter site of the cluster
is proportional to the value of the potential at that site.

∗Problem 13.10. Laplacian growth models

a. Solve the discrete Laplace equation (13.11) by hand for the growth probabilities of a DLA cluster
of mass 1, 2, and 3. Set p = 1 on the boundary and p = 0 on the cluster.

b. You are probably familiar with the complicated and random nature of electrical discharge pat-
terns that occur in atmospheric lightning. Although this phenomenon, known as dielectric
breakdown, is complicated, we will see that a simple model leads to discharge patterns that
are similar to those observed experimentally. Because lightning occurs in an inhomogeneous
medium with differences in the density, humidity and conductivity of air, we want to develop a
model of an electrical discharge in an inhomogeneous insulator. We know that when an electrical
discharge occurs, the electrical potential φ satisfies Laplace’s equation ∇2φ = 0. One version of
the model (see Family et al.) is specified by the following steps:

(a) Consider a large boundary circle of radius R and place a charge source at the origin. Choose
the potential φ = 0 at the origin (occupied site) and φ = 1 for sites on the circumference
of the circle. The radius R should be larger than the radius of the growing pattern.

(b) Use the relaxation method (see Chapter 10) to compute the values of the potential φi for
(empty) sites within the circle.

(c) Assign a random number r to each empty site within the boundary circle. The random
number ri at site i represents a breakdown coefficient and the random inhomogeneous
nature of the insulator.

(d) The perimeter sites are the nearest neighbor sites of the discharge pattern (occupied sites).
Form the product riφ

a
i for each perimeter site i, where a is an adjustable parameter.

(Because the potential for the discharge pattern is zero, φi for perimeter site i can be
interpreted as the magnitude of the potential gradient at site i.)

(e) The perimeter site with the maximum value of the product rφa breaks down, that is, set
φ for this site equal to zero. (We can say that the bond between the discharge pattern and
the perimeter site breaks down.)

(f) Use the relaxation method to recalculate the values of the potential at the remaining
unoccupied sites and repeat steps (4)–(6).

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 547

Choose a = 1
4 and analyze the structure of the discharge pattern. Does the pattern appear

qualitatively similar to lightning? Does the pattern appear to have a fractal geometry? Estimate
the fractal dimension by counting M(b), the average number of sites belonging to the discharge
pattern that are within a b × b box. Consider other values of a, for example, a = 1

6 and a = 1
3 ,

and show that the patterns have a fractal structure with a tunable fractal dimension. Published
results (Family et al.) are for patterns generated with 800 occupied sites.

c. The usual version of the dielectric breakdown model associates a growth probability pi =
φa

i /
∑

j φa
j with each perimeter site i, where the sum is over all perimeter sites. One of the

perimeter sites is occupied with probability pi. That is, choose a perimeter site at random
and generate a random number r between 0 and 1. If r ≤ pi, the perimeter site i is occupied.
As before, the exponent a is a free parameter. Convince yourself that a = 1 corresponds to
diffusion-limited aggregation. (The boundary condition used in the latter corresponds to a zero
potential at the perimeter sites.) To what type of cluster does a = 0 correspond? Choose
a = 1/2, 1, and 2 and explore the dependence of the visual appearance of the clusters on a. If
time permits, estimate the fractal dimension of the clusters.

d. Consider a deterministic growth model for which all perimeter sites are tested for occupancy at
each growth step. We adopt the same geometry and boundary conditions as in part (b) and use
the relaxation method to solve Laplace’s equation for φi. Then we find the perimeter site with
the largest value of φ and set this value equal to φmax. Only those perimeter sites for which
the ratio φi/φmax is larger than a parameter p become part of the cluster and φi is set equal
to unity for these sites. After each growth step, the new perimeter sites are determined and
the relaxation method is used to recalculate the values of φi at each unoccupied site. Choose
p = 0.35 and determine the nature of the regular fractal pattern. What is the fractal dimension?
Consider other values of p and determine the corresponding fractal dimension. These patterns
have been termed Laplace fractal carpets (see Family et al.).

∗Cluster-cluster aggregation. Fractal structures commonly occur in aggregates that have
been formed by the clustering of particles that are diffusing in a fluid. For example, colloids consist
of particles that stick together in a liquid solvent, and aerosols are the analog in a gas. In DLA,
all the particles that stick to a cluster are the same size (the growth occurs by cluster-monomer
contact), and the cluster that is formed is motionless. In the following, we consider a cluster-cluster
aggregation (CCA) model in which the clusters diffuse as they aggregate.

In a typical simulation we begin with a dilute collection of N particles. Each of these particles
is a cluster with unit mass. The particles do random walks until one of them becomes a nearest
neighbor of another particle. At that point they stick together to form a cluster of two particles.
This new cluster now moves as a single random walker with a reduced diffusion coefficient. As
this process continues, the clusters become larger and fewer in number. For simplicity, we assume
a square lattice with periodic boundary conditions. The CCA algorithm can be summarized as
follows:

1. Place N particles at random positions on the lattice. Do not allow a site to be occupied by
more than one particle. Identify the ith particle with the ith cluster.

2. Check if any two clusters have particles that are nearest neighbors. If so, join these two
clusters to form a single cluster.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 548

3. Choose a cluster at random. Decide whether to move the cluster as discussed below. If so,
move it randomly in one of the four possible directions. In the following, we discuss the
strategy for deciding when to move a cluster.

4. Repeat steps 2 and 3 until the desired time or until there is only a single cluster.

What rule should we use to decide whether to move a cluster? One possibility is to select
a cluster at random and simply move it. This possibility corresponds to all clusters having the
same diffusion coefficient, regardless of the mass s of the cluster. A more realistic rule is to assume
that the diffusion coefficient Ds is inversely related to the mass, for example as s−x with x = 0.
A common assumption in the literature is to assume x = 1. If we assume instead that Ds is
inversely proportional to the linear dimension of the cluster, an assumption consistent with the
Stokes-Einstein relation, it is reasonable to take x = 1/d. However because the clusters are fractals,
we really should take x = 1/D, where D is the fractal dimension of the cluster. In Problem 13.11
we explore some of the possible forms of Ds.

To implement the cluster-cluster aggregation algorithm, we need to store the position of each
particle and the cluster to which each particle belongs. In Class CCA the position of a particle is
given by its x and y coordinates and stored in the arrays x and y respectively. The array element
site[x][y] equals zero if there is no particle at (x, y); otherwise the element equals the label of
the cluster to which the particle at (x, y) belongs.

The labels of the clusters are found as follows. The array element firstParticle(k) gives the
particle label of the first particle in the kth cluster. To determine all the particles in a given cluster,
we use a data structure called a linked list. This list is implemented using an array such that the
value of an element of the array is the index for the next element in the linked list. The linked list
is an example of a circular linked list, because the value of the last element in the linked list is the
index for the first element. The array nextParticle contains a series of circular linked lists, one for
each cluster, such that nextPparticle[i] equals the particle label of another particle in the same
cluster as the ith particle. If nextParticle[i] = i, then the ith particle is a cluster with only
one particle. To see how these arrays work, consider three particles 5, 9, and 16 which constitute
cluster 4. We have firstParticle[4] = 5, nextParticle[5] = 9, nextParticle[9] = 16, and
nextParticle[16] = 5.

As the clusters undergo a random walk, we need to check if any pair of particles in different
clusters have become nearest neighbors. If such a situation occurs, their respective clusters have to
be merged. The check for nearest neighbors is done in method checkNeighbors. If for example,
site[x][y] and site[x+1][y] are both nonzero and are not equal, then the two clusters associated
with these sites need to be combined. To do so, we combine the two circular lists for each cluster
into one circular list as is done in method merge. Hence if p1 and p2 are the first particles of their
respective clusters, then

p1Next = nextParticle[p1]
p2Next = nextParticle[p2]

gives the second particle in each cluster. The following code merges the two clusters.

nextParticle[p1] = p2Next
nextParticle[p2] = p1Next

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 549

To complete the merger, all the entries in site[x][y] corresponding to the second cluster are
relabeled with the label for the first cluster. To provide some efficiency we set the smaller cluster
to be relabeled.

Listing 13.5: Class for simulating cluster–cluster aggregation.
package org.opensourcephysics.sip.ch13.cca;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.numerics.∗;
import java.awt.∗;

/∗∗
∗ CCA provides simualtes cluster−cluster aggregation
∗ @author Jan Tobochnik
∗/

public class CCA implements Drawable {
public int [][] site ; // lattice on which clusters move
public int [] x,y; // location of particles
public int [] firstParticle , nextParticle , lastParticle , mass;
public int L; // linear lattice dimension
public int numberOfParticles; // number of particles in system
public int numberOfClusters; // number of clusters in system
private int nnx[] = {1,0,−1,0}; // used to find neighbors of site
private int nny[] = {0,1,0,−1};
public int [] box;

/∗∗
∗ initialize site lattice with single particle clusters
∗ randomly placed on the lattice
∗/

public void initialize () {
site = new int[L][L];
for(int i = 0; i < L; i++) {

for(int j = 0; j < L; j++) {
site [i][j] = −1; // site not occupied

}
}
x = new int[numberOfParticles];
y = new int[numberOfParticles];
firstParticle = new int[numberOfParticles];
nextParticle = new int[numberOfParticles];
lastParticle = new int[numberOfParticles];
mass = new int[numberOfParticles+1];
numberOfClusters = 0;
for (int i = 0; i < numberOfParticles; i++) {

do{
x[i] = (int)(Math.random()∗L);
y[i] = (int)(Math.random()∗L);
}
while(site[x[i]][y[i]] != −1);

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 550

site [x[i]][y[i]] = numberOfClusters;
firstParticle [numberOfClusters] = i;

mass[numberOfClusters] = 1;
nextParticle [i] = −1; // no more particles in cluster
lastParticle [numberOfClusters] = i;
numberOfClusters++;
checkNeighbors(x[i],y[i]);

}
}

/∗∗
∗ Checks to see if there are two neighbors not in same cluster
∗ @param x i,y i
∗/

public void checkNeighbors(int x i, int y i) {
for(int j = 0; j < 4; j++) {

int px = PBC.position(x i + nnx[j],L);
int py = PBC.position(y i + nny[j],L);
if ((site [px][py] != −1) && (site[px][py] != site [x i][y i]))

merge(site[px][py], site [x i][y i]);
}

}

/∗∗
∗ Merges two clusters which are next to each other
∗ @param largerCluster,smallerCluster
∗/

public void merge(int c1, int c2){
int largerClusterLabel,smallerClusterLabel;
if (mass[c1] > mass[c2]) {

largerClusterLabel = c1;
smallerClusterLabel = c2;

}
else{

largerClusterLabel = c2;
smallerClusterLabel = c1;

}
// do the merging by first changing links in linked list
nextParticle [lastParticle [largerClusterLabel]] = firstParticle [smallerClusterLabel];
lastParticle [largerClusterLabel] = lastParticle [smallerClusterLabel];
mass[largerClusterLabel] += mass[smallerClusterLabel];
int particle = firstParticle [smallerClusterLabel];
do{

site [x[particle]][y[particle]] = largerClusterLabel ; // relabel sites of smaller cluster
particle = nextParticle[particle];

}
while(particle != −1);
numberOfClusters−−;
if (smallerClusterLabel != numberOfClusters) {

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 551

particle = firstParticle [numberOfClusters];
do{
site [x[particle]][y[particle]] = smallerClusterLabel; // relabel sites of last cluster
particle = nextParticle[particle];

}
while(particle != −1);
firstParticle [smallerClusterLabel] = firstParticle [numberOfClusters];
lastParticle [smallerClusterLabel] = lastParticle [numberOfClusters];
mass[smallerClusterLabel] = mass[numberOfClusters];

}
}

/∗∗
∗ Move a cluster chosen at random in a random direction
∗
∗/

public void step() {
int cluster = (int)(Math.random()∗numberOfClusters);
int direction = (int)(Math.random()∗4);
int dx = nnx[direction];
int dy = nny[direction];
int particle = firstParticle [cluster];
do {

site [x[particle]][y[particle]] = −1;
x[particle] = PBC.position(x[particle] + dx,L);
y[particle] = PBC.position(y[particle] + dy,L);
particle = nextParticle[particle];

}
while(particle != −1);
particle = firstParticle [cluster];
do {
site [x[particle]][y[particle]] = cluster ; // label new sites occupied by cluster

particle = nextParticle[particle];
}
while(particle != −1);
particle = firstParticle [cluster];
do {

checkNeighbors(x[particle], y[particle]); // check for merger
particle = nextParticle[particle];

}
while(particle != −1);

}

public int occupiedSiteInCell(int cell , int i , int j) {
for (int ic = 0; ic < cell ; ic++) {

for (int jc = 0; jc < cell ; jc++) {
if (site [i+ic][j+jc] > −1) return 1;

}
}

return 0;

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 552

}

public void boxCount() {
box = new int[L];
int cell = 1;
while (cell < L) {
for (int i = 0; i < 1+L−cell; i += cell) {

for (int j = 0; j < 1+L−cell; j += cell) {
box[cell] += occupiedSiteInCell(cell , i , j);

}
}
cell ∗= 2;
}

}

/∗∗ Draw clusters
∗
∗
∗/
public void draw (DrawingPanel myWorld, Graphics g) {

if (site == null) return;
int sizeX = Math.abs(myWorld.xToPix(1.0) − myWorld.xToPix(0));
int sizeY = Math.abs(myWorld.yToPix(1.0) − myWorld.yToPix(0));
for(int i = 0; i < numberOfParticles; i++){

int xpix = myWorld.xToPix(x[i]) − sizeX;
int ypix = myWorld.yToPix(y[i]) − sizeY;
g. fillRect (xpix + sizeX/2,ypix + sizeY/2,sizeX,sizeY);
}

}

}

∗Problem 13.11. Cluster-cluster aggregation

a. Class CCA assumes that the diffusion coefficient is independent of the cluster mass. Write
a target class to use with Class CCA. Run your application with L = 50 and N = 500 and
describe the qualitative appearance of the clusters as they form. Do they appear to be fractals?
Compare their appearance to DLA clusters.

b. Choose L = 50 and N = 500 and compute the fractal dimension of the final cluster. Use the
center of mass, rcm, as the origin of the cluster, where rcm = (1/N)

(∑
i xi,

∑
i yi

)
and (xi, yi)

is the position of the ith particle. Average your results over at least ten final clusters. Do the
same for other values of L and N . Are the clusters formed by cluster-cluster aggregation more
or less space filling than DLA clusters?

c. Assume that the diffusion coefficient of a cluster of s particles varies as Ds ∝ s−1/d, where d
is the spatial dimension. Let Dmax be the diffusion coefficient of the largest cluster. Choose a
random number r between 0 and 1 and move the cluster if r < Ds/Dmax. Repeat the above

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 553

simulations and discuss any changes in your results. What effect does this dependence of D on
s have on the motion of the clusters? The time-dependence of the cluster size distribution is
investigated in Project 13.19.

Surface growth. The fractal objects we have discussed so far are self-similar, that is, if we
look at a small piece of the object and magnify it isotropically to the size of the original, then
the original and the magnified object look similar (on the average). In the following, we introduce
some simple models that generate a class of fractals that are self-similar only for scale changes in
certain directions.

One of the problems in surface science is understanding the formation of rough surfaces.
Suppose that we have a flat surface at time t = 0. Let us ask how the surface grows as a result of
vapor deposition and sedimentation. For example, consider a surface which initially is a line of L
occupied sites. Growth is confined to the vertical direction (see Figure 13.13).

As before, we simply choose a perimeter site at random and occupy it. The average height of
the cluster is given by

h =
1

Ns

Ns∑
i=1

hi, (13.12)

where hi is the distance of the ith surface site from the substrate, and the sum is over all surface
sites Ns. (The precise definition of a surface site for the Eden model is discussed in Problem 13.12.)

Each time a particle is deposited, the time t is increased by unity. Our main interest is how
the “width” of the surface changes with t. We define the width of the surface by

w2 =
1

Ns

Ns∑
i=1

(hi − h)2. (13.13)

In general, the surface width w, which is a measure of the surface roughness, depends on L and t.
Initially w grows with time. We expect that

w(L, t) ∼ tβ . (13.14)

The exponent β describes the growth of the correlations with time along the vertical direction.
Figure 13.13 illustrates the evolution of the surface generated according to the Eden model. After
a characteristic time, the length over which the fluctuations are correlated becomes comparable to
L, and the width reaches a steady state value that depends only on L. We write

w(L, t
 1) ∼ Lα, (13.15)

where α is known as the roughness exponent.
From (13.15) we see that in the steady state, the width of the surface in the direction perpen-

dicular to the substrate grows as Lα. This steady-state behavior of the width is characteristic of
a self-affine fractal. Such a fractal is invariant (on the average) under anisotropic scale changes,
that is, different scaling relations exist along different directions. For example, if we rescale the
surface by a factor b in the horizontal direction, then the surface must be rescaled by a factor of

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 554

bα in the direction perpendicular to the surface to preserve the similarity along the original and
rescaled surfaces.

Note that on short length scales, that is, lengths shorter than the width of the interface, the
surface is rough and its roughness can be characterized by the exponent α. (Imagine an ant walking
on the surface.) However on length scales much larger than the width of the surface, the surface
appears to be flat and, in our example, it is a one-dimensional object. The properties of the surface
as given by several growth models are explored in Problem 13.12.

Problem 13.12. Growing surfaces

a. Eden model. In the Eden model a perimeter site is chosen at random and occupied. In this
model there can be “overhangs” as shown in Figure 13.13, and the height hx corresponds to the
maximum distance of any perimeter site in column x from the surface. Use periodic boundary
conditions in the horizontal directions to determine the perimeter sites. Note that the growth
rule is the same as the usual Eden model, but the growth is started from the top of a strip of
length L. Choose a square lattice with L = 100. Describe the visual appearance of the surface
as the surface grows. Is the surface well-defined visually? Where are most of the perimeter
sites? We have defined the surface sites as a subset of the perimeter sites (that is, those with
maximum h for a given x). Do you think our results would be qualitatively different if we
included all perimeter sites?

b. Plot the width w(t) as a function of t for L = 32, 64, and 128 on the same graph and estimate
the exponents α and β for the Eden model. What type of plot is most appropriate? Does the
width initially grow as a power law? If so, estimate the exponent β. Is there a L-dependent
crossover time after which the width of the surface approaches its steady state value? How can
you estimate the exponent α? The best numerical estimates for β and α are consistent with
the presumed exact values β = 1/3 and α = 1/2, respectively.

c.∗ The dependence of w(L, t) on t and L can be combined into the scaling form

w(L, t) ≈ Lαf(t/Lα/β) (13.16)

where

f(x) ≈ xβ forx � 1 (13.17a)
f(x) = constant forx
 1 (13.17b)

Verify the existence of the scaling form (13.16) by plotting the ratio w(L, t)/Lα versus t/Lα/β

for the different values of L considered in part (b). If the scaling forms holds, the results for w
for the different values of L should fall on a universal curve. Use either the estimated values
of α and β that you found in part (b) or the exact results.

d. Random deposition. The Eden model is not really a surface growth model, because any perimeter
site can become part of the cluster. In the simplest deposition model, a column is chosen at
random and a particle is deposited at the top of the column of already deposited particles.
There is no horizontal correlation between neighboring columns. Do a simulation of this growth
model and visually inspect the surface of the interface. Show that the heights of the columns
follow a Poisson distribution (see (7.29)) and that h ∼ t and w ∼ t1/2. This structure does not
depend on L and hence α = 0.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 555

e. Ballistic deposition. In this model a column is chosen at random and a particle is assumed to
fall vertically until it reaches the first perimeter site that is a nearest neighbor of a site that
already is part of the surface. This condition allows for growth parallel to the substrate. Only
one particle falls at a time. How do the rules for this growth model differ from those of the Eden
model? How does the deposit that you obtain compare to that of the Eden model? Suppose
that instead of the particle falling vertically, we let it do a random walk as in DLA. Would the
resultant surface be the same?

13.4 Fractals and Chaos

In Chapter 6 we explored dynamical systems that exhibited chaos under certain conditions. We
found that after an initial transient, the trajectory of a dynamical system consists of a set of points
in phase space called an attractor. For chaotic motion this attractor often is an object that can
be described by a fractal dimension. Such attractors are called strange attractors.

We first consider the familiar logistic map (see (6.1)), xn+1 = 4rxn(1 − xn). For most values
of the control parameter r > r∞ = 0.892486417967 . . . , the trajectories are chaotic. Are these
trajectories fractals? We explore this question in Problem 13.13.

To calculate the fractal dimension for dynamical systems, we use the box counting method in
which space is divided into d-dimensional boxes of length �. Let N(�) equal the number of boxes
that contain a piece of the trajectory. The fractal dimension is defined by the relation

N(�) ∼ lim
�→0

�−D. (box counting dimension) (13.18)

Equation (13.18) is accurate only when the number of boxes is much larger than N(�) and the
number of points on the trajectory is sufficiently large. If the trajectory moves through many
dimensions, that is, the phase space is very large, box counting becomes too memory intensive
because we need an array of size ∝ �−d. This array becomes very large for small � and large d.

A more efficient approach is to calculate the correlation dimension. In this approach we store
in an array the position of N points on the trajectory. We compute the number of points Ni(r),
and the fraction of points fi(r) = Ni(r)/(N −1) within a distance r of the point i. The correlation
function C(r) is defined by

C(r) ≡ 1
N

∑
i

fi(r), (13.19)

and the correlation dimension Dc is defined by

C(r) ∼ lim
r→0

rDc . (correlation dimension) (13.20)

From (13.20) we see that the slope of a log-log plot of C(r) versus r yields an estimate of the
correlation dimension. In practice, small values of r must be discarded because we cannot sample
all the points on the trajectory, and hence there is a cutoff value of r below which C(r) = 0. In the
large r limit, C(r) saturates to unity if the trajectory is localized as it is for chaotic trajectories.
We expect that for intermediate values of r, there is a scaling regime where (13.20) holds.

In Problems 13.13–13.15 we consider the fractal properties of some of the dynamical systems
that we considered in Chapter 6.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 556

Problem 13.13. Fractal dimension of logistic map trajectories

a. Write a program that uses box counting to determine the fractal dimension of the attractor for
the logistic map. Compute N(�), the number of boxes of length � that have been visited by the
trajectory. Test your program for r < r∞. How does the number of boxes containing a piece of
the trajectory change with �? What does this dependence tell you about the dimension of the
trajectory?

b. Compute N(�) for r = 0.9 using at least five different values of �, for example, 1/� = 100, 300,
1000, 3000, Iterate the map at least 1000 times before determining N(�). What is the
fractal dimension of the attractor? Repeat for r ≈ r∞, r = 0.95, and r = 1.

c. Generate points at random in the unit interval and estimate the fractal dimension using the
same method as in part (b). What do you expect to find? Use your results to estimate the
accuracy of the fractal dimension that you found in part (b).

d. Write a program to compute the correlation dimension for the logistic map and repeat the
calculations for parts (b) and (c).

Problem 13.14. Strange attractor of the Hénon map

a. Use two-dimensional boxes of linear dimension � to estimate the fractal dimension of the strange
attractor of the Hénon map (see (6.32)) with a = 1.4 and b = 0.3. Iterate the map at least 100
times before computing N(�). Does it matter what initial condition you choose?

b. Compute the correlation dimension for the same parameters used in part (a) and compare Dc

with the box dimension computed in part (a).

c. Iterate the Hénon map and view the trajectory on the screen by plotting xn+1 versus xn in one
window and yn versus xn in another window. Do the two ways of viewing the trajectory look
similar? Estimate the correlation dimension, where the ith data point is defined by (xi, xi+1) and
the distance Rij between the ith and jth data point is given by Rij

2 = (xi−xj)2+(xi+1−xj+1)2.

d. Estimate the correlation dimension with the ith data point defined by xi, and Rij
2 = (xi−xj)2.

What do you expect to obtain for Dc? Repeat the calculation for the ith data point given by
(xi, xi+1, xi+2) and Rij

2 = (xi − xj)2 + (xi+1 − xj+1)2 + (xi+2 − xj+2)2. What do you find for
Dc?

∗Problem 13.15. Strange attractor of the Lorenz model

a. Use three-dimensional graphics or three two-dimensional plots of x(t) versus y(t), x(t) versus
z(t), and y(t) versus z(t) to view the structure of the Lorenz attractor. Use σ = 10, b = 8/3,
r = 28, and the time step ∆t = 0.01. Then compute the correlation dimension for the Lorenz
attractor.

b. Repeat the calculation of the correlation dimension using x(t), x(t + τ), and x(t + 2τ) instead
of x(t), y(t), and z(t). Choose the delay time τ to be at least ten times greater than the time
step ∆t.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 557

c. Compute the correlation dimension in the two-dimensional space of x(t) and x(t + τ). Do the
same calculation in four dimensions using x(t), x(t+ τ), x(t+2τ), and x(t+3τ). What can you
conclude about the results for the correlation dimension using two, three, and four-dimensional
spaces. What do you expect to see for d > 4?

Problems 13.14 and 13.15 illustrate a practical method for determining the underlying struc-
ture of systems when, for example, the data consists only of a single time series, that is, measure-
ments of a single quantity over time. The dimension Dc(d) computed by increasing the dimension
of the space, d, using the delayed coordinate τ eventually saturates when d is approximately equal
to the number of variables that actually determine the dynamics. Hence, if we have extensive
data for a single variable, for example, the atmospheric pressure, we can use this method to de-
termine the number of independent variables that determine the dynamics of the pressure. This
information can then be used to help create models of the atmosphere.

13.5 Many Dimensions

So far we have discussed three ways of defining the fractal dimension: the mass dimension (13.1),
the box counting dimension (13.18), and the correlation dimension (13.20). These methods do not
always give the same results for the fractal dimension. Indeed, there are many other dimensions
that we could compute. For example, instead of just counting the boxes that contain a part of an
object, we can count the number of points of the object in each box, ni, and compute pi = ni/N ,
where N is the total number of points. A generalized dimension Dq can be defined as

Dq =
1

q − 1
lim
�→0

ln
∑N(�)

i=1 pq
i

ln �
. (13.21)

The sum in (13.21) is over all the boxes and involves the probabilities raised to the qth power. For
q = 0, we have

D0 = − lim
�→0

lnN(�)
ln �

. (13.22)

If we compare the form of (13.22) with (13.18), we can identify D0 with the box-counting dimension.
For q = 1, we need to take the limit of (13.21) as q → 1. Let

u(q) = ln
∑

i

pi
q, (13.23)

and do a Taylor-series expansion of u(q) about q = 1. We have

u(q) = u(1) + (q − 1)
du

dq
+ . . . (13.24)

The quantity u(1) = 0 because
∑

i pi = 1. The first derivative of u(q) is given by

du

dq
=

∑
i pi

q ln pi∑
i pi

q
=

∑
i

pi ln pi, (13.25)

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 558

where the last equality follows by setting q = 1. If we use the above relations, we find that D1 is
given by

D1 = lim
�→0

∑
i pi ln pi

ln �
. (information dimension) (13.26)

D1 is called the information dimension because of the similarity of the p ln p term in the numerator
of (13.25) to the information form of the entropy.

It is possible to show that D2 as defined by (13.21) is the same as the mass dimension defined in
(13.1) and the correlation dimension Dc. That is, box counting gives D0 and correlation functions
give D2 (cf. Sander et al. 1994).

There are many objects in nature that have similar fractal dimensions, but which neverthe-
less differ in appearance. An example of this difference is the visual appearance in three spatial
dimensions of the clusters generated by diffusion-limited aggregation and the percolation clusters
generated by the Leath algorithm at the percolation threshold. (Both objects have a fractal di-
mension of approximately 2.5.) In some cases this difference can be accounted for by multifractal
properties of an object. For objects called multifractals the various Dq are different, in contrast to
monofractals for which the different measures are the same. Percolation clusters are an example
of a monofractal, because pi ∼ �D0 , the number of boxes N(�) ∼ �−D0 , and from (13.21), Dq = D0

for all q. Multifractals occur when the quantities pi are not the same throughout the object, as
frequently happens for the strange attractors produced by chaotic dynamics. DLA might be an
example of a multifractal, and the appropriate probabilities pi might correspond to the probability
that the next perimeter site to be occupied is at i.

13.6 Projects

Although the kinetic growth models yield beautiful pictures and fractal objects, there is much
we do not understand. Why do the fractal dimensions have the values that we found by various
numerical experiments? Can we trust our numerical estimates of the various exponents or is it
necessary to consider much larger systems to obtain their true asymptotic values? Can we find
unifying features for the many kinetic growth models that presently exist? What is the relation of
the various kinetic growth models to physical systems? What are the essential quantities needed
to characterize the geometry of an object?

One of the reasons that growth models are difficult to understand is that typically the end
product depends on the history of the growth. We say that these models are examples of “nonequi-
librium behavior.” This combination of simplicity, beauty, complexity, and relevance to many ex-
perimental systems suggests that the study of fractal objects will continue to involve a wide range
of workers in many disciplines.

Project 13.16. Off-lattice DLA

a. In the continuum (off-lattice) version of diffusion-limited aggregation. the diffusing particles are
assumed to be disks of radius a. A particle executes a random walk until its center is within
a distance 2a of the center of a particle already attached to the DLA cluster. At each step
the walker changes its position by (r cos θ, r sin θ), where r is the step size, and θ is a random

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 559

variable between 0 and 2π. Modify your DLA program or Class DLA to simulate off-lattice
DLA.

b. Compare the appearance of an off-lattice DLA cluster with one generated on a square lattice. It
is necessary to grow very large clusters (approximately 106 particles) to see any real differences.

c. Use the mass dimension to estimate the fractal dimension of the off-lattice DLA cluster and
compare its value with the value you found for the square lattice. Explain why the fractal
dimensions might be different. D ≈ 1.71 for off-lattice DLA in two dimensions while D ≈ 1.55
for a square lattice (also see Problem 13.9). However, it is necessary to grow very large clusters
to determine the effect of the lattice.

Project 13.17. More efficient simulation of DLA
In Class DLA we restart the walker if it wonders too far from the existing cluster to improve
the efficiency of the algorithm. However, when the walker is within the distance startRadius of
the seed, no optimization is used. Because there can be a great deal of empty space within this
distance, we describe an additional optimization technique (see Ball and Brady). The basic idea is
to use a simple geometrical object (a circle or square) centered at the walker such that none of the
cluster is within the object. Then in one step move the walker to the perimeter of the object. For
a circle the walker can move to any location with equal probability on the circle. For the square
you need the probability of moving to various locations on the square. The major difficulty is to
find the largest object that does not contain a part of the DLA cluster. To do this we consider
coarse grained lattices. For example, each 2×2 group of sites on the original lattice corresponds to
one site on the coarser lattice, and then each 2× 2 group of sites on the coarse lattice corresponds
to a site on an even coarser lattice, etc. If a site is occupied then any coarse site made from this
site also is occupied.

a. Because we have considered DLA clusters on a square lattice, we use squares centered at a
walker. First we must find the probability p(∆x,∆y, s) that a walker centered on a square of
length l = 2s + 1, will be displaced by the vector (∆x,∆y). This probability can be computed
by simulating a random walk starting at the origin and ending at the edge of the square. These
simulations are then repeated for many walkers, and then for each value of s. p(∆x,∆y, s) is
the fraction of walkers that reached the position (∆x,∆y). Determine p(∆x,∆y, s) for s = 1
to 16. Store your results in a file.

b. We next need to produce an array such that for a given value of s and a random number r
between 0 and 1, we can quickly find (∆x,∆y). To do so create four arrays. The first array lists
the probability distribution determined from p in part (a) such that the values for s = 1 are
listed first, then the values for s = 2, etc. Call this array p. For example, p(1) = p(−1,−1, 1),
p(2) = p(1)+p(−1, 0, 1), p(3) = p(2)+p(−1, 1, 1), etc. Next create an array start that tells you
where to start in the array p for each value of s. Then create the two arrays dx(i) and dy(i)
which give the values of ∆x and ∆y corresponding to p(i). To see how these arrays are used,
consider a walker located at (x, y), centered on a square of size 2s+1. First compute a random
number r and find i = start(s). If p(i) > r, then the walker moves to (x + dx(i), y + dy(i)).
If not, increment i by unity and check again. Repeat until p(i) > r. Write a program to create
these four arrays and store them in a file.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 560

c. Write a method to determine the maximum value of the parameter s such that a square of size
2s + 1 centered at the position of the walker does not contain any part of the DLA cluster. Use
coarse grained lattices to do this determination more efficiently.

d. Modify Class DLA to incorporate the method from part (c) and read in the arrays from part (b).
How much faster is your modified program than the original Class DLA for clusters of size 500
and 5000 particles? What is the largest cluster you can grow on your computer in one hour?

e. Grow as large a cluster as you can. Is there any evidence for anisotropy? For example, does the
cluster tend to extend further along the axes or along any other direction?

The following two projects introduce some of the important ideas associated with scaling.

Project 13.18. Scaling properties of the percolation cluster size distribution

a. The scaling hypothesis for ns, the number of percolation clusters of size s, near the percolation
threshold pc is

ns = s−τf±
(
|p − pc|1/σs

)
, (s
 1) (13.27)

where the indices + and − refer to p > pc and p < pc, respectively. The critical exponents τ
and σ are the same above and below pc. To understand the scaling form of ns, first note that
(13.27) implies that ns ∼ s−τ at p = pc (compare with Table 12.1). We now show that the
exponent σ can be related to ν and τ . Recall that the connectedness length ξ is given in terms
of ns by (see (12.11)):

ξ2 =
∑

s s2 nsR
2
s∑

s s2 ns
, (13.28)

where Rs is the radius of gyration of the clusters. Close to pc, the large clusters dominate the
sum in (13.28). On length scales less than ξ, the clusters have no way of telling that the system
is not at pc and hence the large clusters are fractals with Rs ∼ s1/D. If we substitute this
dependence and the scaling form (13.27) for ns in (13.28), we obtain

ξ2 ∼
∑

s s2−τ+2/Df±
(
|p − pc|1/σs

)
∑

s s2−τf±
(
|p − pc|1/σs

) . (13.29)

For an infinite system the sums in (13.29) range from s = 1 to s = ∞. To calculate these sums,
we transform them into integrals. For example, we can write the numerator of (13.29) as

∞∑
s=1

s2−τ+2/D f±
(
|p − pc|1/σs

)
∼

∫ ∞

1

s2−τ+2/Df±
(
|p − pc|1/σs

)
ds

∝ (p − pc)(τD−3D−2)/(Dσ)

∫ ∞

(p−pc)1/σ

x2−τ+2/Df±(x) dx, (13.30)

where x = (p − pc)1/σs. The denominator can be written in a similar form. If we assume that
the integrands are nonsingular, then to lowest order in (p− pc), the lower integration limit can
be set equal to zero. Show that we obtain

ξ2 ∼ |p − pc|−2/(Dσ). (13.31)

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 561

Because ξ ∼ |p − pc|−ν , we obtain the desired relation between ν, σ, and D:

ν = 1/(Dσ). (13.32)

If we write the argument x = |p − pc|1/σs as x = s/ξD, we can express the scaling form of ns

(13.27) in a more physical form:

ns ∼ s−τf±
(
s/ξD

)
. (13.33)

Equation (13.33) implies that ns depends on s only through the ratio s/ξD or Rs/ξ. That is, the
connectedness length represents the only important length near pc. Show that the integrands
in (13.30) are nonsingular if 2 − τ > −1 and fill in the missing algebra leading to (13.33).

b. Let us try to verify the scaling form of ns by generating percolation clusters of all sizes as we
did in Chapter 12. We use the Leath algorithm to generate clusters of size s that are grown
from a seed. Modify Class Cluster so that many clusters are generated and ns is computed
for a given input probability p. Remember that the number of clusters of size s that are grown
from a seed is the product sns, rather than ns itself (see Problem 13.3a). Run your program at
p = pc ≈ 0.592746 and grow at least 100 clusters for a square lattice with L ≥ 61. From (13.27)
we see that at p = pc, ns ∼ s−τf(0) ∼ s−τ . Hence a log-log plot of ns versus s should give a
straight line for s
 1 with a slope of −τ . Estimate τ from your data. If time permits, use a
bigger lattice and average over more clusters, and also estimate the accuracy of your estimate
of τ .

c. Determine ns for at least three different values of p close to pc, for example, 0.57, 0.58, and
0.61. Plot the product sτns versus the product |p−pc|σs using the value of τ found in part (b).
Try various values of σ until your points for all values of p follow the same curve. Initially, try
σ = 0.4, 0.45, and 0.5.

d. The mean cluster size S(p) is related to ns by (see (12.5)):

S(p) =
∑

s s2ns∑
s sns

. (13.34)

Note that S(p) can be regarded as the second moment of ns. Use arguments similar to those
used in part (a) to show that S(p) ∼ |p − pc|(τ−3)/σ for p near pc. Because S(p) ∼ |p − pc|−γ ,
we have the relation

γ = (3 − τ)/σ. (13.35)

Use the values of τ and σ that you found in parts (b) and (c) to estimate γ.

Similar arguments can be made for P∞. Every site in the lattice is either empty with probability
1 − p, or occupied and part of the spanning cluster with probability pP∞, or occupied but not
part of the spanning cluster with probability p(1 − P∞) =

∑
s sns. Hence we have the exact

relation

P∞(p) = 1 − 1
p

∑
s

sns. (13.36)

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 562

Note that P∞ can be regarded as the first moment of ns. Hence using the same argument that
led to (13.35), we find

β = (τ − 2)/σ. (13.37)

Compare this relation to the form of (13.35). A careful derivation of this scaling relation can
be found on page 70 of Bunde and Havlin. Use (13.37) to estimate the critical exponent β.

Project 13.19. Dynamical scaling properties of the cluster size distribution in cluster-cluster
aggregation

a. The dynamical scaling assumption for the number of clusters of size s at time t for cluster-cluster
aggregation is

ns(t) ∼ s−θf(s/tz), (13.38)

where θ and z are exponents and f(x) is a scaling function. The density of the particles is fixed
and is related to ns by the normalization condition:

ρ =
∑

s

sns(t) ∼
∫

sns(t) ds. (13.39)

Use the normalization condition (13.39) to show that θ = 2. The scaling form (13.38) is expected
to be applicable in the low density limit at large s and t.

b. Show that the mean cluster size S(t) given by

S(t) =
∑

s s2ns(t)∑
s sns(t)

(13.40)

diverges for t → ∞ as

S(t) ∼ tz (13.41)

Hence the scaling form of ns(t) can be written as

ns(t) ∼ t−2f
(
s/S(t)

)
(13.42)

c. Modify Class CCA so that the cluster size distribution, ns(t), is computed for t = 2p with
p = 1, 2, 3 . . . and s = 1, 3, 10, 30, and 100. For simplicity, assume that the diffusion coefficient
of the clusters is size independent. Remember that ns = Ns(t)/L2, where Ns(t) is the number
of clusters of s particles at time t. The unit of time can be defined in various ways. The easiest
way is to increase t by unity after a cluster has been moved one lattice unit. However, this
choice would lead to the time changing faster when the number of clusters decreases. A better
choice is to increase the time by an amount ∆t = s/N , where s is the number of sites in the
selected cluster and N is the (original) number of particles in the lattice. Choose L = 50 and
N = 500 and average over at least ten runs. One way to test the dynamical scaling form of ns(t)
is to plot s2ns(t) versus s/tz for different choices of z. Another way is to make a log-log plot of
S(t) versus t and extract the exponent z from the slope of the linear portion of the log-log plot.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 563

d. Repeat part (c) for other values of L and N and discuss the accuracy of your results.

e. A similar type of dynamics occurs in one dimension. What do you think the fractal dimension
of the final cluster would be? In one dimension the surface of a cluster is two sites regardless
of its size. As a result, the large clusters do not grow as fast as they do for higher dimensions.
Can ns(t) still be described by a scaling form?

References and Suggestions for Further Reading

We have considered only a few of the models that lead to self-similar patterns. Use your imagi-
nation to design your own model of real-world growth processes. You are encouraged to read
the research literature and recent books on growth models.

R. C. Ball and R. M. Brady, “Large scale lattice effect in diffusion-limited aggregation,” J. Phys.
A 18, L809 (1985). The authors discuss the optimization algorithm used in Project 13.17.

Albert-László Barabási and H. Eugene Stanley, Fractal Concepts in Surface Growth, Cambridge
University Press (1995).

K. S. Birdi, Fractals in Chemistry, Geochemistry, and Biophysics, Plenum Press (1993).

Armin Bunde and Shlomo Havlin, editors, Fractals and Disordered Systems, Springer-Verlag
(1991).

Fereydoon Family and David P. Landau, editors, Kinetics of Aggregation and Gelation, North-
Holland (1984). A collection of research papers that give a wealth of information, pictures,
and references on a variety of growth models.

Fereydoon Family, Daniel E. Platt, and Tamás Vicsek, “Deterministic growth model of pattern
formation in dendritic solidification,” J. Phys. A 20, L1177 (1987). The authors discuss the
nature of Laplace fractal carpets.

Fereydoon Family and Tamás Vicsek, editors, Dynamics of Fractal Surfaces, World Scientific
(1991). A collection of reprints.

Fereydoon Family, Y. C. Zhang, and Tamás Vicsek, “Invasion percolation in an external field:
dielectric breakdown in random media,” J. Phys. A. 19, L733 (1986).

Jens Feder, Fractals, Plenum Press (1988). This text discusses the applications as well as the
mathematics of fractals.

J.-M. Garcia-Ruiz, E. Louis, P. Meakin, and L. M. Sander, editors, Growth Patterns in Physical
Sciences and Biology, NATO ASI Series B304, Plenum (1993).

J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuen (1964). The chapter
on percolation processes discusses a growth algorithm for percolation.

Shlomo Havlin and Daniel Ben-Avraham, “Diffusion in disordered media,” Adv. Phys. 36, 695
(1987).

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 564

H. J. Herrmann, “Geometrical Cluster Growth Models and Kinetic Gelation,” Phys. Repts. 136,
154 (1986).

Robert C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press (1994).

Benoit B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman (1983). An influential
and beautifully illustrated book on fractals.

Imtiaz Majid, Daniel Ben-Avraham, Shlomo Havlin, and H. Eugene Stanley, “Exact-enumeration
approach to random walks on percolation clusters in two dimensions,” Phys. Rev. B 30, 1626
(1984).

P. Meakin, “The growth of rough surfaces and interfaces,” Physics Reports 235 , 189 (1993). The
author has written many seminal articles on DLA and other aggregation models.

Paul Meakin, Fractals, Scaling and Growth Far From Equilibrium, Cambridge University Press
(1995).

L. Niemeyer, L. Pietronero, and H. J. Wiesmann, “Fractal dimension of dielectric breakdown,”
Phys. Rev. Lett. 52, 1033 (1984).

H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag (1986).

Luciano Pietronero and Erio Tosatti, editors, Fractals in Physics, North-Holland (1986). A col-
lection of research papers, many of which are accessible to the motivated reader.

Mark Przyborowski and Mark van Woerkom, “Diffusion of many interacting random walkers on a
three-dimensional lattice with a personal computer,” Eur. J. Phys. 6, 242 (1985). This work
was done while the authors were high school students in West Germany.

F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill (1965). Einstein’s relation
between the diffusion and mobility is discussed in Chapter 15.

John C. Russ, Fractal Surfaces, Plenum Press (1994). A disk also is included.

Evelyn Sander, Leonard M. Sander, and Robert M. Ziff, “Fractals and Fractal Correlations,”
Computers in Physics 8, 420 (1994). An introduction to fractal growth models and the
calculation of their properties. One of the authors, Leonard Sander, is a co-developer of the
diffusion limited aggregation model (see Problem 13.9).

H. Eugene Stanley and Nicole Ostrowsky, editors, On Growth and Form, Martinus Nijhoff Pub-
lishers, Netherlands (1986). A collection of research papers at approximately the same level
as the Family and Landau collection. The article by Paul Meakin on DLA was referenced in
the text.

Hideki Takayasu, Fractals in the Physical Sciences, John Wiley & Sons (1990).

David D. Thornburg, Discovering Logo, Addison-Wesley (1983). The book is more accurately
described by its subtitle, An Invitation to the Art and Pattern of Nature. The nature of
recursive procedures and fractals are discussed using many simple examples.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 565

Donald L. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge University Press
(1992).

Tamás Vicsek, Fractal Growth Phenomena, second edition, World Scientific Publishing (1991).
This book contains an accessible introduction to diffusion limited and cluster-cluster aggre-
gation.

Bruce J. West, Fractal Physiology and Chaos in Medicine, World Scientific Publishing (1990).

David Wilkinson and Jorge F. Willemsen, “Invasion percolation: a new form of percolation the-
ory,” J. Phys. A16, 3365 (1983).

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 566

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 0

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 1

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 2

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 3

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 4

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 5

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 6

0.10 0.07 0.84 0.42 0.64

0.70 0.13 0.04 0.89 0.59

0.55 0.22 0.61 0.34 0.72

t = 7

Figure 13.10: Example of a cluster formed by invasion percolation. The lattice at t = 0 shows the
random numbers that have been assigned to the sites. The darkly shaded sites are occupied by
the invader that occupies the perimeter site (lightly shaded) with the smallest random number.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 567

1

t = 0

1/3

1/3

0 1/3

t = 1

0

1/6

0

2/3 0

1/6

t = 2

1/18

5/18

0

1/18

2/9

0 7/18

0

t = 3

Figure 13.11: The evolution of the probability distribution function Wt(i) for three successive time
steps.

CHAPTER 13. FRACTALS AND KINETIC GROWTH MODELS 568

Figure 13.12: An example of a DLA cluster of 1000 particles on a square lattice.

Figure 13.13: Surface growth according to the Eden model. The surface site in column x is the
perimeter site with the maximum value hx in the vertical direction. The average height for this
surface is 20.46 and the width is 2.33.

	Fractals and Kinetic Growth Models
	The Fractal Dimension
	Regular Fractals
	Fractal Growth Processes
	Fractals and Chaos
	Many Dimensions
	Projects

