
Chapter 16

Quantum Systems

c©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
25 March 2005

We discuss numerical solutions of the time-independent and time-dependent Schrödinger equation
and describe several Monte Carlo methods for estimating the ground state of quantum systems.

16.1 Introduction

So far we have simulated the microscopic behavior of physical systems using Monte Carlo methods
and molecular dynamics. In the latter method, the classical trajectory (the position and mo-
mentum) of each particle is calculated as a function of time. However, in quantum systems the
position and momentum of a particle cannot be specified simultaneously. Because a fundamental
description of nature is intrinsically quantum mechanical, we cannot directly simulate nature on a
computer (see Feynman).

However, quantum mechanics does allow us to analyze probabilities, although there are diffi-
culties associated with such an analysis. Consider a simple probabilistic system described by the
one-dimensional diffusion equation (see Section 7.2)

∂P (x, t)
∂t

= D
∂2P (x, t)

∂x2
, (16.1)

where P (x, t) is the probability density of a particle being at position x at time t. One way to
convert (16.1) to a difference equation and obtain a numerical solution for P (x, t) is to make x
and t discrete variables. Suppose we choose a mesh size for x such that the probability is given at
p values of x. If we choose p to be order 103, we see that a straightforward calculation of P (x, t)
would require approximately 103 data points for each value of t. In contrast, the corresponding
calculation of the dynamics of a single particle calculation based on Newton’s second law would
require one data point.

The limitations of the direct computational approach become even more apparent if there
are many degrees of freedom. For example, for N particles in one dimension, we would have to

722

CHAPTER 16. QUANTUM SYSTEMS 723

calculate the probability P (x1, x2, . . . , xN , t), where xi is the position of particle i. Because we
need to choose a mesh of p points for each xi, we need to specify Np configurations at each time
t. Usually we choose p to be the same order as N , because the probability at each point in space
represents useful information. Hence, we would need to compute the order of NN configurations
to obtain the desired probability at each time interval. Consequently, a doubling of the size
of the system would lead to an exponential growth in the calculation time and in the memory
requirements.

Although the direct computational approach is limited to systems with only a few degrees of
freedom, the simplicity of this approach will aid our understanding of the behavior of quantum
systems. After a summary of the general features of quantum mechanical systems in Section 16.2,
we consider this approach to solving the time-independent Schrödinger equation in Section 16.3
and 16.4. In Section 16.5, we use a half-step algorithm to generate wave packet solutions to the
time-dependent Schrödinger equation.

Are there other ways of approaching probabilistic systems? Because we have already learned
that the diffusion equation (16.1) can be formulated as a random walk problem, it might not
surprise you that Schrödinger’s equation can be analyzed in a similar way. Monte Carlo methods
are introduced in Section 16.7 to obtain variational solutions of the ground state. We introduce
quantum Monte Carlo methods in Section 16.8 and discuss more sophisticated quantum Monte
Carlo methods in Sections 16.9 and 16.10.

16.2 Review of Quantum Theory

For simplicity, we consider a one-dimensional, nonrelativistic quantum system consisting of one
particle. The state of the system is completely characterized by the position space wave function
Ψ(x, t), which is interpreted as a probability amplitude. The probability P (x, t) dx of the particle
being in a “volume” element dx centered about the position x at time t is equal to

P (x, t) dx = |Ψ(x, t)|2dx. (16.2)

This interpretation of Ψ(x, t) requires the use of normalized wave functions such that∫ ∞

−∞
Ψ∗(x, t)Ψ(x, t) dx = 1, (16.3)

where Ψ∗(x, t) is the complex conjugate of Ψ(x, t).
If the particle is subjected to the influence of a potential energy function V (x, t), the evolution

of Ψ(x, t) is given by the time-dependent Schrödinger equation

i�
∂Ψ(x, t)

∂t
= − �2

2m

∂2Ψ(x, t)
∂x2

+ V (x, t)Ψ(x, t), (16.4)

where m is the mass of the particle and � is Planck’s constant divided by 2π.
Physically measurable quantities, such as the momentum, have corresponding operators. The

expectation or average value of an observable A is given by

〈A〉 =
∫

Ψ∗(x, t)ÂΨ(x, t) dx, (16.5)

CHAPTER 16. QUANTUM SYSTEMS 724

where Â is the operator corresponding to the measurable quantity A. For example, the momentum
operator corresponding to the linear momentum p is p̂ = −i�∂/∂x in position space.

If the potential energy function is independent of time, we can obtain solutions of (16.4) of
the form

Ψ(x, t) = φ(x) e−iEt/�. (16.6)

A particle in the state (16.6) has a well-defined energy E. If we substitute (16.6) into (16.4), we
obtain the time-independent Schrödinger equation

− �2

2m

d2φ(x)
dx2

+ V (x) φ(x) = E φ(x). (16.7)

Note that φ(x) is an eigenstate of the Hamiltonian operator,

Ĥ = − �2

2m

∂2

∂x2
+ V (x), (16.8)

with the eigenvalue E. That is,

Ĥ φ(x) = E φ(x). (16.9)

In general, there are many eigenstates φn, each with a particular eigenvalue, En, that satisfy (16.9)
and the boundary conditions imposed on the eigenstates by physical considerations.

The general form of Ψ(x, t) can be expressed as a superposition of the eigenstates of the
operator corresponding to any physical observable. For example, if Ĥ is independent of time, we
can write

Ψ(x, t) =
∑

n

cn φn(x) e−iEnt/�, (16.10)

where Σ represents a sum over the discrete states and an integral over the continuum states. The
coefficients cn in (16.10) can be determined from the value of Ψ(x, t) at any time t. For example,
if we know Ψ(x, t = 0), we can use the orthonormality property of the eigenstates of any physical
operator to obtain

cn =
∫

φ∗
n(x)Ψ(x, 0) dx. (16.11)

The coefficient cn can be interpreted as the probability amplitude of a measurement of the total
energy yielding a particular value En.

There are three steps needed to solve (16.7) numerically. The first is to integrate (16.7) for
any given value of the energy, E, in a way similar to the approach we have used for numerically
solving other ordinary differential equations. This approach will usually not satisfy the boundary
conditions. The second step is to find the particular values of E that lead to solutions that do
satisfy the boundary conditions. Finally, we need to normalize the eigenstate wave function using
(16.3) so that we can interpret the eigenstate as a probability amplitude.

We first discuss the solution of (16.7) without imposing any boundary conditions by treating
the solution to (16.7) as an initial value problem for the wave function and its derivative at some

CHAPTER 16. QUANTUM SYSTEMS 725

point for a given value of E. We will use these solutions to develop our intuition about the behavior
of solutions to the Schrödinger equation.

To use an ODE solver we express the wave function rate in terms of the independent variable,
x,

dφ

dx
= φ′ (16.12a)

dφ′

dx
= −2m

�2
[E − V (x)]φ (16.12b)

dx

dx
= 1. (16.12c)

Because the time-independent Schrödinger equation is a second-order differential equation, two
initial conditions must be specified to obtain a solution. For simplicity, we first assume that the
wave function is zero at the starting point, xmin, and the derivative is nonzero. We also assume
that the range of values of x is finite and divide this range into intervals of width ∆x. We initially
consider potential energy functions V (x) such that V (x) = 0 for x < 0 and V (x) changes abruptly
at x = 0 to V0, the value of the stepHeight parameter. An implementation of the solution of
(16.12) is shown in Listing 16.1.

Listing 16.1: The Schroedinger class models the one-dimensional time independent Schrödinger
equation.

package org.opensourcephysics.sip.ch16;
import org.opensourcephysics.numerics.∗;

public class Schroedinger implements ODE {
double energy = 0;
double[] psi ; // wave function
double[] x; // positions
double xmin, xmax; // range of values of x
double[] state = new double[3]; // state = psi, dpsi/dx, x
ODESolver solver = new RK45MultiStep(this);
double stepHeight = 0;
int numberOfPoints;
public void initialize () {

psi = new double[numberOfPoints];
x = new double[numberOfPoints];
double dx = (xmax−xmin)/(numberOfPoints−1);
solver . setStepSize(dx);

}

void solve() {
for(int i = 0, n = psi.length; i<n;i++) { // zeros the wavefunction

psi [i] = 0;
}
state [0] = 0; // initial psi
state [1] = 1.0; // nonzero initial dpsi/dx
state [2] = xmin; // initial value of x

CHAPTER 16. QUANTUM SYSTEMS 726

for(int i = 0, n = psi.length; i<n;i++) {
psi [i] = state [0]; // stores the wavefunction value
x[i] = state [2];
solver .step (); // steps Schroedinger equation
if (Math.abs(state[0])>1.0e9) { // checks for diverging solution

break; // break out of the loop
}

}
}

public double[] getState() {
return state;

}

public void getRate(double[] state, double[] rate) {
rate [0] = state [1];
rate[1] = 2.0∗(−energy+evaluatePotential(state[2]))∗ state [0];
rate [2] = 1.0;

}

public double evaluatePotential(double x) { // potential is nonzero for x > 0
if (x<0) {

return 0;
} else {

return stepHeight;
}

}
}

The solve method initializes the wave function and position arrays and sets the initial value
of dφ/dx to an arbitrary nonzero value of unity. A loop is then used to compute values of φ until
the solution diverges or until x ≥ xmax.

SchroedingerApp in Listing 16.2 produces a graphical view of φ(x). We will use this program
in Problem 16.1 to study the behavior of the solution as we vary the height of the potential step.

Listing 16.2: SchroedingerApp solves the one-dimensional time-independent Schrödinger equation
for a given energy.

package org.opensourcephysics.sip.ch16;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;

public class SchroedingerApp extends AbstractCalculation {
PlotFrame frame = new PlotFrame(”x”, ”Psi”, ”Wave function”);
Schroedinger schroedinger = new Schroedinger();
public SchroedingerApp() {

frame.setConnected(0, true);
frame.setMarkerShape(0, Dataset.NO MARKER);

}

CHAPTER 16. QUANTUM SYSTEMS 727

public void calculate() {
schroedinger.xmin = control.getDouble(”position to start solution”);
schroedinger.xmax = control.getDouble(”position to finish solution”);
schroedinger.stepHeight = control.getDouble(”step height at x = 0”);
schroedinger.numberOfPoints = control.getInt(”number of points”);
schroedinger.energy = control.getDouble(”energy”);
schroedinger. initialize ();
schroedinger. solve ();
frame.append(0, schroedinger.x, schroedinger.psi);

}

public void reset() {
control .setValue(”position to start solution”, −10);
control .setValue(”position to finish solution” , 10);
control .setValue(”step height at x = 0”, 3);
control .setValue(”number of points”, 500);
control .setValue(”energy”, 1);

}

public static void main(String[] args) {
CalculationControl.createApp(new SchroedingerApp(), args);

}
}

Problem 16.1. Numerical solution of the time-independent Schrödinger equation

a. Sketch your best guess for φ(x) for a potential step height of V0 = 3 and energies E = 1, 2, 3,
4, and 5.

b. Choose xmin = -10 and xmax = 10, and run SchroedingerApp with the parameters given in
part (a). How well do your predictions match the numerical solution? Is there any discontinuity
in φ or the derivative dφ/dx at x = 0? Describe the wave function in both the x < 0 and x > 0
regions. Why does the wave function have a larger oscillatory amplitude when x > 0 than when
x < 0 if the energy is greater than the potential step height?

c. Describe the behavior of the wave function as energy approaches the potential step height.
Consider E in the range 2.5 to 3.5 in steps of 0.1.

d. Repeat part (b) with the initial condition φ = 1 and dφ/dx = 0. Describe the differences, if
any, in φ(x).

Problem 16.1 demonstrates that the nature of the solution of (16.7) changes dramatically
depending on the relative values of the energy E and the potential energy. If E is greater than V0,
then the wave function is oscillatory, whereas if E is less than or equal to V0, the wave function
grows exponentially. There also is an exponentially decaying solution in the region where E < V0,
but this solution is difficult to detect.

Problem 16.2. Analytic solutions of the time-independent Schrödinger equation

CHAPTER 16. QUANTUM SYSTEMS 728

a. If the potential energy is independent of x, (16.1) is a second-order differential equation with
constant coefficients. Find the general solution to (16.1) for E > V0, E < V0, and E = V0. We
will use units such that m = � = 1 in all the problems in this chapter.

b. Run SchroedingerApp and compare the analytic solution of (16.1) to the numerical solutions.
In particular, show that the wavelength and the exponential growth rate are correct when
E > V0 and E < V0, respectively.

The solutions that we have obtained so far do not satisfy any condition other than that they
solve (16.1). We have only plotted a portion of the wave function and the solutions can be extended
by increasing the number of points and the range of x over which the computation is performed.
Physically, these solutions are unrealistic because they cannot be normalized over all of space. The
normalization problem can be solved by using an infinite linear combination of energy eigenstates
(16.10) with different values of E.

Although we used a fourth-order algorithm in Listing 16.1, simpler algorithms can be used.
Recall that the solution of (16.7) with V (x) = 0 can be expressed as a linear combination of sine and
cosine functions. The oscillatory nature of this solution leads us to expect that the Euler-Cromer
algorithm introduced in Chapter 3 often will yield satisfactory results.

16.3 Bound State Solutions

We first consider potentials for which a particle is confined to a specific region of space. Such a
potential is known as the infinite square well and is described by

V (x) =

{
0 for |x| ≤ a

∞ for |x| > a
(16.13)

For this potential, an acceptable solution of (16.7) must vanish at the boundaries of the well. We
will find that the eigenstates, φn(x), can satisfy these boundary conditions only for specific values
of the energy En.

Problem 16.3. The infinite square well

a. Show analytically that the energy eigenvalues of the infinite square well are given by En =
n2π2�2/8ma2, where n is a positive integer. Also show that the normalized eigenstates have
the form

φn(x) =
1√
a

cos
nπx

2a
n = 1, 3, . . . (even parity) (16.14a)

φn(x) =
1√
a

sin
nπx

2a
. n = 2, 4, . . . (odd parity) (16.14b)

What is the parity of the ground state solution?

b. We can solve (16.7) numerically for the infinite square well by setting stepHeight = 0. xmin =
−a, and xmax = +a in SchroedingerApp and requiring that φ(x = +a) = 0. What is the

CHAPTER 16. QUANTUM SYSTEMS 729

condition for φ(x = −a) in the program? Choose a = 5 and calculate the first four energy
eigenvalues exactly using SchroedingerApp. Do the numerical and analytical solutions match?
Do the solutions satisfy the boundary conditions exactly? Are your numerical solutions nor-
malized?

Problem 16.4. Bound state solutions of the time-independent Schrödinger equation

a. Examine the potential energy function that is defined in Schroedinger and sketch your best
guess for the lowest energy eigenstates if stepHeight = 1, xmin = −5, and xmax = 5. That is,
V (x) = 0, for −a < x < 0 and V (x) = 1 for 0 ≤ x < a, and the particle is confined between
infinite potential barriers at x = ±a. Thus the wave function is constrained to satisfy φ(x) = 0
at x = ±a.

b. Choose a = 5 and V0 = 1 and run SchroedingerApp with an energy of E = 0.15. Repeat with
an energy of E = 0.16. Why can you conclude that an energy eigenvalue is bracketed by these
two values?

c. Choose a strategy for determining the value of E such that the boundary conditions at x = +a
are satisfied. Determine the energy eigenvalue to four decimal places. Does your answer depend
on the number of points at which the wave function is computed?

d. Repeat the above procedure starting with energy values of 0.58 and 0.59 and find the energy
eigenvalue of the second bound state.

If you were persistent in doing all of Problem 16.4, you would have discovered two energy
eigenvalues, 0.1505 and 0.5857. The procedure we used is known as the shooting algorithm. The
allowed eigenvalues are imposed by the requirement that φn(x) → 0 at the boundaries.

Although the shooting algorithm usually yields an eigenvalue solution, we often wish to find
specific eigenvalues, such as the eigenvalue E = 1.1195 corresponding to the third excited state for
the above potential. Because the energy of a wave function increases as the wavelength decreases,
we can order the energy eigenvalues by counting the number of times the corresponding eigenstate
crosses the x-axis, that is, by the number of nodes. The ground state eigenstate has no nodes.
Why? Why can we order the eigenvalues by the number of nodes? The number of nodes can be
used to narrow the energy bracket in the shooting algorithm. For example, if we are searching for
the third energy eigenvalue and we observe 5 nodes, then the energy is too large. To find a specific
quantum state, we automate the shooting method as follows:

1. Choose a value of the energy E and count the number of nodes.

2. Increase E and repeat step 1 until the number of zero crossings is equal to the desired number.

3. Decrease E and repeat step 1 until the number of nodes is one less than the desired number.
The desired value of the energy eigenvalue is now bracketed. We can further narrow the energy
by doing the following steps:

4. Set the energy to the bracket midpoint.

CHAPTER 16. QUANTUM SYSTEMS 730

5. Initialize φ(x) at the left boundary and iterate φ(x) toward increasing x until φ diverges or until
the right boundary is reached.

6. If the quantum number is even (odd) and the last value of φ(x) in step 4 is negative (positive),
then the trial value of E is too large.

7. If the quantum number is even (odd) and the last value of φ(x) in step 4 is positive (negative),
then the trial value of E is too small.

8. Repeat steps 2–7 until the wave function satisfies the right-hand boundary condition to an
acceptable tolerance. This procedure is known as a binary search because every repetition
decreases the energy bracket by a factor of two.

Problem 16.5 asks you to write a program that finds specific eigenvalues using the shooting
algorithm.

Problem 16.5. Shooting algorithm

a. Modify SchroedingerApp to find the eigenvalue associated with a given quantum number. Test
your program using the infinite square well eigenstates studied in Problem 16.3.

b. What is the value of ∆x need to determine E1 to two decimal places? Three decimal places?

c. Add a method to normalize φ. Normalize and display the first five infinite square well eigen-
states.

d. Find the first five eigenstates and eigenvalues using a half width a = 5 and a potential energy
step of 3 at x = 0.

e. Does your result for E1 depend on the starting value of dφ/dx?

Problem 16.6. Perturbation of the infinite square well

a. Determine the effect of a small perturbation on the eigenstates and eigenvalues of the infinite
square well. Place a small rectangular bump of half-width b and height Vb symmetrically about
x = 0 (see Fig. 16.1). Choose b 	 a and determine how the ground state energy and eigenstate
change with Vb and b. What is the relative change in ground state energy for Vb = 10, b = 0.1
and Vb = 20, b = 0.1? (Set a = 1.) Let φ0 denote the ground state eigenstate for b = 0 and let
φb denote the ground state eigenstate for b
= 0. Compute the value of the overlap integral∫ a

0

φb(x)φ0(x) dx. (16.15)

This integral would be unity if the perturbation were not present (and the eigenstate was
properly normalized). How is the change in the overlap integral related to the relative change
in the energy eigenvalue?

b. Compute the ground state energy for Vb = 20 and b = 0.05. How does the value of E1 compare
to that found in part (a) for Vb = 10 and b = 0.1?

CHAPTER 16. QUANTUM SYSTEMS 731

-a -b ab x

Vb

V

Figure 16.1: An infinite square well with a potential bump of height Vb in the middle.

Because numerical solutions to the Schrödinger equation grow exponentially if V (x)−E > 0,
it may not be possible to obtain a numerical solution for φ(x) that satisfies the boundary conditions
if V (x) − E is large over an extended region of space. The reason is that energy can be specified
and φ can be computed only to finite accuracy. Problem 16.7 shows that we can sometimes solve
this problem using simpler boundary conditions if the potential is symmetric. In this case,

V (x) = V (−x), (16.16)

and φ(x) can be chosen to have definite parity. For even parity solutions, φ(−x) = φ(x); odd
parity solutions satisfy φ(−x) = −φ(x). The definite parity of φ(x) allows us to specify either φ
or φ′ at x = 0. Hence, the parity of φ determines one of the boundary conditions. For simplicity,
choose φ(0) = 1 and φ′(0) = 0 for even parity solutions, and φ(0) = 0 and φ′(0) = 1 for odd parity
solutions.

Problem 16.7. Symmetric potentials

a. Modify Schroedinger to make use of symmetric potential boundary conditions for the harmonic
oscillator:

V (x) =
1
2
x2. (16.17)

Start the solution at x = 0 using appropriate conditions for even and odd quantum numbers
and find the first four energy eigenvalues such that the wave function approaches zero for large
values of x. Note that the computed φ(x) will diverge if we calculate the solution to sufficiently
large x. Hence, we are looking for values of the energy such that a small decrease in E causes
the wave function to diverge in one direction, and a small increase causes the wave function to
diverge in the opposite direction. Initially choose xmax equal to 5 which should be large enough
so that ψ(x) can approach 0. Increase xmax if necessary. Is there any pattern in the values of
the energy eignevalues you find?

b. Repeat part (a) for the linear potential V (x) = |x|. Describe the differences between your results
for this potential and for the harmonic oscillator potential. The quantum mechanical treatment

CHAPTER 16. QUANTUM SYSTEMS 732

of the linear potential can be used to model the energy spectrum of a bound quark-antiquark
system known as quarkonium.

c. Obtain a numerical solution of the anharmonic oscillator, V (x) = 1
2x2 + bx4. In this case there

are no analytical solutions and numerical solutions are necessary for large values of b. How does
the ground state energy depend on b for small b? How does the ground state eigenstate depend
on b?

Problem 16.8. Finite square well
The finite square well potential is given by

V (x) =

{
0 for |x| ≤ a

V0 for |x| > a
(16.18)

The input parameters are the well depth, V0, and the half-width of the well, a.

a. Choose V0 = 10 and a = 1. How do you expect the value of the ground state energy to compare
to its corresponding value for the infinite square well? Compute the ground state eigenvalue
and eigenstate by determining a value of E such that φ(x) has no nodes and is approximately
zero for large x. (See Problem (16.7a) for the procedure for finding the eigenvalues.)

b. Because the well depth is finite, φ(x) is nonzero in the classically forbidden region for which
E < V0 and x > |a|. Define the penetration distance as the distance from x = a to a point
where φ is ∼ 1/e ≈ 0.37 of its value at x = a. Determine the qualitative dependence of the
penetration distance on the magnitude of V0.

c. Compute the excited eigenstates and eigenvalues for V0 = 10 and a = 1. What is the total
number of bound excited states? Why is the total number of bound states finite?

As we have found, it is difficult to find bound state solutions of the time-independent Schrödinger
equation because the exponential solution allows numerical errors to dominate when V (x)−E > 0
is large. Because we want to easily generate eigenstates in subsequent sections, we have written a
general-purpose eigenstate solver that examines maximum and minima of the solution as well as
the zero crossings to determine the eigenstate’s quantum number.

The code for the Eigenstate class is in the Chapter 16 package. The EigenstateApp program
shows how this class is used.

Listing 16.3: The EigenstateApp program tests the Eigenstate class.
package org.opensourcephysics.sip.ch16;
import org.opensourcephysics.frames.PlotFrame;
import org.opensourcephysics.numerics.Function;

public class EigenstateApp {
public static void main(String[] args) {

PlotFrame drawingFrame = new PlotFrame(”x”, ”|phi|”, ”rigenstate”);
int numberOfPoints = 300;
double xmin = −5, xmax = +5;

CHAPTER 16. QUANTUM SYSTEMS 733

Eigenstate eigenstate = new Eigenstate(new Potential(), numberOfPoints, xmin, xmax);
int n = 3; // quantum number
double[] phi = eigenstate.getEigenstate(n);
double[] x = eigenstate.getXCoordinates();
if (eigenstate .getErrorCode()==Eigenstate.NO ERROR) {

drawingFrame.setMessage(”energy=”+eigenstate.energy);
} else {

drawingFrame.setMessage(”eigenvalue did not converge”);
}
drawingFrame.append(0, x, phi);
drawingFrame.setVisible(true);
drawingFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT ON CLOSE);

}
}
class Potential implements Function {

public double evaluate(double x) {
return(x∗x)/2;

}
}

The Eigenstate class models a quantum system on a grid for a given potential energy function.
The getEigenstate method computes the eigenstate for the specified quantum number. Note that
this method returns a zeroed wave function if the algorithm does not converge. We test the validity
of the Eigenstate class in Problem 16.9.

Problem 16.9. The Eigenstate class

a. Examine the Eigenstate code. What “trick” is used to handle the divergence in the forbidden
region of deep wells?

b. Write a class that displays the eigenstates of the simple harmonic oscillator using the Calculation
interface. Include input parameters that allow the user to vary the principal quantum number
and the number of points.

c. Use a spatial grid of 300 points with −5 < x < 5 and compare the known analytic solution
for the simple harmonic oscillator eigenstates to the numerical solution for the lowest three
energy eigenstates. What is the largest energy eigenvalue can be calculated to an accuracy of
1%? What causes this decreasing accuracy for larger quantum numbers? What if the domain
is increased to 50 < x < 50?

d. Describe the conditions under which the Eigenstate class fails and demonstrate this failure.
Improve the Eigenstate class to handle at least one failure mode.

CHAPTER 16. QUANTUM SYSTEMS 734

16.4 Time Development of Eigenstate Superpositions

If the Hamiltonian is independent of time, the time development of the wave function, Ψ(x, t), can
be expressed as a linear superposition of energy eigenstates, φn(x), with eigenvalue En.

Ψ(x, t) =
∑

n

cn φn(x) e−iEnt/�. (16.19)

To study the time dependence of Ψ(x, t), we begin by studying superpositions of analytic solutions.
The static getEigenstate method in the BoxEigenstate class generates these solutions for the
infinite square well.

Listing 16.4: The BoxEigenstate class generates analytic stationary state solutions for the infinite
square well.

package org.opensourcephysics.sip.ch16;
public class BoxEigenstate {

static double L = 1; // length of box
private BoxEigenstate() {

// prohibit instantiation because all methods are static
}

static double[] getEigenstate(int n, int numberOfPoints) {
double[] phi = new double[numberOfPoints];
n++; // quantum number
double norm = Math.sqrt(2/L);
for(int i = 0;i<numberOfPoints;i++) {

phi[i] = norm∗Math.sin((n∗Math.PI∗i)/(numberOfPoints−1));
}
return phi;

}

static double getEigenvalue(int n) {
n++;
return(n∗n∗Math.PI∗Math.PI)/2/L/L; // hbar = 1, mass = 1

}
}

To visualize the evolution of Ψ(x, t) in (16.19), we define a class that stores the energy eigen-
states, φn(x), the real and imaginary parts of the expansion coefficients, cn, and the eigenvalues,
En. As the system evolves, the eigenstates are added together as in (16.19) using the expansion co-
efficients and a phase that depends on the time and the energy eigenvalue. The BoxSuperposition
class shown in Listing 16.5 creates such a wave function for the infinite square well. Later we will
modify this class to study other potentials.

Listing 16.5: The BoxSuperposition class models the time dependence of the wave function of an
infinite square well using a superposition of eigenstates.

package org.opensourcephysics.sip.ch16;
public class BoxSuperposition {

CHAPTER 16. QUANTUM SYSTEMS 735

double[] realCoef;
double[] imagCoef;
double[][] states ; // eigenfunctions
double[] eigenvalues ; // eigenvalues
double[] x, realPsi , imagPsi;
double[] zeroArray;
public BoxSuperposition(int numberOfPoints, double[] realCoef, double[] imagCoef) {

if (realCoef.length!=imagCoef.length) {
throw new IllegalArgumentException(”Real and imaginary coefficients must have equal number of elements.”);

}
this.realCoef = realCoef;
this.imagCoef = imagCoef;
int nstates = realCoef.length;
// delay allocation of arrays for eigenstates
states = new double[nstates][]; // eigenfunctions
eigenvalues = new double[nstates]; // eigenvalues
realPsi = new double[numberOfPoints];
imagPsi = new double[numberOfPoints];
zeroArray = new double[numberOfPoints];
x = new double[numberOfPoints];
double dx = BoxEigenstate.L/(numberOfPoints−1);
double xo = 0;
for(int j = 0, n = numberOfPoints;j<n;j++) {

x[j] = xo;
xo += dx;

}
for(int n = 0;n<nstates;n++) {

// BoxEigenstate allocates eigenstate array
states [n] = BoxEigenstate.getEigenstate(n, numberOfPoints);
eigenvalues [n] = BoxEigenstate.getEigenvalue(n);

}
update(0); // compute the superpositon at t = 0

}

void update(double time) {
//set real and imaginary parts of wave function to zero
System.arraycopy(zeroArray, 0, realPsi , 0, realPsi .length);
System.arraycopy(zeroArray, 0, imagPsi, 0, imagPsi.length);
for(int i = 0, nstates = realCoef.length; i<nstates;i++) {

double[] phi = states[i];
double re = realCoef[i];
double im = imagCoef[i];
double sin = Math.sin(time∗eigenvalues[i]);
double cos = Math.cos(time∗eigenvalues[i]);
for(int j = 1, n = phi.length−1;j<n;j++) { // box ends are zero

realPsi [j] += (re∗cos−im∗sin)∗phi[j];
imagPsi[j] += (im∗cos+re∗sin)∗phi[j];

}
}

}

CHAPTER 16. QUANTUM SYSTEMS 736

}

The BoxSuperpositionApp class in Listing 16.6 creates the eigenstate superposition and dis-
plays the wave function by extending the AbstractAnimation class and implementing the doStep
method.

Listing 16.6: BoxSuperpositionApp shows the evolution of a particle in a box.
package org.opensourcephysics.sip.ch16;
import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;
import org.opensourcephysics.frames.ComplexPlotFrame;

public class BoxSuperpositionApp extends AbstractSimulation {
ComplexPlotFrame psiFrame = new ComplexPlotFrame(”x”, ”|Psi|”, ”Time dependent wave function”);
BoxSuperposition superposition;
double time, dt;
public BoxSuperpositionApp() {

psiFrame.limitAutoscaleY(−1, 1);
}

public void initialize () {
time = 0;
psiFrame.setMessage(”t = ”+decimalFormat.format(time));
dt = control.getDouble(”dt”);
double[] re = (double[]) control.getObject(”real coef”);
double[] im = (double[]) control.getObject(”imag coef”);
int numberOfPoints = control.getInt(”number of points”);
superposition = new BoxSuperposition(numberOfPoints, re, im);
psiFrame.append(superposition.x, superposition.realPsi , superposition.imagPsi);

}

public void doStep() {
time += dt;
superposition.update(time);
psiFrame.clearData();
psiFrame.append(superposition.x, superposition.realPsi , superposition.imagPsi);
psiFrame.setMessage(”t = ”+decimalFormat.format(time));

}

public void reset() {
control .setValue(”dt” , 0.005);
control .setValue(”real coef” , new double[]{0.707, 0, 0.707});
control .setValue(”imag coef”, new double[]{0, 0, 0});
control .setValue(”number of points”, 50);
initialize ();

}

public static void main(String[] args) {
SimulationControl.createApp(new BoxSuperpositionApp());

}

CHAPTER 16. QUANTUM SYSTEMS 737

}

Because wave functions have real and imaginary components, the BoxSuperpositionApp class
uses a ComplexPlotFrame for plotting. The ComplexPlotFrame renders data using an envelope
whose height is proportional to the magnitude and the region between the envelope is colored from
red to blue to show the phase. A more traditional plotting style showing the real and imaginary
parts of the wave function is available from the frame’s Tools menu. (See also Appendix 16A.)

We use BoxSuperpositionApp to study wave function periodicity in Problems 16.10 and 16.11.

Problem 16.10. Particle in a box periodicity

a. Add a second visualization to the BoxSuperpositionApp class that displays the probability
density Ψ(x, t).

b. Change the coefficient array so that the particle is in the ground state. Show that the wave
function changes in time, but that the probability density does not. After what time does the
ground state wave function return to its initial condition? Find the corresponding times for the
first and second excited states.

c. Change the coefficient array so that the particle is in a 50:50 superposition of the ground state
and the first excited state. After what time does the wave function return to its initial condition?
After what time does the probability density return to its initial condition?

d. Change the coefficient array so that the particle is in a 50:50 superposition of the first and
second excited states. After what time does the wave function return to its initial condition?
After what time does the probability density return to its initial condition?

e. Will the initial wave function always revive, that is, return to its initial condition? Explain.

Problem 16.11. Simple harmonic oscillator periodicity

a. Modify BoxSuperpositionApp and BoxSuperposition to superimpose simple harmonic oscil-
lator energy eigenstates using the Eigenstate class to compute the eigenstates. What are
the oscillatory periods for the ground state and the first excited state wave functions and the
probability density?

b. Change the coefficient array so that the particle is in a 50:50 superposition of the ground state
and the first excited state. After what time does the wave function return to its initial condition?
After what time does the probability density return to its initial condition? Compare these times
with the period of the classical oscillator.

c. Repeat part (b) for a 50:50 superposition of the first and second excited states.

Problem 16.12. Linear potential
Does the linear potential, V (x) = |x|, exhibit periodicity if the particle is in a superposition state?
Test your hypothesis using numerical solutions to the Schrödinger equation.

CHAPTER 16. QUANTUM SYSTEMS 738

As we have seen, the evolution of an arbitrary wave function can be found by expanding the
initial state in terms of the energy eigenstates. From the orthogonality property of eigenstates, it
is easy to show that

cn =
∫ ∞

−∞
φ∗

n(x)Ψ(x, 0)dx. (16.20)

This operation is known as a projection of Ψ onto φn.

Problem 16.13. Projections

a. Add a projection method to the BoxSuperpositionApp class using the following signature.

double[] projection(int n, double[] realPhi, double[] imagPhi)

The projection method’s arguments are the quantum number, the real component of the wave
function, and the imaginary component of the wave function. The method returns a two com-
ponent array containing the real and imaginary parts of the projection of the wave function on
the nth eigenstate.

b. Test your projection method by projecting an eigenstate onto another eigenstate. That is, verify
the orthogonality condition,

δnm =
∫ ∞

−∞
φm(x)φn(x)dx, (16.21)

for several different potential energy functions:

c. Compute the expansion coefficients for a particle in a box using the following initial Gaussian
wave function:

Ψ(x, 0) = e−64x2
. (16.22)

Assume a box width of one. Plot the amplitude of the resulting coefficients as a function of the
index. How does the shape of the coefficient plot depend on the width of the Gaussian wave
function?

d. Use the coefficients from part (c) to determine the evolution of the wave function. Does the
wave function remain real? Does the initial state revive?

e. Repeat parts (c) and (d) using the following initial wave function

Ψ(x, 0) =

{
2 |x| ≤ 1/8
0, |x| > 1/8

(16.23)

Problem 16.14. Coherent states
Because the energy eigenvalues of the simple harmonic oscillator are equally spaced, there exist
wave functions known as coherent states whose probability density propagates quasi-classically.

CHAPTER 16. QUANTUM SYSTEMS 739

a. Include a sufficient number of expansion coefficients for a simple harmonic oscillator with V (x) =
10x2 to model an initial Gaussian wave function centered at the origin.

Ψ(x, 0) = e−16x2
. (16.24)

Describe the evolution.

b. Repeat part (a) with

Ψ(x, 0) = e−16(x−2)2 . (16.25)

c. Show that the wave functions in parts (a) and (b) change their width but not their Gaussian
envelope. Construct a wave function with the following expansion coefficients and observe its
behavior.

c2
n =

〈n〉n
n!

e−〈n〉. (16.26)

The expectation of the number of quanta, 〈n〉, is given by

〈n〉 = 〈E〉 − 1
2

�ω (16.27)

where 〈E〉 is the energy expectation value of the coherent state.

The expansion of an arbitrary wave function in terms of a set of eigenstates is closely related to
Fourier analysis. Because the eigenstates of a particle in a box are sinusoidal functions, we could
have used the fast Fourier transform algorithm (FFT) to calculate the projection coefficients.
However, because these coefficients are calculated only once in Problem 16.14, evaluating (16.20)
directly is reasonable. We will use the FFT to study wave functions in momentum space and to
introduce the operator splitting method for time evolution in Section 16.6.

16.5 The Time-Dependent Schrödinger Equation

Although the numerical solution of the time-independent Schrödinger equation (16.7) is straight-
forward for one particle, the numerical solution of the time-dependent Schrödinger equation (16.4)
is not as simple. A naive approach to its numerical solution can be formulated by introducing a grid
for the time coordinate and a grid for the spatial coordinate. We use the notation tn = t0 + n∆t,
xs = x0 + s∆x, and Ψ(xs, tn). The idea is to develop an algorithm that relates Ψ(xs, tn+1) to the
value of Ψ(xs, tn) for each value of xs. An example of an algorithm to solve the Schrödinger-like
equation ∂Ψ

∂t = ∂2Ψ
∂x2 to first-order in ∆t is given by

1
∆t

[
Ψ(xs, tn+1) − Ψ(xs, tn)

]
=

1
(∆x)2

[
Ψ(xs+1, tn) − 2Ψ(xs, tn) + Ψ(xs−1, tn)

]
. (16.28)

The right-hand side of (16.28) represents a finite difference approximation to the second derivative
of Ψ with respect to x. Equation (16.28) is an example of an explicit scheme, because given Ψ at

CHAPTER 16. QUANTUM SYSTEMS 740

time tn, we can calculate Ψ at time tn+1. Unfortunately, this explicit approach leads to unstable
solutions, that is, the numerical value of Ψ diverges from the exact solution as Ψ evolves in time.

One way to avoid the instability is to retain the same form as (16.28), but to evaluate the
spatial derivative on the right side of (16.28) at time tn+1 rather than time tn:

1
∆t

[
Ψ(xs, tn+1) − Ψ(xs, tn)

]
=

1
(∆x)2

[Ψ(xs+1, tn+1) − 2Ψ(xs, tn+1) + Ψ(xs−1, tn+1)
]
. (16.29)

Equation (16.29) is an implicit method because the unknown function Ψ(xs, tn+1) appears on both
sides. To obtain Ψ(xs, tn+1), it is necessary to solve a set of linear equations at each time step.
More details of this approach and the demonstration that (16.29) leads to stable solutions can be
found in the references.

Visscher and others (see references) have suggested an alternative approach in which the real
and imaginary parts of Ψ are treated separately and defined at different times. The algorithm
ensures that the total probability remains constant. If we let

Ψ(x, t) = R(x, t) + i I(x, t), (16.30)

then Schrödinger’s equation, i∂Ψ(x,t)
∂t = ĤΨ(x, t), becomes (� = 1)

∂R(x, t)
∂t

= Ĥ I(x, t) (16.31a)

∂I(x, t)
∂t

= −Ĥ R(x, t). (16.31b)

A stable method of numerically solving (16.31) is to use a form of the half-step method (see
Appendix 3A). The resulting difference equations are

R(x, t + ∆t) = R(x, t) + Ĥ I(x, t +
1
2
∆t) ∆t (16.32a)

I(x, t +
3
2
∆t) = I(x, t +

1
2
∆t) − Ĥ R(x, t) ∆t, (16.32b)

where the initial values are given by R(x, 0) and I(x, 1
2∆t). Visscher has shown that this algorithm

is stable if

−2�
∆t

≤ V ≤ 2�
∆t

− 2�2

(m∆x)2
, (16.33)

where the inequality (16.33) holds for all values of the potential V .
The appropriate definition of the probability density P (x, t) = R(x, t)2+I(x, t)2 is not obvious,

because R and I are not defined at the same time. It is easy to show that the following choice
conserves the total probability:

P (x, t) = R(x, t)2 + I(x, t +
1
2
∆t) I(x, t − 1

2
∆t) (16.34a)

P (x, t +
1
2
∆t) = R(t + ∆t) R(x, t) + I(x, t +

1
2
∆t)2. (16.34b)

CHAPTER 16. QUANTUM SYSTEMS 741

An implementation of (16.32) is shown in the TDHalfStep class in Listing 16.7. The real part
of the wave function first is updated for all positions, and then the imaginary part is updated using
the new values of the real part.

Listing 16.7: The TDHalfStep class solves the one-dimensional time-dependent Schrödinger equa-
tion.

package org.opensourcephysics.sip.ch16;
public class TDHalfStep {

double[] x, realPsi , imagPsi, potential ;
double dx, dx2;
double dt = 0.001;
public TDHalfStep(GaussianPacket packet, int numberOfPoints, double xmin, double xmax) {

realPsi = new double[numberOfPoints];
imagPsi = new double[numberOfPoints];
potential = new double[numberOfPoints];
x = new double[numberOfPoints];
dx = (xmax−xmin)/(numberOfPoints−1);
dx2 = dx∗dx;
double x0 = xmin;
for(int i = 0, n = realPsi.length; i<n;i++) {

x[i] = x0;
potential [i] = getV(x0);
realPsi [i] = packet.getReal(x0);
imagPsi[i] = packet.getImaginary(x0);
x0 += dx;

}
dt = getMaxDt();
// advance the imaginary part by 1/2 step at start .
for(int i = 1, n = realPsi.length−1;i<n;i++) {

// deltaRe = change in real part of psi in 1/2 step
double deltaRe = potential[i]∗realPsi[i]−0.5∗(realPsi [i+1]−2∗realPsi[i]+realPsi[i−1])/dx2;
imagPsi[i] −= deltaRe∗dt/2;

}
}

double getMaxDt() {
double dt = Double.MAX VALUE;
for(int i = 0, n = potential.length; i<n;i++) {

if (potential [i]<0) {
dt = Math.min(dt, −2/potential[i]);

}
double a = potential[i]+2/dx2;
if (a>0) {

dt = Math.min(dt, 2/a);
}

}
return dt;

}

CHAPTER 16. QUANTUM SYSTEMS 742

double step() {
for(int i = 1, n = imagPsi.length−1;i<n;i++) {

double imH = potential[i]∗imagPsi[i]−0.5∗(imagPsi[i+1]−2∗imagPsi[i]+imagPsi[i−1])/dx2;
realPsi [i] += imH∗dt;

}
for(int i = 1, n = realPsi.length−1;i<n;i++) {

double reH = potential[i]∗realPsi[i]−0.5∗(realPsi [i+1]−2∗realPsi[i]+realPsi[i−1])/dx2;
imagPsi[i] −= reH∗dt;

}
return dt;

}

public double getV(double x) {
return 0; // change this statement to model other potentials

}
}

Before we can incorporate the TDHalfStep class into a program, we need to choose an initial
wave function. A convenient form is the Gaussian wave packet with a width (variance) w centered
about x0 given by

Ψ(x, 0) =
(

1
2πw2

)1/4

eik0(x−x0) e−(x−x0)
2/4w2

. (16.35)

The expectation value of the initial velocity of the wave packet is 〈v〉 = p0/m = �k0/m. An
implementation of (16.35) is shown in the GaussianPacket class. The constructor is passed the
width, center, and momentum of the packet. Real and imaginary values can then be calculated at
any x to fill the wave function arrays.

Listing 16.8: The GaussianPacket class creates a wave function having a Gaussian probability
distribution and a momentum boost.

package org.opensourcephysics.sip.ch16;
public class GaussianPacket {

double w, x0, p0;
double w42;
double norm;
public GaussianPacket(double width, double center, double momentum) {

w = width;
w42 = 4∗w∗w;
x0 = center;
p0 = momentum;
norm = Math.pow(2∗Math.PI∗w∗w, −0.25);

}

public double getReal(double x) {
return norm∗Math.exp(−(x−x0)∗(x−x0)/w42)∗Math.cos(p0∗(x−x0));

}

public double getImaginary(double x) {

CHAPTER 16. QUANTUM SYSTEMS 743

return norm∗Math.exp(−(x−x0)∗(x−x0)/w42)∗Math.sin(p0∗(x−x0));
}

}

To begin the half-step algorithm, we need the value of I(x, t = 1
2∆t) and R(x, t = 0). To

obtain I(x, t = 1
2∆t), we use the real component of the wave function to perform a half step.

I(x, t +
1
2
∆t) = I(x, t) − Ĥ R(x, t)

∆t

2
(16.36)

The normalization factor must be computed after we correct the initial wave function using (16.36).
For completeness, we list the TDHalfStepApp target class.

Listing 16.9: The TDHalfStepApp class solves the time-independent Schrödinger equation and
displays the wave function.

package org.opensourcephysics.sip.ch16;
import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;
import org.opensourcephysics.frames.ComplexPlotFrame;

public class TDHalfStepApp extends AbstractSimulation {
ComplexPlotFrame psiFrame = new ComplexPlotFrame(”x”, ”|Psi|”, ”Wave function”);
TDHalfStep wavefunction;
double time;
public TDHalfStepApp() {

psiFrame.limitAutoscaleY(−1, 1); // do not autoscale within this y−range.
}

public void initialize () {
time = 0;
psiFrame.setMessage(”t=”+0);
double xmin = control.getDouble(”xmin”);
double xmax = control.getDouble(”xmax”);
int numberOfPoints = control.getInt(”number of points”);
double width = control.getDouble(”packet width”);
double x offset = control.getDouble(”packet offset”);
double momentum = control.getDouble(”packet momentum”);
GaussianPacket packet = new GaussianPacket(width, x offset, momentum);
wavefunction = new TDHalfStep(packet, numberOfPoints, xmin, xmax);
psiFrame.clearData(); // removes old data
psiFrame.append(wavefunction.x, wavefunction.realPsi, wavefunction.imagPsi);

}

public void doStep() {
time += wavefunction.step();
psiFrame.clearData();
psiFrame.append(wavefunction.x, wavefunction.realPsi, wavefunction.imagPsi);
psiFrame.setMessage(”t=”+decimalFormat.format(time));

}

CHAPTER 16. QUANTUM SYSTEMS 744

public void reset() {
control .setValue(”xmin”, −5);
control .setValue(”xmax”, 5);
control .setValue(”number of points”, 500);
control .setValue(”packet width”, 0.25);
control .setValue(”packet offset ”, −2);
control .setValue(”packet momentum”, 2);
setStepsPerDisplay(10); // multiple computations per animation step
enableStepsPerDisplay(true);
initialize ();

}

public static void main(String[] args) {
SimulationControl.createApp(new TDHalfStepApp());

}
}

Problem 16.15. Evolution of a wave packet

a. Add an array to TDHalfStepApp that saves the imaginary part of the wave function at the
previous time step so that the probability density can be computed using (16.34). Show that
the probability is conserved.

b. Use TDHalfStepApp to follow the motion of a wave packet in a potential-free region. Let
x0 = −15, k0 = 2, w = 1, dx = 0.4, and dt = 0.1. Suitable values for the minimum and
maximum values of x on the grid are xmin = −20 and xmax = 20. What is the shape of the
wave packet at different times? Does the shape of the wave packet depend on your choice of
the parameters k0 and w?

c. Modify TDHalfStepApp so that the quantities x0(t) and w(t), the position and width of the
wave packet as a function of time, can be measured directly. What is a reasonable definition of
w(t)? What is the qualitative dependence of x0 and w on t? How are your results changed if
the initial width of the packet is reduced by a factor of four?

Problem 16.16. Evolution of wave packet incident on a potential step

a. Use TDHalfStepApp with a step potential beginning at x = 0 with height V0 = 2. Choose
x0 = −10, k0 = 2, w = 1, dx = 0.4, dt = 0.1, xmin = −20, and xmax = 20. Describe the
motion of the wave packet. Does the shape of the wave packet remain a Gaussian for all t?
What happens to the wave packet at x = 0? Determine the height and width of the reflected
and transmitted wave packets, the time ti for the incident wave to hit the barrier at x = 0, and
the time tr for the reflected wave to return to x = −x0. Is tr = ti? If these times are not equal,
explain the reason for the difference.

b. Repeat the above analysis for a step potential of height V0 = 10. Is tr ≈ ti in this case?

c. What is the motion of a classical particle with a kinetic energy corresponding to the central
wave vector k = k0?

CHAPTER 16. QUANTUM SYSTEMS 745

Problem 16.17. Scattering of a wave packet from a potential barrier

a. Consider a potential barrier of the form

V (x) =


0 x < 0
V0 0 ≤ x ≤ a

0 x > a

(16.37)

Generate a series of snapshots that show the wave packet approaching the barrier and then
interacting with it to generate reflected and transmitted packets. Set V0 = 2 and a = 1 and
consider the behavior of the wave packet for k0 = 1, 1.5, 2, and 3. Does the width of the packet
increase with time? How does the width depend on k0? For what values of k0 is the motion of
the packet in qualitative agreement with the motion of a corresponding classical particle?

b. Consider a square well with V0 = −2 and consider the same questions as in part (a).

Problem 16.18. Evolution of two wave packets
Modify the GaussianPacket in Listing 16.8 to include two wave packets with identical widths and
speeds, with the sign of k0 chosen so that the two wave packets approach each other. Choose their
respective values of x0 so that the two packets are initially well separated. Let V = 0 and describe
what happens when you run the simulation. Do the two packets have any influence on each other?
What do your results imply about the existence of a superposition principle?

16.6 Fourier Transformations and Momentum Space

The position space wave function, Ψ(x, t), is only one of many possible representations of a quantum
mechanical state. A quantum system also is completely characterized by a momentum space wave
function, Φ(p, t). The probability P (p, t) dp of the particle being in a “volume” element dp centered
about the momentum p at time t is equal to

P (p, t) dx = |Φ(p, t)|2dp. (16.38)

Because either a position space or a momentum space representation provides a complete descrip-
tion of the system, it is possible to transform the wave function from one space to another as
follows:

Φ(p, t) =
1√
2π�

∫ ∞

−∞
Ψ(x, t)e−ipx/� (16.39)

and

Ψ(x, t) =
1√
2π�

∫ ∞

−∞
Φ(p, t)eipx/�. (16.40)

CHAPTER 16. QUANTUM SYSTEMS 746

The momentum and position space transformations, (16.39) and (16.40), are Fourier integrals.
Because a computer stores a quantum wave function on a finite grid, it can be shown that these
transformations simplify to the familiar Fourier series (see Section 9.3) as follows:

Φm =
N/2∑

n=−N/2

Ψne−ipmxn/�, (16.41)

and

Ψn =
1
N

N/2∑
m=−N/2

Φmeipmxn/�, (16.42)

where Φm = Φ(pm) and Ψn = Ψ(xn). Note that because we are transforming between position
and momentum space at the same instant in time, we have dropped the time variable from (16.41)
and (16.42).

We now use the FFTApp program introduced in Section 9.3 to transform a wave function
between position and momentum space. Note that the wavenumber 2π/λ (or 2π/T in the time
domain) in classical physics has the same numerical value as momentum in quantum mechanics
p = h/λ = 2π�/λ in units such that � = 1. Consequently, we can use the getWrappedOmega and
getNaturalOmega methods in the FFT class to generate arrays containing momentum values for a
transformed position space wave function.

The FFTApp program in Listing 9.7 transforms N complex data points using an input array
that has length 2N . The real part of the jth data point is located in array element 2j and the
imaginary part is in element 2j + 1. The FFT class transforms this array. The transformed array
maintains the same ordering of real and imaginary parts. However, the momenta (wavenumbers)
are in warp-around order starting with the zero momentum coefficients in the first two elements
and switching to negative momenta half-way through the array. The toNaturalOrder class sorts
the array in order of increasing momentum. We use the FFTApp program in Problem 16.19.

Problem 16.19. Transforming to momentum space

a. The FFTApp program initializes the wave function grid using the following complex exponential:

Ψn = Ψ(n∆x) = ein∆x = cos n∆x + i sinn∆x. (16.43)

Use this program to show that a complex exponential has a definite momentum if the grid
contains an integer number of wavelengths. In other words, show that the Fourier components
are projections onto a discrete set of momentum eigenstates.

b. How short a wavelength (or how large a momentum) can be modeled if the spatial grid has N
points and extends over a distance L?

c. Where do the maximum, zero, and minimum values of the momentum occur in wrap-around
order?

CHAPTER 16. QUANTUM SYSTEMS 747

After the transformation, the momentum space wave function is stored in the data array.
These array elements can be assigned a momentum value using the De Broglie relation p = h/λ.
The longest wavelength that can exist on the grid is equal to the grid dimension, L = (N − 1)∆x,
and this wave has a momentum of

p0 =
h

L
. (16.44)

Data points on the momentum grid have momentum values with integer multiples of p0.

Problem 16.20. Momentum visualization
Add a ComplexPlotFrame to the FFTApp program to show the momentum space wave function of
a position space Gaussian wave packet. Add a user interface to control the width of the Gaussian
wave packet and verify the Heisenberg uncertainty relation, ∆x∆p ≥ �/2. Shift the center of the
position space wavepacket and explain the change in the resulting momentum space wave function.

Problem 16.21. Momentum time evolution
Modify the half-step Schrödinger time evolution program, TDHalfStepApp, so that it displays the
momentum space wave function in addition to the position space wave function. Describe the
momentum space evolution of a Gaussian packet in both the infinite square well and for a simple
harmonic oscillator potential. What evidence of classical-like behavior do you observe in your
simulations?

The FFT can be used to implement a fast and accurate method for solving Schrödinger’s
equation. We start by writing (16.4) in operator notation as

i�
∂Ψ(x, t)

∂t
= ĤΨ(x, t) = (T̂ + V̂)Ψ(x, t) (16.45)

where Ĥ, T̂ and V̂ are the Hamiltonian, kinetic energy, and potential energy operators, respectively.
The formal solution to (16.45) is

Ψ(x, t) = e−iĤ(t−t0)/�Ψ(x, t0) = e−i(T̂+V̂)(t−t0)/�Ψ(x, t0), (16.46)

where the exponential containing the Hamiltonian is referred to as the the time evolution operator,
Û .

Û = e−iĤ(t−t0)/� = e−i(T̂+V̂)(t−t0)/�. (16.47)

It might be tempting to write the time evolution operator as

Û = e−iT̂∆t/�e−iV̂ ∆t/�, (16.48)

but this equation is only valid for ∆t ≡ t − t0 << 1, because T and V do not commute. A
more accurate approximation (accurate to second order in ∆t) is obtained by using the following
symmetric decomposition

Û = e−iV̂ ∆t/2�e−iT̂∆t/�e−iV̂ ∆t/2�. (16.49)

CHAPTER 16. QUANTUM SYSTEMS 748

The key to using (16.49) to solve (16.45) is to use the position space wave function when
applying e−iV̂ ∆t/2� and to use the momentum space wave function when applying e−iT̂∆t/2�. In
position space, the potential energy operator is equivalent to just multiplication by the potential
energy function. That is, the first and last terms in (16.49) operate by multiplying points on the
position grid by a phase factor that is proportional to the potential energy:

Ψ′
j = e−iV (xj)∆t/2�Ψj . (16.50)

Because the kinetic energy operator in position space involves partial derivatives, it is conve-
nient to transform both the operator and the wave function to momentum space. In momentum
space the kinetic energy operator is simply multiplication by the kinetic energy:

T̂ =
p2

2m
. (16.51)

The middle term in (16.49) operates by multiplying points on the momentum grid by a phase
factor that is proportional to the kinetic energy:

Φ′
j = e−ip2

j∆t/2mΦj . (16.52)

The split-operator algorithm jumps back and forth between position and momentum space
to propagate the wave function. The algorithm starts in position space where each grid value,
Ψj = Ψ(xj , t) is multiplied by (16.50). The wave function is then transformed to momentum space
where every momentum value, Φj , is multiplied by (16.52). It is then transformed back to position
space where (16.50) is applied a second time. A single time step can therefore be written as

Ψ(x, t + ∆t) = e−iV (x)∆t/2�F−1[e−ip2∆t/2mF [e−iV (x)∆t/2�Ψ(x, t)]], (16.53)

where F is the Fourier transform to momentum space and F−1 is its inverse.

Problem 16.22. Split-operator algorithm

a. Write a program to implement the split operator algorithm. It is necessary to evaluate the
exponential phase factors only once when implementing the split-operator algorithm. Store the
complex exponentials in arrays that match the x values on the spatial grid and the p values on
the momentum grid. Use wrap-around order when storing the momentum phase factors because
the FFT class inverse transformation assumes that data are in wrap-around order. You can use
the getWrappedOmega method to obtain the momenta in this ordering.

b. Compare the evolution of a Gaussian wave packet using the split-operator and half-step algo-
rithms using identical grids. How does the finite grid size effect each algorithm?

c. Compare the computation speed of the split-operator and half-step algorithms using a Gaussian
in a square well. Disable plotting and other non-essential computation when comparing the
speeds.

Problem 16.23. Split-operator accuracy
The split-operator and half-step algorithms both fail if the time step is too large. Use both
algorithms to examine a simple harmonic oscillator coherent state (see Problem 16.14). Describe
the error that occurs if the time step becomes too large.

CHAPTER 16. QUANTUM SYSTEMS 749

16.7 Variational Methods

One way of obtaining a good approximation to the ground state energy is to use a variational
method. This approach has numerous applications in chemistry, atomic and molecular physics,
nuclear physics, and condensed matter physics. Consider a system whose Hamiltonian operator Ĥ
is given by (16.8). According to the variational principle, the expectation value of the Hamiltonian
for an arbitrary trial wave function Ψ is greater than or equal to the ground state energy E0. That
is,

〈H〉 = E[Ψ] =
∫

Ψ∗(x)ĤΨ(x) dx∫
Ψ∗(x)Ψ(x) dx

≥ E0, (16.54)

where E0 is the exact ground state energy of the system. The inequality (16.54) reduces to an
equality only if Ψ is an eigenstate of Ĥ with the eigenvalue E0. For bound states, Ψ may be
assumed to be real so that Ψ∗ = Ψ and thus |Ψ|2 = Ψ2.

The inequality (16.54) is the basis of the variational method. The procedure is to choose a
physically reasonable form for the trial wave function Ψ(x) that depends on one or more parameters.
The expectation value E[Ψ] is calculated, and the parameters are varied until a minimum of E[Ψ]
is obtained. This value of E[Ψ] is an upper bound to the true ground state energy. Often forms of
Ψ are chosen so that the integrals in (16.54) can be done analytically. To avoid this restriction we
can use numerical integration methods.

One major area of application of the variational method is to atoms and molecules for which
the integrals in (16.54) are multidimensional. In this case Monte Carlo integration methods are
essential. For this reason we will use Monte Carlo integration in the following, even though we
will consider only one and two body problems. Because it is inefficient to simply choose points at
random to compute E[Ψ], we rewrite (16.54) in a form that allows us to use importance sampling.
We write

E[Ψ] =
∫

Ψ2(x)EL(x) dx∫
Ψ2(x) dx

, (16.55)

where EL is the local energy,

EL(x) =
ĤΨ(x)
Ψ(x)

, (16.56)

which can be calculated analytically using the trial wave function. The form of (16.55) is that
of a weighted average with the weight being the normalized probability density Ψ2(x)/

∫
Ψ2(x) dx.

As discussed in Section 11.8, we can sample values of x using the distribution Ψ2(x) so that the
Monte Carlo estimate of E[Ψ] is given by the arithmetic sum

E[Ψ] = lim
n→∞

1
n

n∑
i=1

EL(xi), (16.57)

where n is the number of times that x is sampled from Ψ2. How can we sample from Ψ2? In general,
it is not possible to use the inverse transform method (see Section 11.6) to generate a nonuniform
distribution. A convenient alternative is the Metropolis method which has the advantage that only
an unnormalized Ψ2 for the proposed move is needed.

CHAPTER 16. QUANTUM SYSTEMS 750

Problem 16.24. Ground state energy of several one-dimensional systems

a. It is useful to test the variational method on an exactly solvable problem. Consider the one-
dimensional harmonic oscillator with Ĥ = 1

2 p̂2 + 1
2x2, where we have chosen units such that the

parameters m, k, and � are unity. Choose the trial wave function to be Ψ(x) ∼ e−λx2
, with λ the

variational parameter. Generate values of x chosen from a normalized Ψ2(x) using the inverse
transform method, and verify that λ = 1

2 yields the smallest upper bound, by considering λ = 1
2

and four other values of λ near 1
2 . (Another way to generate a Gaussian distribution is to use

the Box-Muller method discussed in Section 11.6.)

b. Repeat part (a) using the Metropolis method to generate x distributed according to Ψ(x)2 ∼
e−2λx2

and evaluate (16.57). As discussed in Section 11.9, the Metropolis method can be
summarized by the following steps:

i. Choose a trial position xtrial = xn +δn, where δn is a random number in the interval [−δ, δ].

ii. Calculate w = p(xtrial)/p(xn), where in this case p(x) = e−2λx2
.

iii. If w ≥ 1, accept the change and let xn+1 = xtrial.

iv. If w < 1, generate a random number r and let xn+1 = xtrial if r ≤ w.

v. If the trial change is not accepted, then let xn+1 = xn.

Remember that it is necessary to wait for equilibrium (convergence to the distribution Ψ2)
before computing the average value of EL. Look for a systematic trend in 〈EL〉 over the course
of the random walk. Choose a step size that gives a reasonable value for the acceptance ratio.
How many trials are necessary to obtain 〈EL〉 to 1% accuracy?

c. Instead of finding the minimum of 〈EL〉 as a function of the various variational parameters,
minimize the quantity

σ2
L = 〈E2

L〉 − 〈EL〉2. (16.58)

Verify that the exact minimum value of σ2
L[Ψ] is zero, whereas the exact minimum value of

EL[Ψ] is unknown in general.

d. Consider the anharmonic potential V (x) = 1
2x2 + bx4. Plot V (x) as a function of x for b = 1/8.

Use first-order perturbation theory to calculate the lowest order change in the ground state
energy due to the x4 term. Then choose a reasonable form for your trial wave function and use
your Monte Carlo program to estimate the ground state energy. How does your result compare
with first-order perturbation theory?

e. Consider the anharmonic potential of part (d) with b = −1/8. Plot V (x) as a function of x. Use
first-order perturbation theory to calculate the lowest order change in the ground state energy
due to the x4 term, and then use your program to estimate E0. Do your Monte Carlo estimates
for the ground state energy have a lower bound? Why or why not?

f. Modify your program so that it can be applied to the ground state of the hydrogen atom. In
this case we can write Ĥ = 1

2 p̂2/µ − e2/r, where µ is the reduced mass and e is the magnitude
of the charge on the electron. The element of integration dx in (16.55) is replaced by 4πr2 dr.

CHAPTER 16. QUANTUM SYSTEMS 751

Choose Ψ = e−r/a, where a is the variational parameter. Measure lengths in terms of the Bohr
radius �2/me2 and energy in terms of the Rydberg me4/2�2. In these units µ = e2 = � = 1.
Find the optimal value of a. What is the corresponding energy?

g. Consider the Yukawa or screened Coulomb potential for which V (r) = e2

r e−αr, where α > 0. In
this case the ground state and wave function can only be obtained numerically. For α = 0.5 and
α = 1.0 the most accurate numerical estimates of E0 are −0.14808 and −0.01016, respectively.
What is a good choice for the form of the trial wave function? How close can you come to these
estimates?

Problem 16.25. Variational estimate of the ground state of Helium
Helium has long served as a testing ground for atomic trial wave functions. Consider the ground
state of the helium atom with the Hamiltonian

Ĥ =
1

2m
(p̂2

1 + p̂2
2) − 2e2

(
1
r1

+
1
r2

)
+

e2

r12
, (16.59)

where r12 is the separation between the two electrons. Assume that the nucleus is fixed and ignore
relativistic effects. Choose Ψ(r1, r2) = Ae−Zeff (r1+r2)/a0 , where Zeff is a variational parameter.
Estimate the upper bound to the ground state energy based on this functional form of Ψ.

The above discussion and applications of variational Monte Carlo methods has been only
introductory in nature. One important application of variational Monte Carlo methods is to
optimize a given trial wave function which is then used to “guide” the Monte Carlo methods
discussed in Sections 16.8 and 16.9.

16.8 Random Walk Quantum Monte Carlo

We now introduce a Monte Carlo approach based on using an imaginary time in the Schrödinger
equation to convert it to a diffusion equation. This approach follows that of Anderson (see ref-
erences). We will then discuss several other quantum Monte Carlo methods. We will see that
although the systems of interest are quantum mechanical, we can convert them to systems where
we can use classical Monte Carlo methods.

To understand how we can interpret the Schrödinger equation in terms of a random walk, we
substitute τ = it/� into the time-dependent Schrödinger equation for a free particle and write (in
one dimension)

∂Ψ(x, τ)
∂τ

=
�2

2m

∂2∂(x, τ)
∂x2

. (16.60)

Note that (16.60) is similar in form to the diffusion equation (16.1). Hence, we can interpret the
wave function Ψ as a probability density with a diffusion constant D = �2/2m.

From our discussion in Chapter 7, we know that we can use a random walk algorithm to find
the solution of a diffusion equation. We can use the formal similarity between the diffusion equation
and the imaginary-time free particle Schrödinger equation to solve the latter by replacing it by an

CHAPTER 16. QUANTUM SYSTEMS 752

equivalent random walk problem. To understand how we can interpret the role of the potential
energy term in the context of random walks, we write Schrödinger’s equation in imaginary time as

∂Ψ(x, τ)
∂τ

=
�2

2m

∂2Ψ(x, τ)
∂x2

− V (x)Ψ(x, τ). (16.61)

If we were to ignore the first-term (the diffusion term) on the right side of (16.61), then the result
would be a first-order differential equation corresponding to a decay or growth process depending
on the sign of V . We can obtain the solution to this first-order equation by replacing it by a random
decay or growth process, for example, radioactive decay. These considerations suggest that we can
interpret (16.61) as a combination of diffusion and branching processes. In the latter, the number
of walkers increases or decreases at a point x depending on the sign of V (x). The walkers do not
interact with each other because the Schrödinger equation (16.61) is linear in Ψ. Note that it is
Ψ∆x and not Ψ2∆x which corresponds to the probability distribution of the random walkers. This
probabilistic interpretation requires that Ψ be nonnegative.

We now use the probabilistic interpretation of (16.61) to develop a method for determining
the ground state wave function and energy. The general solution of Schrödinger’s equation can be
written for imaginary time τ as (see (16.10))

Ψ(x, τ) =
∑

n

cn φn(x) e−Enτ . (16.62)

For sufficiently large τ , the dominant term in the sum in (16.62) comes from the term representing
the eigenvalue of lowest energy. Hence we have

Ψ(x, τ → ∞) = c0 φ0(x) e−E0τ . (16.63)

From (16.63) we see that the spatial dependence of Ψ(x, τ → ∞) is proportional to the ground
state eigenstate φ0(x). However, we also see that Ψ(x, τ) and hence the population of walkers will
eventually decay to zero unless E0 = 0. This problem can be avoided by measuring E0 from an
arbitrary reference energy Vref , which is adjusted so that an approximate steady state distribution
of random walkers is obtained.

Although we could attempt to fit the τ -dependence of the computed probability distribution
of the random walkers to (16.63) and thereby extract E0, this procedure would not yield a good
estimate of E0. We show in the following that E0 can be determined from the relation

E0 = 〈V 〉 =
∑

niV (xi)∑
ni

, (16.64)

where ni is the number of walkers at xi at time τ . An estimate for E0 can be found by averaging
the sum in (16.64) for several values of τ once a steady state distribution has been reached.

To derive (16.64), we rewrite (16.61) and (16.63) by explicitly introducing the reference po-
tential Vref :

∂Ψ(x, τ)
∂τ

=
�2

2m

∂2Ψ(x, τ)
∂x2

−
[
V (x) − Vref

]
Ψ(x, τ), (16.65)

and

Ψ(x, τ) ≈ c0φ0(x) e−(E0−Vref)τ . (16.66)

CHAPTER 16. QUANTUM SYSTEMS 753

We first integrate (16.65) with respect to x. Because ∂Ψ(x, τ)/∂x vanishes in the limit |x| → ∞,∫
(∂2Ψ/∂x2)dx = 0, and hence∫

∂Ψ(x, τ)
∂τ

dx = −
∫

V (x) Ψ(x, τ) dx + Vref

∫
Ψ(x, τ) dx. (16.67)

If we differentiate (16.66) with respect to τ , we obtain the relation

∂Ψ(x, τ)
∂τ

= (Vref − E0)Ψ(x, τ). (16.68)

We then substitute (16.68) for ∂Ψ/∂τ into (16.67) and find∫
(Vref − E0)Ψ(x, τ) dx = −

∫
V (x)Ψ(x, τ) dx + Vref

∫
Ψ(x, τ) dx. (16.69)

If we cancel the terms proportional to Vref in (16.69), we find that

E0

∫
Ψ(x, τ) dx =

∫
V (x),Ψ(x, τ) dx, (16.70)

or

E0 =
∫

V (x)Ψ(x, τ) dx∫
Ψ(x, τ) dx

. (16.71)

The desired result (16.64) follows by making the connection between Ψ(x) ∆x and the density of
walkers between x and x + ∆x.

Although the derivation of (16.64) is somewhat involved, the random walk algorithm is
straightforward. A simple implementation of the algorithm is as follows:

1. Place a total of N0 walkers at the initial set of positions xi, where the xi need not be on a
grid.

2. Compute the reference energy, Vref =
∑

i Vi/N0.

3. Randomly move the first walker to the right or left by a fixed step length ∆s. The step length
∆s is related to the time step ∆τ by (∆s)2 = 2D∆τ . (D = 1

2 in units such that � = m = 1.)

4. Compute ∆V = [V (x) − Vref] and a random number r in the unit interval. If ∆V > 0 and
r < ∆V ∆τ , then remove the walker. If ∆V < 0 and r < −∆V ∆τ , then add another walker
at x. Otherwise, just leave the walker at x. This procedure is accurate only in the limit of
∆τ << 1.

5. Repeat steps 3 and 4 for each of the N0 walkers and compute the mean potential energy
(16.71) and the actual number of random walkers. The new reference potential is given by

Vref = 〈V 〉 − a

N0∆τ
(N − N0), (16.72)

where N is the new number of random walkers and 〈V 〉 is their mean potential energy. The
average of V is an estimate of the ground state energy. The parameter a is adjusted so that
the number of random walkers N remains approximately constant.

CHAPTER 16. QUANTUM SYSTEMS 754

6. Repeat steps 3–5 until the estimates of the ground state energy 〈V 〉 have reached a steady
state value with only random fluctuations. Average 〈V 〉 over many Monte Carlo steps to
compute the ground state energy. Do a similar calculation to estimate the distribution of
random walkers.

The QMWalk class implements this algorithm for the harmonic oscillator potential. Initially,
the walkers are randomly distributed within a distance w0 of the origin. the input parameters
are the desired number of walkers N0, the number of Monte Carlo steps per walker mcs, and the
step size ds. The program computes the current number of walkers, the current estimate of the
ground state energy, and the value of Vref . The first ten percent of the samples are discarded in
the averages to approximate equilibration.

Listing 16.10: The QMWalk class calculates the ground state of the simple harmonic oscillator using
the random walk Monte Carlo algorithm.

package org.opensourcephysics.sip.ch16;
public class QMWalk {

double[] x = new double[2000];
double[] phi = new double[1000]; // wave function
double[] bins = new double[1000]; // x values for bins
int n0 = 100; // desired number of walkers
int n = n0; // actual number of walkers
double ds = 0.1; // step size
double vave = 0; // mean potential
double vref = 0; // reference energy
double esum = 0;
public QMWalk(int n, double ds) {

this.ds = ds;
this.n = n;
n0 = n;
double binx = −ds∗bins.length/2.0;
for(int i = 0, nbin = bins.length; i<nbin;i++) {

bins[i] = binx;
binx += ds;

}
double width = 1; // x range
for(int i = 0;i<n;i++) {

x[i] = (2∗Math.random()−1)∗width;
vref += potential(x[i]);

}
}

void equilibrate(int nequil) {
for(int i = 0;i<nequil;i++) {

walk(); // equilibration steps
}

}

void walk() {

CHAPTER 16. QUANTUM SYSTEMS 755

double vsum = 0, dt = ds∗ds;
for(int i = n−1;i>=0;i−−) {

if (Math.random()<0.5) {
x[i] += ds;

} else {
x[i] −= ds;

}
double pot = potential(x[i]);
double dv = pot−vref;
if (dv<0) {

if ((Math.random()<−dv∗dt)&&(n<x.length)) {
x[n] = x[i]; // new walker at the current location
vsum += 2∗pot; // factor of 2 since we have walker at i and at n
n++;

} else {
vsum += pot;

}
} else {

if ((Math.random()<dv∗dt)&&(n>0)) {
n−−;
x[i] = x[n];

} else {
vsum += pot;

}
}

}
vave = (n==0) ? 0 : vsum/n;
vref = vave−(n−n0)/n0/dt;

}

void doMCS() {
walk();
esum += vave;
double xmin = −ds∗phi.length/2.0;
int maxbin = phi.length−1;
for(int i = 0;i<n;i++) {

int bin = (int) Math.floor((x[i]−xmin)/ds);
if (bin<0) {

continue;
}
if (bin>maxbin) {

continue;
}
phi[bin]++;

}
}

public double potential(double x) {
return 0.5∗x∗x;

}

CHAPTER 16. QUANTUM SYSTEMS 756

}

For completeness, we list the QMWalkApp program.

Listing 16.11: The QMWalkApp program calculates and displays the result of a random walk Monte
Carlo calculation.

package org.opensourcephysics.sip.ch16;
import org.opensourcephysics.controls.AbstractCalculation;
import org.opensourcephysics.controls.CalculationControl;
import org.opensourcephysics.frames.PlotFrame;

public class QMWalkApp extends AbstractCalculation {
PlotFrame phiFrame = new PlotFrame(”x”, ”Psi”, ”Psi(x)”);
public void calculate() {

int mcs = control.getInt(”mcs”);
int n = control.getInt(” initial number of walkers”);
double ds = control.getDouble(”step size ds”);
QMWalk qmwalk = new QMWalk(n, ds);
qmwalk.equilibrate((int) Math.round(0.4∗mcs));
for(int i = 0;i<mcs;i++) {

qmwalk.doMCS();
}
phiFrame.clearData();
phiFrame.append(0, qmwalk.bins, qmwalk.phi);
phiFrame.setMessage(”E = ”+decimalFormat.format(qmwalk.esum/mcs));

}

public void reset() {
control .setValue(”mcs”, 500);
control .setValue(” initial number of walkers”, 50);
control .setValue(”step size ds” , 0.1);

}

public static void main(String[] args) {
CalculationControl.createApp(new QMWalkApp());

}
}

Problem 16.26. Ground state of the harmonic and anharmonic oscillators

a. Use QMWalkApp to estimate the ground state energy E0 and the corresponding eigenstate for
V (x) = 1

2x2. Choose as the desired number of walkers N0 = 50, the step length ds = 0.1, and
mcs ≥ 500. Place the walkers at random within the range −1 ≤ x ≤ 1. Compare your Monte
Carlo estimate for E0 to the exact result E0 = 0.5.

b. Increase mcs by at least a factor of ten. How much improvement does this choice make for the
estimate of E0? How many Monte Carlo steps per walker are needed for 1% accuracy in E0?
Plot the probability distribution of the random walkers and compare it to the exact result for
the ground state wave function.

CHAPTER 16. QUANTUM SYSTEMS 757

c. Obtain a numerical solution of the anharmonic oscillator with

V (x) =
1
2
x2 + bx3. (16.73)

Consider b = 0.1, 0.2, and 0.5. A calculation of the effect of the x3 term is necessary for the
study of the anharmonicity of the vibrations of a physical system, for example, the vibrational
spectrum of diatomic molecules.

Problem 16.27. Ground state of a square well

a. Modify QMWalkApp to find the ground state energy and wave function for the finite square well
potential (16.13) with a = 1. Choose V0 = 5, N0 = 100, ds = 0.1, and mcs ≥ 300. Place the
walkers at random within the range −1.5 ≤ x ≤ 1.5.

b. Increase V0 and find the ground state energy as a function of V0. Use your results to estimate
the limiting value of the ground state energy for V0 → ∞.

Problem 16.28. Ground state of a cylindrical box
Compute the ground state energy and wave function of the two-dimensional circular potential

V (r) =

{
0 r ≤ 1
−V0, r > 1

(16.74)

where r2 = x2 + y2. Modify QMWalkApp by using Cartesian coordinates in two dimensions, for
example, add an array to store the positions of the y coordinates of the walkers. What happens if
you begin with an initial distribution of walkers that is not cylindrically symmetric?

16.9 Diffusion Quantum Monte Carlo

We now discuss an improvement of the random walk algorithm known as diffusion quantum Monte
Carlo. Although some parts of the discussion might be difficult to follow initially, the algorithm
is straightforward. Your understanding of the method will be enhanced by writing a program to
implement the algorithm and then reading the following derivation again.

To understand the method, we introduce the concept of a Green’s function or propagator
defined by

Ψ(x, τ) =
∫

G(x, x′, τ)Ψ(x, 0) dx′. (16.75)

From the form of (16.75) we see that G(x, x′, τ) “propagates” the wave function from time zero to
time τ . If we operate on both sides of (16.75) with first (∂/∂τ) and then with (H − Vref), we can
verify that G satisfies the equation

∂G

∂τ
= −(Ĥ − Vref)G, (16.76)

CHAPTER 16. QUANTUM SYSTEMS 758

which is the same form as the imaginary time Schrödinger equation (16.65). It is easy to verify
that G(x, x′, τ) = G(x′, x, τ). A formal solution of (16.76) is

G(τ) = e−(Ĥ−Vref)τ , (16.77)

where the meaning of the exponential of an operator is given by its Taylor series expansion.
The difficulty with (16.77) is that the kinetic and potential energy operators T̂ and V̂ in Ĥ

do not commute. For this reason, if we want to write the exponential in (16.77) as a product of
two exponentials, we can only approximate the exponential for short times ∆τ . To first order in
∆τ (higher order terms involve the commutator of V̂ and Ĥ), we have

G(∆τ) ≈ Gbranch Gdiffusion

= e−(V −Vref)∆τ e−T̂∆τ , (16.78)

where Gdiffusion ≡ e−T̂∆τ and Gbranch ≡ e−(V̂ −Vref)∆τ correspond to the two random processes:
diffusion and branching. From (16.76) Gdiffusion and Gbranch satisfy respectively the differential
equations:

∂Gdiffusion

∂τ
= −T̂Gdiffusion =

�2

2m

∂2Gdiffusion

∂x2
(16.79)

and

∂Gbranch

∂τ
= (Vref − V̂)Gbranch. (16.80)

The solutions to (16.78)–(16.80) which are symmetric in x and x′ are

Gdiffusion(x, x′,∆τ) = (4πD∆τ)−1/2e−(x−x′)2/4D, (16.81)

with D ≡ �2/2m, and

Gbranch(x, x′,∆τ) = e−
(

1
2 [V (x)+V (x′)]−Vref

)
∆τ . (16.82)

From the form of (16.81) and (16.82), we can see that the diffusion quantum Monte Carlo
method is similar to the random walk algorithm discussed in Section 16.8. An implementation of
the diffusion quantum Monte Carlo method in one dimension can be summarized as follows:

1. Begin with a set of N0 random walkers. There is no lattice so the positions of the walkers
are continuous. It is advantageous to choose the walkers so that they are in regions of space
where the wave function is known to be large.

2. Choose one of the walkers and displace it from x to x′. The new position is chosen from a
Gaussian distribution with a variance 2D∆τ and zero mean. This change corresponds to the
diffusion process given by (16.81).

CHAPTER 16. QUANTUM SYSTEMS 759

3. Weight the configuration x′ by

w(x → x′,∆τ) = e−
(

1
2 [V (x)+V (x′)]−Vref

)
∆τ . (16.83)

One way to do this weighting is to generate duplicate random walkers at x′. For example, if
w ≈ 2, we would have two walkers at x′ where previously there had been one. To implement
this weighting (branching) correctly, we must make an integer number of copies that is equal
on the average to the number w. A simple way to do so is to take the integer part of w + r,
where r is a uniform random number in the unit interval. The number of copies can be any
nonnegative integer including zero. The latter corresponds to a termination of a walker.

4. Repeat steps 2 and 3 for all members of the ensemble, thereby creating a new ensemble at a
later time ∆τ . One iteration of the ensemble is equivalent to performing the integration

Ψ(x, τ) =
∫

G(x, x′,∆τ) Ψ(x′, τ − ∆τ) dx′. (16.84)

5. The quantity of interest Ψ(x, τ) will be independent of the original ensemble Ψ(x, 0) if a
sufficient number of Monte Carlo steps are taken. As before, we must ensure that N(τ), the
number of walkers at time τ , is kept close to the desired number N0.

Now we can understand how the simple random walk algorithm discussed in Section 16.8 is
an approximation to the diffusion quantum MC algorithm. First, the Gaussian distribution gives
the exact distribution for the displacement of a random walker in a time ∆τ , in contrast to the
fixed step size in the simple random walk algorithm which gives the average displacement of a
walker. Hence, there are no systematic errors due to a finite step size. Second, if we expand the
exponential in (16.82) to first-order in ∆τ and set V (x) = V (x′), we obtain the branching rule used
previously. (We use the fact that the uniform distribution r is the same as the distribution 1− r.)
However, the diffusion quantum MC algorithm is not exact because the branching is independent
of the position reached by diffusion, which is only true in the limit ∆τ → 0. This limitation is
remedied in the Green’s Function Monte Carlo method where a short time approximation is not
made (see articles on Green’s function Monte Carlo in the references).

One limitation of the two random walk methods we have discussed is that they can become
very inefficient. This inefficiency is due in part to the branching process. If the potential becomes
large and negative (as it is for the Coulomb potential when an electron approaches a nucleus), the
number of copies of a walker will become very large. It is possible to improve the efficiency of these
algorithms by introducing an importance sampling method. The idea is to use an initial guess
ΨT (x) for the wave function to guide the walkers toward the more important regions of V (x).
To implement this idea, we introduce the function f(x, τ) = Ψ(x, τ)ΨT (x). If we calculate the
quantity ∂f/∂t − D ∂2f/∂x2, and use (16.65), we can show that f(x, τ) satisfies the differential
equation:

∂f

∂τ
= D

∂2f

∂x2
− D

∂
[
fF (x)

]
∂x

− [EL(x) − Vref]f, (16.85)

where

F (x) =
2

ΨT

∂ΨT

∂x
, (16.86)

CHAPTER 16. QUANTUM SYSTEMS 760

and the local energy EL(x) is given by

EL(x) =
Ĥ∂T

ΨT
= V (x) − D

ΨT
∂2ΨT /∂x2. (16.87)

The term in (16.85) containing F corresponds to a drift in the walkers away from regions where
|ΨT |2 is small (see Problem 7.43).

To incorporate the drift term into Gdiffusion, we replace (x − x′)2 in (16.81) by the term(
x − x′ − D∆τF (x′)

)2, so that the diffusion propagator becomes

Gdiffusion(x, x′,∆τ) = (4πD∆τ)−1/2e−
(
x−x′−D∆τF (x′)

)2
/4D∆τ . (16.88)

However, this replacement destroys the symmetry between x and x′. To restore it, we use the
Metropolis algorithm for accepting the new position of a walker. The acceptance probability p is
given by

p =
|ΨT (x′)|2 Gdiffusion(x, x′,∆τ)
|ΨT (x)|2 Gdiffusion(x′, x,∆τ)

. (16.89)

If p > 1, we accept the move; otherwise, we accept the move if r ≤ p. The branching step is
achieved by using (16.82) with V (x) + V (x′) replaced by EL(x) + EL(x′), and ∆τ replaced by an
effective time step. The reason for the use of an effective time step in (16.82) is that some diffusion
steps are rejected. The effective time step to be used in (16.82) is found by multiplying ∆τ by the
average acceptance probability. It can be shown (see Hammond et al.) that the mean value of the
local energy is an unbiased estimator of the ground state energy.

Another possible improvement is to periodically replace branching (which changes the number
of walkers) with a weighting of the walkers. At each weighting step, each walker is weighted by
Gbranch, and the total number of walkers remains constant. After n steps, the kth walker receives
a weight Wk = Πn

i=1G
(i,k)
branch, where G

(i,k)
branch is the branching factor of the kth walker at the ith

time step. The contribution to any average quantity of the kth walker is weighted by Wk.

Problem 16.29. Diffusion Quantum Monte Carlo

a. Modify QMWalkApp to implement the diffusion quantum Monte Carlo method for the systems
considered in Problems 16.26 or 16.27. Begin with N0 = 100 walkers and ∆τ = 0.01. Use at
least three values of ∆τ and extrapolate your results to ∆τ → 0. Reasonable results can be
obtained by adjusting the reference energy every 20 Monte Carlo steps with a = 0.1.

b. Write a program to apply the diffusion quantum Monte Carlo method to the hydrogen atom.
In this case a configuration is represented by three coordinates.

c. Modify your program to include weights in addition to changing walker populations. Redo part
(a) and compare your results.

∗Problem 16.30. Importance sampling

a. Derive the partial differential equation (16.85) for f(x, τ).

CHAPTER 16. QUANTUM SYSTEMS 761

b. Modify QMWalkApp to implement the diffusion quantum Monte Carlo method with importance
sampling. Consider the harmonic oscillator problem with the trial wave function ΨT = e−λx2

.
Compute the statistical error associated with the ground state energy as a function of λ. How
much variance reduction can you achieve relative to the naive diffusion quantum Monte Carlo
method? Then consider another form of ΨT that does not have a form identical to the exact
ground state.Try the hydrogen atom with ΨT = e−λr.

16.10 Path Integral Quantum Monte Carlo

The Monte Carlo methods we have discussed so far are primarily useful for estimating the ground
state energy and wave function, although it also is possible with some effort to find the first few
excited states. In this section we discuss a Monte Carlo method that is of particular interest for
computing the thermal properties of quantum systems.

We recall (see Section 7.10) that classical mechanics can be formulated in terms of the principle
of least action , that is, given two points in space-time, a classical particle chooses the path that
minimizes the action given by

S =
∫ x,t

x0,0

L dt. (16.90)

The Lagrangian L is given by L = T − V . Quantum mechanics also can be formulated in terms of
the action (cf. Feynman and Hibbs). The result of this path integral formalism is that the real-time
propagator G can be expressed as

G(x, x0, t) = A
∑
paths

eiS/�, (16.91)

where A is a normalization factor. The sum in (16.91) is over all paths between (x0, 0) and (x, t),
not just the path that minimizes the classical action. The presence of the imaginary number i in
(16.91) leads to interference effects. As before, the propagator G(x, x0, t) can be interpreted as the
probability amplitude for a particle to be at x at time t given that it was at x0 at time zero. G
satisfies the equation (see (16.75))

Ψ(x, t) =
∫

G(x, x0, t)Ψ(x0, 0) dx0, (t > 0) (16.92)

Because G satisfies the same differential equation as Ψ in both x and x0, G can be expressed as

G(x, x0, t) =
∑

n

φn(x)φn(x0)e−iEnt/�, (16.93)

where the φn are the eigenstates of H. For simplicity, we set � = 1 in the following. As before, we
assume that (16.93) applies for imaginary values of t, and we write

G(x, x0, τ) =
∑

n

φn(x)φn(x0) e−τEn . (16.94)

CHAPTER 16. QUANTUM SYSTEMS 762

We first consider the ground state. In the limit τ → ∞, we have

G(x, x, τ) → φ0(x)2 e−τE0 . (τ → ∞) (16.95)

From the form of (16.95) and (16.91), we see that we need to compute G and hence S to estimate
the properties of the ground state.

To compute S, we convert the integral in (16.90) to a sum. If we use imaginary time, the
Lagrangian for a single particle of unit mass becomes

L = −1
2

(dx

dτ

)2

− V (x) = −E. (16.96)

We divide the imaginary time interval τ into N equal steps of size ∆τ and write E as

E(xj , τj) =
1
2

(xj+1 − xj)2

(∆τ)2
+ V (xj), (16.97)

where τj = j∆τ , and xj is the corresponding displacement. If we use the rectangular approxima-
tion, the action can be written as

S = −i∆τ

N−1∑
j=0

E(xj , τj) = −i∆τ
[N−1∑

j=0

1
2

(xj+1 − xj)2

(∆τ)2
+ V (xj)

]
, (16.98)

and the probability amplitude for the path becomes

eiS = e∆τ [
∑N−1

j=0
1
2 (xj+1−xj)

2/(∆τ)2+V (xj)]. (16.99)

Hence, the propagator G(x, x0, N∆τ) can be expressed as

G(x, x0, N∆τ) = A

∫
dx1 · · · dxN−1 e∆τ [

∑N−1
j=0

1
2 (xj+1−xj)

2/(∆τ)2+V (xj)], (16.100)

where x ≡ xN and A is an unimportant constant.
From (16.100) we see that G(x, x0, N∆τ) has been expressed as a multidimensional integral

with the displacement variable xj associated with the time τj . The sequence x0, x1, · · · , xN is a
possible path and the integral in (16.100) is over all paths. Because the quantity of interest is
G(x, x, N∆τ) (see (16.95)), we adopt the periodic boundary condition, xN = x0. The choice of x
in the argument of G is arbitrary for finding the ground state energy, and the use of the periodic
boundary conditions implies that no point in the closed path is unique. It is thus possible (and
convenient) to rewrite (16.100) by letting the sum over j go from 1 to N :

G(x0, x0, N∆τ) = A

∫
dx1 · · · dxN−1 e−∆τ [

∑N
j=1

1
2 (xj−xj−1)

2/(∆τ)2+V (xj)], (16.101)

where we have written x0 instead of x because the xj which is not being integrated over is xN = x0.
The result of the above analysis is to convert a quantum mechanical problem for a single

particle into a statistical mechanics problem for N “atoms” on a ring connected by nearest neighbor
“springs” with spring constant 1/(∆τ)2. The label j denotes the order of the atoms in the ring.

CHAPTER 16. QUANTUM SYSTEMS 763

Note that the form of (16.101) is similar to the form of the Boltzmann distribution for a single
particle with N∆τ corresponding to the inverse temperature β. To see this relation, note that the
partition function for a quantum mechanical particle contains terms of the form e−βEn , whereas
(16.94) contains terms proportional to e−τEn . Hence β = τ = N∆τ . We shall see in the following
how we can use this identity to simulate a quantum system at a finite temperature.

We can use the Metropolis algorithm to simulate the motion of N “atoms” on a ring. Of
course, these atoms are a product of our analysis just as were the random walkers we introduced
in diffusion Monte Carlo and should not be confused with real particles. A summary of a possible
path integral algorithm is as follows:

1. Choose N and ∆τ such that N∆τ >> 1 (the zero temperature limit). Also choose δ, the
maximum trial change in the displacement of an atom, and mcs, the total number of Monte
Carlo steps per atom.

2. Choose an initial configuration for the displacements xj which is close to the approximate
shape of the ground state probability amplitude.

3. Choose an atom j at random and a trial displacement xj → xj + (2r − 1)δ, where r is a
random number uniformly distributed on the unit interval. Compute the change ∆E in the
energy E, where ∆E is given by

∆E =
1
2

[xj+1 − xj

∆τ

]2

+
1
2

[xj − xj−1

∆τ

]2

+ V (xj)

− 1
2

[xj+1 − xj

∆τ

]2

− 1
2

[xj − xj−1

∆τ

]2

− V (xj) (16.102)

If ∆E < 0, accept the change; otherwise, compute the probability p = e−∆τ∆E and a random
number r in the unit interval. If r ≤ p, then accept the move; otherwise reject the trial move.

4. Update the probability density array element P(x), that is, let P (x = xj) → P (x = xj) + 1,
where x is the displacement of the atom chosen in step 3 after step 3 is completed. Do this
update even if the trial move was rejected. Divide the possible x values into equal size bins
of width ∆x.

5. Repeat steps 3 and 4 until a sufficient number of Monte Carlo steps per atom has been
obtained. (Do not take data until the memory of the initial path is lost and the system has
reached “equilibrium.”)

Normalize the probability density P (x) by dividing by the product of N and mcs. The ground
state energy E0 is given by

E0 =
∑

x

P (x)[T (x) + V (x)], (16.103)

where T (x) is the kinetic energy as determined from the virial theorem:

2T (x) = x
dV

dx
. (16.104)

CHAPTER 16. QUANTUM SYSTEMS 764

It also is possible to compute T from averages over (xj − xj−1)2, but the virial theorem yields a
smaller variance. The ground state wave function φ(x) is obtained from the normalized probability
P (x)∆x by dividing by ∆x and taking the square root. We also can find the thermodynamic
properties of a particle that is connected to a heat bath at temperature T = 1/β by not taking
the β = N∆τ → ∞ limit. To obtain the ground state, which corresponds to the zero temperature
limit (β >> 1), we had to make N∆τ as large as possible. However, we need ∆τ to be as small as
possible to approximate the continuum time limit. Hence, to obtain the ground state we need a
large number of time intervals N . For the finite temperature simulation, we can use smaller values
of N for the same level of accuracy as the zero temperature simulation.

The path integral method is very flexible and can be generalized to higher dimensions and
many mutually interacting particles. For three dimensions, xj is replaced by the three-dimensional
displacement rj . Each real particle is represented by a ring of N “atoms” with a spring-like po-
tential connecting each atom within a ring. Each atom in each ring also interacts with the atoms
in the other rings through an interparticle potential. If the quantum system is a fluid where indis-
tinguishability is important, then we must consider the effect of exchange. This is accomplished
by treating the quantum system as a classical polymer system where the “atoms” represent the
monomers of a polymer, and where polymers can split up and reform. The probability for these
types of Monte Carlo changes are related to a certain chemical potential which can be computed.
See the article by Chandler and Wolynes for details. They also discuss Bose condensation using
path integral techniques.

Problem 16.31. Path integral calculation

a. Write a program to implement the path integral algorithm for the one-dimensional harmonic
oscillator potential, Choose V (x) = 1

2x2. Use the structure of your Monte Carlo Lennard-Jones
program from Chapter 15 as a guide.

b. Let N∆τ = 15 and consider N = 10, 20, 40, and 80. Equilibrate for at least 2000 Monte
Carlo steps per atom and average over at least 5000 mcs. Compare your results with the exact
result for the ground state energy given by E0 = 0.5. Estimate the equilibration time for your
calculation. What is a good initial configuration? Improve your results by using larger values
of N∆τ .

c. Find the mean energy, 〈E〉, of the harmonic oscillator at temperature T given by setting β =
N∆τ . Find 〈E〉 for β = 1, 2, and 3, and compare it with the exact result 〈E〉 = 1

2 coth(β/2).

d. Repeat the above calculations for the Morse potential V (x) = 2(1 − e−x)2.

16.11 Projects

Many of the techniques described in this chapter can be extended to two-dimensional quantum
systems. The Complex2DFrame tool in the frames package is designed to show two-dimensional
complex scalar fields such as quantum wave functions. Listing 16.13 in Appendix A shows how
this class is used to show a two-dimensional Gaussian wave packet with a momentum boost.

CHAPTER 16. QUANTUM SYSTEMS 765

Project 16.32. Separable systems in two dimensions
The shooting method is inappropriate for the calculation of eigenstates and eigenvalues in two
or more dimensions with arbitrary potential energy functions, V (�r). However, the special case
of separable potentials can be reduced to one-dimensional problems which can be solved using
the methods described in this chapter. Many molecular modeling programs use the Hartree-Fock
self-consistent field approximation to model non-separable systems as a set of one-dimensional
problems. Recently, there has been significant progress motivated by a molecular dynamics algo-
rithm developed by Car and Parrinello.

Write a two-dimensional eigenstate class, Eigenstate2d, that calculates eigenstates and eigen-
values for a separabe potential of the form:

V (x, y) = V1(x) + V2(y). (16.105)

Test this class using the known analytic solutions for the two-dimensional rectangular box and
two-dimensional harmonic oscillator. Use this class to model the evolution of superposition states.
Under what conditions are there wave function revivals?

Project 16.33. Excited state wave functions using quantum Monte Carlo
Quantum Monte Carlo methods can be extended to compute the excited state wave functions
using a Gram-Schmidt procedure to insure that each excited state is orthogonal to all lower lying
states (see Roy et al.). A quantum Monte Carlo method is used to compute the ground state
wave function. A trial wave function for the first exited state is then selected and the ground
state component is subtracted from the trial wave function. This subtraction is repeated after
every iteration of the Monte Carlo algorithm. Because excited states decay with a time constant
e−(Ej−E0), the lowest remaining excited state dominates the remaining wave function. After the
first excited state is obtained, the second excited state is computed by subtracting both known
states from the trial wave function. This process is repeated to obtain additional wave functions.

a. Implement this procedure to find the first few excited state wave functions for the one-dimensional
double well oscillator

V (x) = −1
2
ω2x2 + a3x

3 + a4x
4, (16.106)

with ω2 = 40, a3 = 1, and a4 = 1.

b. Test your program using known analytic solutions such as the one-dimensional harmonic oscil-
lator.

Project 16.34. Quantum Monte Carlo in two dimensions
The procedure described in Project 16.33 can be used to compute two-dimensional wave functions
(see Roy et al.).

a. Test your program using a separable two-dimensional double-well potential.

CHAPTER 16. QUANTUM SYSTEMS 766

b. Find the first few excited states for the two-dimensional double-well potential

V (x, y) = −1
2
Z2

xx2 − 1
2
Z2

yy2 +
1
2
(axxx4 + 2axyx2y2 + ayyy4), (16.107)

with Z2
x = Z2

y = 20 and axx = ayy = axy = 5. Repeat using coefficients that produce nearly
degenerate energy eigenstates, for example, Z2

x = Z2
y = 20 and axx = ayy = axy = 1.

Project 16.35. Evolution of a wave packet in two dimensions
Both the half-step and split operator algorithms can be extended to model the time evolution of
two-dimensional systems with arbitrary potentials, V (x, y). (See Numerical Recipes for how the
FFT algorithm is extended to more dimensions.) Implement either algorithm and model a wave
packet scattering from a central barrier and a wave packet passing through a double slit.

A clever way to insure stability in the half-step algorithm is to use a boolean array to tag grid
locations where the solution becomes unstable and to set the wave function to zero at these grid
points. In the following listing we set � = 1 and m = 1.

double minV = −2/dt;
double maxVx = 2/dt−2/(dx∗dx);
double maxVy = 2/dt−2/(dy∗dy);
double maxV = Math.min(maxVx,maxVy);
for(int i = 0, n = potential.length ; i <= n; i++) {

for(int j = 0, m = potential[0].length ; j <= m; j++) {
if (potential [i][j] >= minV && potential[i][j] <= maxV) // stable

stable [i][j] = true; // stable
else

stable [i][j] = false ; // unstable , set wave function to zero
}

}
}

Project 16.36. Two particle system
Rubin Landau has published a study of the time dependence of two particles interacting in one
dimension with a potential that depends on their relative separation as follows:

V (x1, x2) = V0e
−(x1−x2)

2/2α2
. (16.108)

Model a scattering experiment for particles having momentum p1 and p2 by assuming the following
(unnormalized) initial wave function

Ψ(x1, x2) = eip1x1/ e−(x1−a)2/4w2
eip2x2/ e−(x2−a)2/4w2

, (16.109)

where 2a is the separation and w is the variance in each particle’s position. Do the particles
bounce off of each other when the interaction is repulsive? What happens when the interaction is
attractive?

CHAPTER 16. QUANTUM SYSTEMS 767

(a) Real and imaginary. (b) Amplitude and phase.

Figure 16.2: Two representations of complex wave functions. (The actual output is in color.)

Appendix 16A: Visualizing Complex Functions

In quantum mechanics complex functions are essential and the frames package contains classes
for displaying and analyzing these functions. Listing 16.12 uses a ComplexPlotFrame to display a
one-dimensional wave function.

Listing 16.12: The ComplexPlotFrameApp program displays a one-dimensional Gaussian wave
packet with a momentum boost (a nonzero mean momentum).

package org.opensourcephysics.sip.ch16;
import javax.swing.JFrame;
import org.opensourcephysics.frames.ComplexPlotFrame;

public class ComplexPlotFrameApp {
public static void main(String[] args) {

ComplexPlotFrame frame = new ComplexPlotFrame(”x”, ”Psi(x)”, ”Complex Function”);
int n = 128;
double xmin = −Math.PI, xmax = Math.PI;
double x = xmin, dx = (xmax−xmin)/n;
double[] xdata = new double[n];
double[] zdata = new double[2∗n]; // real and imaginary values alternate
int mode = 4; // test function is eˆ(−x∗x/4)eˆ(i∗mode∗x) where x=[−pi,pi).
for(int i = 0;i<n;i++) {

double a = Math.exp(−x∗x/4);
zdata[2∗i] = a∗Math.cos(mode∗x);
zdata[2∗i+1] = a∗Math.sin(mode∗x);
xdata[i] = x;
x += dx;

CHAPTER 16. QUANTUM SYSTEMS 768

}
frame.append(xdata, zdata);
frame. setVisible (true);
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

}
}

Figure 16.2 shows two representations of a quantum wave function. The real and imaginary
representation displays the real and imaginary parts of the wave function Ψ(x) by drawing two
curves. In the amplitude and phase representation the vertical height represents the wave function
magnitude and the color indicates phase. Note that the complex phase is oscillating, indicating
that the wave function has a nonzero momentum expectation value, which is known as a momentum
boost.

Wave function visualizations can be selected at runtime using the Tools menu or they can be
selected programmatically using convert methods such as convertToPostView and convertToRe-
ImView. The Tools menu also allows the user to select a table view to examine the data being used
to draw the wave function and to display a phase legend that shows the color to phase relation.

A Complex2DFrame displays a two-dimensional complex scalar field such as a two-dimensional
wave function. We instantiate a Complex2DFrame and then pass it a multi-dimensional array
containing the field’s real and imaginary components. Listing 16.13 shows how this class is used
to show a two-dimensional Gaussian wave packet with a momentum boost.

Listing 16.13: The Complex2DFrameApp program displays a two-dimensional Gaussian wave packet
with a momentum boost.

package org.opensourcephysics.sip.ch16;
import javax.swing.JFrame;
import org.opensourcephysics.frames.Complex2DFrame;

public class Complex2DFrameApp {
public static void main(String[] args) {

Complex2DFrame frame = new Complex2DFrame(”x”, ”y”, ”Complex field”);
frame.setPreferredMinMax(−1.5, 1.5, −1.5, 1.5);
double [][][] data = new double[2][32][32]; // components of field
frame.setAll(data);
for(int i = 0, nx = data[0].length; i<nx;i++) {

double x = frame.indexToX(i);
for(int j = 0, ny = data [0][0]. length; j<ny;j++) {

double y = frame.indexToY(j);
double a = Math.exp(−4∗(x∗x+y∗y));
data [0][i][j] = a∗Math.cos(5∗x); // real component
data [1][i][j] = a∗Math.sin(5∗x); // complex component

}
}
frame.setAll(data);
frame. setVisible (true);
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

}
}

CHAPTER 16. QUANTUM SYSTEMS 769

The complex field is sampled at n rows by m columns and stored in an array with dimensions
2 × m × n. The default visualization uses a grid in which every cell is colored using brightness
to show the complex number’s magnitude and color to show phase. Other visualizations can be
programmed or selected at run-time using the menu.

References and Suggestions for Further Reading
The ALPS project, <http://alps.comp-phys.org/>, has open source simulation programs for

strongly correlated quantum mechanical systems and C++ libraries for simplifying the de-
velopment of such code. Although most of the code is beyond the level of this text, this open
source project is another example of software for use in both research and education.

J. B. Anderson, “A random walk simulation of the Schrödinger equation: H+
3 ,” J. Chem. Phys.

63, 1499–1503 (1975); “Quantum chemistry by random walk. H 2P, H+
3 D3h

1A′
1, H2

3Σ+
u , H4

1Σ+
g , Be 1S,” J. Chem. Phys. 65, 4121–4127 (1976); “Quantum chemistry by random walk:

Higher accuracy,” J. Chem. Phys. 73, 3897 (1980). These papers describe the random walk
method, extensions for improved accuracy, and applications to simple molecules.

G. Baym, Lectures on Quantum Mechanics, W. A. Benjamin (1973). A discussion of the Schrödinger
equation in imaginary time is given in Chapter 3.

H. A. Bethe, Intermediate Quantum Mechanics, W. A. Benjamin (1964). Applications of quantum
mechanics to atomic systems are discussed.

Jay S. Bolemon, “Computer solutions to a realistic ‘one-dimensional’ Schrödinger equation,” Am.
J. Phys. 40, 1511 (1972).

Siegmund Brandt and Hans Dieter Dahmen, The Picture Book of Quantum Mechanics, third
edition, Springer-Verlag (2001); Siegmund Brandt, Hans Dieter Dahmen, and Tilo Stroh, In-
teractive Quantum Mechanics, Springer-Verlag (2003).These books show computer generated
pictures of quantum wave functions in different contexts.

R. Car and M. Parrinelli, “Unified approach for molecular dynamics and density-functional the-
ory,” Phys. Rev. Lett. 55, 2471 (1985).

David M. Ceperley and Berni J. Alder, “Quantum Monte Carlo,” Science 231, 555 (1986). A
survey of some of the applications of quantum Monte Carlo methods to physics and chemistry.

David Chandler and Peter G. Wolynes, “Exploiting the isomorphism between quantum theory
and classical statistical mechanics of polyatomic fluids,” J. Chem. Phys. 74 4078 (1981). The
authors use path integral techniques to look at multiparticle quantum systems.

D. F. Coker and R. O. Watts, “Quantum simulation of systems with nodal surfaces,” Mol. Phys.
58, 1112 (1986).

Jim Doll and David L. Freeman, “Monte Carlo methods in chemistry,” Computing in Science and
Engineering 1 (1), 22–32 (1994).

Robert M. Eisberg and Robert Resnick, Quantum Physics, second edition, John Wiley & Sons
(1985). See Appendix G for a discussion of the numerical solution of Schrödinger’s equation.

CHAPTER 16. QUANTUM SYSTEMS 770

R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467 (1982). A
provocative discussion of the intrinsic difficulties of simulating quantum systems.

Richard P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill
(1965).

B. L. Hammond, W. A. Lester Jr., and P. J. Reynolds, Monte Carlo Methods in Ab Initio Quantum
Chemistry, World Scientific (1994). An excellent book on quantum Monte Carlo methods.

Steven E. Koonin and Dawn C. Meredith, Computational Physics, Addison-Wesley (1990). Solu-
tions of the time-dependent Schrödinger equation are discussed in the context of parabolic
partial differential equations in Chapter 7. Chapter 8 discusses Green’s function Monte Carlo
methods.

Rubin Landau, “Two-particle Schrödinger equation animations of wavepacket-wavepacket scat-
tering,” Am. J. Phys. 68 (12), 1113–1119 (2000).

Michel Le Bellac, Fabrice Mortessagne, and G. George Batrouni, Equilibrium and Non-Equilibrium
Statistical Thermodynamics, Cambridge University Presss (2004). Chapter 7 discusses the
world line algorithm for bosons and fermions on a lattice.

M. A. Lee and K. E. Schmidt, “Green’s function Monte Carlo,” Computers in Physics 6 (2), 192
(1992). A short and clear explanation of Green’s function Monte Carlo.

P. K. MacKeown, “Evaluation of Feynman path integrals by Monte Carlo methods,” Am. J. Phys.
53, 880 (1985). The author discusses projects suitable for an advanced undergraduate course.
Also see P. K. MacKeown and D. J. Newman, Computational Techniques in Physics, Adam
Hilger (1987).

Jean Potvin, “Computational quantum field theory. Part II: Lattice gauge theory,” Computers in
Physics 8, 170 (1994) and “Computational quantum field theory,” Computers in Physics 7,
149 (1993).

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes, second edition, Cambridge University Press (1992). The numerical solution of the
time-dependent Schrödinger equation is discussed in Chapter 19.

Peter J. Reynolds, David M. Ceperley, Berni J. Alder, and William A. Lester Jr., “Fixed-node
quantum Monte Carlo for molecules,” J. Chem. Phys. 77, 5593 (1982). This paper describes
a random walk algorithm for use in molecular applications including importance sampling
and the treatment of Fermi statistics.

P. J. Reynolds, J. Tobochnik, and H. Gould, “Diffusion quantum Monte Carlo,” Computers in
Physics 4 (6), 882 (1990).

U. Rothlisberger, “ 15 Years of CarParrinello simulations in physics, chemistry and biology,” in
Computational Chemistry: Reviews of Current Trends, Vol. 6, edited by Jerzy Leszczynski,
World Scientific (2001).

CHAPTER 16. QUANTUM SYSTEMS 771

Amlan K. Roy, Neetu Gupta, and B. M. Deb, “Time-dependent quantum mechanical calculation
of ground and excited states of anharmonic and double-well oscillators,” Phys. Rev A 65,
012109-1–7 (2001).

Amlan K. Roy, Ajit J. Thakkar, and B. M. Deb, “Low-lying states of two-dimensional double-well
potentials,” J. Phys. A 38, 2189–2199 (2005).

K. E. Schmidt, Parhat Niyaz, A. Vaught, and Michael A. Lee, “Green’s function Monte Carlo
method with exact imaginary-time propagation,” Phys. Rev. E 71, 016707 (2005).

Bernd Thaller, Visual Quantum Mechanics: Selected Topics with Computer-Generated Anima-
tions of Quantum-Mechanical Phenomena, Telos (2000); Bernd Thaller, Advanced Visual
Quantum Mechanics, Springer (2005).

J. Tobochnik, H. Gould, and K. Mulder, “An introduction to quantum Monte Carlo,” Computers
in Physics 4 (4), 431 (1990). An explanation of the path integral method applied to one
particle.

P. B. Visscher, “A fast explicit algorithm for the time-dependent Schrödinger equation,” Com-
puters in Physics 5 (6), 596 (1991).

