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We simulate the dynamical behavior of many particle systems such as dense gases, liquids,
and solids and observe their qualitative features. Some of the basic ideas of equilibrium statistical
mechanics and kinetic theory are introduced.

8.1 Introduction

Given our knowledge of the laws of physics at the microscopic level, how can we understand the be-
havior of gases, liquids, and solids and more complex systems such as polymers and proteins? For
example, consider two cups of water prepared under similar conditions. Each cup contains approx-
imately 1024 molecules which mutually interact and, to a good approximation, move according to
the laws of classical physics. Although the intermolecular forces produce a complicated trajectory
for each molecule, the observable properties of the water in each cup are indistinguishable and are
easy to describe. For example, the temperature of the water in each cup is independent of time
even though the positions and velocities of the individual molecules are changing continually.

One way to understand the behavior of a classical many particle system is to simulate the
motion of each particle. This approach, known as molecular dynamics, has been applied to systems
of up to several million particles and has given us much insight into a variety of systems in which
the particles obey the laws of classical dynamics.

A calculation of the trajectories of many particles would not be very useful unless we know
the right questions to ask. Saving these trajectories would quickly fill up any storage medium and
we do not usually care about the individual motion of any particular particle. What are the useful
quantities needed to describe these many particle systems? What are the essential characteristics
and regularities they exhibit? Questions such as these are addressed by statistical mechanics
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and some of the ideas of statistical mechanics are discussed in this chapter. However, the only
background needed for this chapter is a knowledge of Newton’s laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. We assume that the dynamics can
be treated classically, the molecules are spherical and chemically inert and their internal structure
can be ignored, and the interaction between any pair of particles depends only on the distance
between them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1∑
i=1

N∑
j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

The form of u(r) for electrically neutral molecules can be constructed by a first principles
quantum mechanical calculation. Such a calculation is very difficult, and it usually is sufficient to
choose a simple phenomenological form for u(r). The most important features of u(r) are a strong
repulsion for small r and a weak attraction at large r. The repulsion for small r is a consequence
of the Pauli exclusion principle. That is, the electron wave functions of two molecules must distort
to avoid overlap, causing some of the electrons to be in different quantum states. The net effect is
an increase in kinetic energy and an effective repulsive interaction between the electrons, known
as core repulsion. The dominant weak attraction at larger r is due to the mutual polarization of
each molecule; the resultant attractive potential is called the van der Waals potential.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
. (8.2)

A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part
of the interaction was chosen for convenience only and has no fundamental significance. However,
the attractive 1/r6 behavior at large r corresponds to the van der Waals interaction.

The Lennard-Jones potential is parameterized by a length σ and an energy ε. Note that
u(r) = 0 at r = σ, and that u(r) is close to zero for r > 3σ. The parameter ε is the depth of the
potential at the minimum of u(r); the minimum occurs at a separation r = 21/6 σ.

Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program to plot the Lennard-Jones potential (8.1) and the magnitude of the corre-
sponding force:

f(r) = −∇u(r) =
24ε

r

[
2
(σ

r
)12 −

(σ

r

)6
]
r̂. (8.3)

What is the range of r for which the force is repulsive? At what value of r does the force equal
zero? What is the range of r for which the force is attractive? What is the value of u(r) for
r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ, a decrease of 10%? What is
the value of u at r = 2.5σ?



CHAPTER 8. THE DYNAMICS OF MANY PARTICLE SYSTEMS 267

u

r
ε

σ

Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ε.

8.3 Units

As usual, it is convenient to choose units so that the computed quantities are neither too small
nor too large. Because the values of the distance and the energy associated with typical liquids are
very small in SI units, we choose the Lennard-Jones parameters σ and ε as the units of distance
and energy, respectively. We also choose the unit of mass to be the mass of one atom, m. We can
express all other quantities in terms of σ, ε, and m. For example, we measure velocities in units
of (ε/m)1/2, and the time in units of σ(m/ε)1/2. The values of σ, ε, and m for argon are given in
Table 8.1. If we use these values, we find that the unit of time is 2.17× 10−12 s. The units of some
of the other physical quantities of interest also are shown in Table 8.1.

All program variables are in reduced units, for example, the time in our molecular dynamics
program is expressed in units of σ(m/ε)1/2. Suppose that we run our molecular dynamics program
for 2000 time steps with a time step ∆t = 0.01. The total time of our run is 2000 × 0.01 = 20
in reduced units or 4.34 × 10−11 s for argon (see Table 8.1). The duration of a typical molecular
dynamics simulation is in the range of 10–104 in reduced units, corresponding to a duration of
approximately 10−11–10−9 s. The longest practical runs correspond to no longer than 10−6 s.

8.4 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
method for computing the trajectory of each particle. As we have learned, the criteria for a
good integration method include that it conserve the phase-space volume and be consistent with
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quantity unit value for argon
length σ 3.4 × 10−10 m
energy ε 1.65 × 10−21 J
mass m 6.69 × 10−26 kg
time σ(m/ε)1/2 2.17 × 10−12 s
velocity (ε/m)1/2 1.57 × 102 m/s
force ε/σ 4.85 × 10−12 N
pressure ε/σ2 1.43 × 10−2 N · m−1

temperature ε/k 120 K

Table 8.1: The system of units used in the molecular dynamics simulations of particles interacting
via the Lennard-Jones potential. The numerical values of σ, ε, and m are for argon. The quantity
k is Boltzmann’s constant and has the value k = 1.38 × 10−23 J/K. The unit of pressure is for a
two-dimensional system.

the known conservation laws, is time reversible, and is accurate for relatively large time steps to
reduce the cpu time needed for the total time of the simulation. These requirements mean that we
should use a symplectic algorithm for the relatively long times of interest in molecular dynamics
simulations. We adopt the commonly used second-order algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1, which is used together
with an to obtain the new velocity vn+1. The algorithm represented by (8.4) is known as the
Verlet (or sometimes the velocity Verlet) algorithm (see Appendix 3A). We will use the Verlet
implementation of the ODESolver interface to implement the algorithm. Thus, the x, vx, y, and
vy values for the ith particle will be stored in the state array at state[4*i], state[4*i+1],
state[4*i+2], and state[4*i+3], respectively.

8.5 Boundary Conditions

A useful simulation must incorporate as many of the relevant features of the physical system of
interest as possible. Usually we want to simulate a gas, liquid, or a solid in the bulk, that is,
systems of at least N ∼ 1023 particles. In such systems the fraction of particles near the walls
of the container is negligibly small. However, the number of particles that can be studied in a
molecular dynamics simulation is typically 103–105, although we can simulate as many as 106

particles or more using clusters of computers. For these relatively small systems, the fraction of
particles near the walls of the container is significant, and hence the behavior of such a system
would be dominated by surface effects.

The most common way of minimizing surface effects and to simulate more closely the prop-
erties of a bulk system is to use what are known as periodic boundary conditions, although the
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minimum image approximation would be a more accurate name. First consider N particles that
are constrained to move on a line of length L. The ends of the line serve as imaginary walls.
The usual application of periodic boundary conditions is equivalent to considering the line to be a
circle (see Figure 8.2). The distance between the particles is measured along the arc, and hence the
maximum separation between any two particles is L/2. The generalization of periodic boundary
conditions to two dimensions is equivalent to imagining a box with opposite edges joined so that
the box becomes the surface of a torus (the shape of a doughnut or a bagel). The three-dimensional
version of periodic boundary conditions cannot be visualized easily, but the same methods can be
used.

The code for implementing periodic boundary conditions is straightforward. If a particle leaves
the box by crossing a boundary in a particular direction, we add or subtract the length of the box
in that direction, L, to the coordinate. One simple way is to use an if else statement as shown:

Listing 8.1: Calculation of the position of particle in the central cell.
private double pbcPosition(double s, double L) {

if (s>0) {
while(s>L) {

s −= L;
}

} else {
while(s<0) {

s += L;
}

}
return s;

}

To compute the minimum distance ds in a particular direction between two particles, we can
use the method pbcSeparation (see Figure 8.2):

Listing 8.2: Calculation of the minimum separation.
private double pbcSeparation(double ds, double L) {

if (ds>0) {
while(ds>0.5∗L) {

ds −= L;
}

} else {
while(ds<−0.5∗L) {

ds += L;
}

}
return ds;

}

The equivalent static methods, PBC.position and PBC.separation in the Open Source Physics
numerics package also can be used.

Exercise 8.2. Use of the % operator
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Figure 8.2: (a) Two particles at x = 0 and x = 3 on a line of length L = 4; the distance between the
particles is 3. (b) The application of periodic boundary conditions for short range interactions is
equivalent to thinking of the line as forming a circle of circumference L. In this case the minimum
distance between the two particles is 1.

a. Another way to compute the position of a particle in the central cell is to use the % (modulus)
operator. For example, 17 % 5 equals 2 because 17 divided by 5 leaves a remainder of 2. The %
operator also can be used with floating point numbers. For example, 10.2 % 5 = 0.2. It is a
good idea to write a little test program to see how the % function works. Write such a program
and determine the result of 10.2 % 3.3, -10.2 % 3.3, 10.2 % -3.3, and -10.2 % -3.3. In
what way does % act more like a remainder operator?

b. From the results of part (a) we might consider writing x = x % L as an alternative to Listing 8.1.
However, what about negative values of x? In this case -17 % 5 = -2. Because we want the
resultant position to be positive, we write

return x<0 ? x\%L+L: x\%L;

Write a simple program to test if the above code works as claimed.

c. Write a simple program to determine if the % operator is faster than the construction in List-
ing 8.1. Write another program that compares the speed of calling the PCB.position method
to that of inlining the PBC code. In other words, replace the method call by the following
statement.

x = x<0 ? x\%L+L: x\%L;

We now discuss the motivation for this choice of boundary conditions. Imagine a set of N
particles in a two-dimensional box or cell. The use of periodic boundary conditions implies that
the central cell is duplicated an infinite number of times to fill the space. Figure 8.3 shows the
first several image cells for N = 2. The shape of the central cell must be such that the cell
fills space under successive translations. Each image cell contains the original particles in the
same relative positions as the central cell. That is, periodic boundary conditions yield an infinite
system, although the positions of the particles in the image cells are identical to the positions of
the particles in the central cell. These boundary conditions also imply that every point in the cell
is equivalent and that there is no surface.

As a particle moves in the original cell, its periodic images move in the image cells. Hence
only the motion of the particles in the central cell needs to be followed. When a particle enters or
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Figure 8.3: Example of the minimum image approximation in two dimensions. The minimum
image distance convention implies that the separation between particles 1 and 2 is given by the
lesser of the two distances shown.

leaves the central cell, the move is accompanied by an image of that particle leaving or entering a
neighboring cell through the opposite face.

The total force on a given particle i is due to the force from every other particle j within the
central cell and from the periodic images of particle j. That is, if particle i interacts with particle
j in the central cell, then particle i interacts with all the periodic replicas of particle j. Hence in
general, there are an infinite number of contributions to the force on any given particle. For long-
range interactions such as the Coulomb potential, these contributions have to be included using
special methods. However, for short range interactions, we may reduce the number of contributions
by adopting the minimum image approximation. This approximation implies that particle i in the
central cell interacts only with the nearest image of particle j; the interaction is set equal to zero if
the distance of the image from particle i is greater than L/2. An example of the minimum image
condition is shown in Figure 8.3. Note that the minimum image approximation implies that the
calculation of the total force on all N particles due to pairwise interactions involves a maximum
of N(N − 1)/2 contributions.
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8.6 A Molecular Dynamics Program

In the following, we develop a molecular dynamics program to simulate a two-dimensional system of
particles interacting via the Lennard-Jones potential. We choose two rather than three dimensions
because it is easier to visualize the results and the calculations are not as time consuming.

In principle, we could define a class for a particle, and instantiate an object for each particle.
However, this use would be very inefficient and would take up more memory and cpu time than
using one class to represent all N particles. So instead we will represent the x- and y-components
of the positions, velocities, and accelerations of the particles by arrays. As usual, we will develop
two classes, LJParticles and LJParticlesApp. We will now discuss the methods in LJParticles.

Because the system is deterministic, the nature of the motion is determined by the initial
conditions. An appropriate choice of the initial conditions is more difficult than might first appear.
For example, how would we choose the initial configuration (a set of positions and velocities)
to correspond to a liquid at a desired temperature? According to the equipartition theorem in
statistical mechanics, the temperature, T , at any time t is determined by

kT (t) =
2
d

K(t)
N

=
1

dN

N∑
i=1

mivi(t) · vi(t), (8.5)

where d is the spatial dimension, k is Boltzmann’s constant, and K is the kinetic energy of the
system of N particles (measured relative to the center of mass velocity). The definition of tempera-
ture is discussed further in Section 8.7. For now we will take (8.5) as the definition of temperature
for a system of particles. (This definition of temperature is not adequate for particles moving
relativistically or if quantum mechanics is important.)

We can use (8.5) to choose an initial set of velocities. The following simple method gives the
particles a random set of velocities, sets the total velocity (momentum) to zero, and then rescales
the velocities so that the desired initial kinetic energy is achieved.

Listing 8.3: Method for choosing the initial velocities.
public void setVelocities() {

double vxSum = 0.0;
double vySum = 0.0;
for(int i = 0;i<N;++i) { // assign random initial velocities

state[4∗ i+1] = Math.random() − 0.5; // vx
state[4∗ i+3] = Math.random() − 0.5; // vy
vxSum += state[4∗i+1];
vySum += state[4∗i+3];

}
// zero center of mass momentum
double vxcm = vxSum/N; // center of mass momentum (velocity)
double vycm = vySum/N;
for(int i = 0;i<N;++i) {

state[4∗ i+1] −= vxcm;
state[4∗ i+3] −= vycm;

}
double v2sum = 0; // rescale velocities to get desired initial kinetic energy
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for(int i = 0;i<N;++i) {
v2sum += state[4∗i+1]∗state[4∗i+1] + state[4∗i+3]∗state[4∗i+3];

}
double kineticEnergyPerParticle = 0.5∗v2sum/N;
double rescale = Math.sqrt(initialKineticEnergy/kineticEnergyPerParticle);
for(int i = 0;i<N;++i) {

state[4∗ i+1] ∗= rescale;
state[4∗ i+3] ∗= rescale;

}
}

We will find that setting the initial velocities so that the initial temperature is the desired value
does not guarantee that the system will maintain this temperature when it reaches equilibrium.
Determining an initial configuration that satisfies the desired conditions is an iterative process.

If the system of interest is a dilute gas, we can choose the initial positions of the particles by
placing the particles at random, making sure that no two particles are too close to one another.
If any two particles are too close, they would exert a very large repulsive force F on one another
and any simple finite difference integration method would break down. One condition that must
be satisfied is (F/m)(∆t)2 << σ. (In dimensionless units, this condition is F (∆t)2 << 1.) If we
assume that the separation between two particles is greater than 21/6σ, this condition is satisfied.

The following method determines a random initial configuration by placing particles at random
such that no two particles are closer than 21/6σ.

Listing 8.4: Method for choosing the initial positions at random.
public void setRandomPositions() { // particles placed at random, but not closer than rMinimumSquared

double rMinimumSquared = Math.pow(2.0, 1.0/3.0);
boolean overlap;
for(int i = 0;i<N;++i) {

do {
overlap = false;
state[4∗ i ] = Lx∗Math.random(); // x
state[4∗ i+2] = Ly∗Math.random(); // y
int j = 0;
while(j<i&&!overlap) {

double dx = state[4∗i]−state[4∗j];
double dy = state[4∗i+2]−state[4∗j+2];
if (dx∗dx+dy∗dy<rMinimumSquared) {

overlap = true;
}
j++;

}
} while(overlap);

}
}

What is the maximum density that you can reasonably obtain in this way?
How can we obtain a typical initial condition for a system of particles at high density? Finding

a random configuration of particles in which no two particles are closer than 21/6σ becomes much
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too inefficient if the system is dense. It is possible to choose the initial positions randomly without
regard to their separations if we include a fictitious drag force proportional to the square of the
velocity. The effect of such a force is to dampen the velocity of those particles whose velocities
become too large due to the large repulsive forces exerted on them. We then would have to run for
a while until all the velocities satisfy the condition v∆t << 1. As the velocities become smaller,
we may gradually reduce the friction coefficient.

In general, the easiest way of obtaining an initial configuration with the desired density is to
place the particles on a regular lattice. If the temperature is high or if the system is dilute, the
system will “melt” and become a liquid or a gas; otherwise, it will remain a solid. If our goal is
to equilibrate the system at fluid densities, it is not necessary to choose the correct equilibrium
symmetry of the lattice. The method setRectangularLattice places the particles on a rectangular
lattice. To make it simple, the user must specify the number of particles per row, nx, and the
number per column, ny. We will make Lx and Ly adjustable inputs so that they can be varied after
initialization to be as close as possible to their desired values. Also, we can see how thermodynamic
quantities vary with the density without needing to set up a new initial configuration.

Listing 8.5: Placement of particles on a rectangular lattice.
public void setRectangularLattice() { // place particles on a rectangular lattice

double dx = Lx/nx; // distance between columns
double dy = Ly/ny; // distance between rows
int i = 0;
int iy = 0;
while(i<N) {

for(int ix = 0;ix<nx;++ix) { // loop through particles in a row
if ( i<N) {

state[4∗ i ] = dx∗(ix+0.5);
state[4∗ i+2] = dy∗(iy+0.5);
i++;

}
}
iy++;

}
}

The most time consuming part of a molecular dynamics simulation is the computation of the
accelerations of the particles. The method computeAcceleration determines the total force on
each particle due to the other N −1 particles and uses Newton’s third law to reduce the number of
calculations by a factor of two. Hence, for a system of N particles, there are a total of N(N −1)/2
possible interactions. Because of the short range nature of the Lennard-Jones potential, we could
truncate the force at r = rc and ignore the forces from particles whose separation is greater than
rc. However, for N � 400, it is easier to do an order N2 calculation and take into account all
possible interactions, no matter how small. The meaning of the quantity virial accumulated
in computeAcceleration is discussed in Section 8.7, where we will see that it is related to the
pressure. It is convenient to also calculate the potential energy in computeAcceleration. Note
that in reduced units, the mass of a particle is unity, and hence the acceleration and force are
equivalent.

Listing 8.6: Calculation of the acceleration.
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public void computeAcceleration() {
for(int i = 0;i<N;i++) {

ax[ i ] = 0;
ay[ i ] = 0;

}
for(int i = 0;i<N−1;i++) {

for(int j = i+1;j<N;j++) {
double dx = pbcSeparation(state[4∗i]−state[4∗j], Lx);
double dy = pbcSeparation(state[4∗i+2]−state[4∗j+2], Ly);
double r2 = dx∗dx+dy∗dy;
double oneOverR2 = 1.0/r2;
double oneOverR6 = oneOverR2∗oneOverR2∗oneOverR2;
double fOverR = 48.0∗oneOverR6∗(oneOverR6−0.5)∗oneOverR2;
double fx = fOverR∗dx;
double fy = fOverR∗dy;
ax[ i] += fx;
ay[ i] += fy;
ax[j] −= fx;
ay[ j] −= fy;
totalPotentialEnergyAccumulator += 4.0∗(oneOverR6∗oneOverR6−oneOverR6);
virialAccumulator += dx∗fx+dy∗fy;

}
}

}

Study the implementation of the step method in the Verlet class. Note that the getRate
method is invoked twice for every call to the step method. The first rate computation uses the
current positions of the particles. The second rate computation uses the new positions. Because a
particle’s new position becomes its current position for the next step, we would compute the same
accelerations twice. To avoid this inefficiency, we query the ode solver using the getRateCounter
method to determine if the position or the velocity is being computed. If we store the accelerations
in an array during the second computation, we can use these values the next time getRate is
invoked. This trick is not general and should only be used if you understand exactly how an ode
solver behaves.

Listing 8.7: Methods needed for the ODE interface.
public void getRate(double[] state, double[] rate) {

// computes accelerations every other call to getRate because
// new velocity is computed from previous and current acceleration,
// and previous acceleration is saved in step method of Verlet.
// getRate is called twice for each call to step.
if ( verlet solver .getRateCounter()==1) {

computeAcceleration();
}
for(int i = 0; i<N; i++) {

rate[4∗ i ] = state[4∗ i+1]; // rates for positions are velocities
rate[4∗ i+2] = state[4∗i+3]; // vy
rate[4∗ i+1] = ax[i ]; // rate for velocity is acceleration
rate[4∗ i+3] = ay[i ];
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}
rate[4∗N] = 1; // dt/dt = 1

}

public double[] getState() {
return state;

}

public void step(HistogramFrame xVelocityHistogram) {
ode solver .step ();
double totalKineticEnergy = 0;
for(int i = 0;i<N;i++) {

totalKineticEnergy += (state[4∗i+1]∗state[4∗i+1]+state[4∗i+3]∗state[4∗i+3]);
xVelocityHistogram.append(state[4∗i+1]);
state[4∗ i ] = pbcPosition(state[4∗ i ], Lx);
state[4∗ i+2] = pbcPosition(state[4∗i+2], Ly);

}
totalKineticEnergy ∗= 0.5;
steps++;
totalKineticEnergyAccumulator += totalKineticEnergy;
totalKineticEnergySquaredAccumulator += totalKineticEnergy∗totalKineticEnergy;
t += dt;

}

Note that we accumulate data for a histogram of the x component of the velocity in the step
method.

Alternatively, we can code the Verlet algorithm without the ODE interface. In the following we
show the code that would replace the call to the step method of the ODE solver. For clarity we
use different array names. This code uses about the same amount of cpu time as the code using
the ODE solver.

for (int i = 0;i<N;i++) { // use old acceleration
x[ i] += vx[i]∗dt + ax[i ]∗halfdt2 ; // halfdt2 = 0.5∗dt∗dt
y[ i] += vy[i]∗dt + ay[i ]∗halfdt2 ;
vx[i] += ax[i]∗halfdt ; // add old acceleration , halfdt = 0.5∗dt
vy[i] += ay[i]∗halfdt ;
}
computeAcceleration();
for (int i = 0;i<N;i++) { // add new acceleration

vx[i] += ax[i]∗halfdt ;
vy[i] += ay[i]∗halfdt ;

}

We use the Drawable interface to display the trajectories of the individual particles.

Listing 8.8: The draw method.
public void draw(DrawingPanel myWorld, Graphics g) {

if (state==null) {
return;

}
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int pxRadius = Math.abs(myWorld.xToPix(radius)−myWorld.xToPix(0));
int pyRadius = Math.abs(myWorld.yToPix(radius)−myWorld.yToPix(0));
g.setColor(Color.red);
for(int i = 0;i<N;i++) {

int xpix = myWorld.xToPix(state[4∗i])−pxRadius;
int ypix = myWorld.yToPix(state[4∗i+2])−pyRadius;
g. fillOval (xpix, ypix, 2∗pxRadius, 2∗pyRadius);

} // draw central cell boundary
g.setColor(Color.black);
int xpix = myWorld.xToPix(0);
int ypix = myWorld.yToPix(Ly);
int lx = myWorld.xToPix(Lx)−myWorld.xToPix(0);
int ly = myWorld.yToPix(0)−myWorld.yToPix(Ly);
g.drawRect(xpix, ypix, lx , ly );

}

Next we list some of the methods for computing averages. The resetAverages method is
used to set the accumulated averages to zero so that the initial transient behavior can be removed
from the computed averages.

Listing 8.9: Methods used to compute averages.
public double getMeanTemperature() {

return totalKineticEnergyAccumulator/(N∗steps);
}

public double getMeanEnergy() {
return totalKineticEnergyAccumulator/steps+totalPotentialEnergyAccumulator/steps;

}

public double getMeanPressure() {
double meanVirial;
meanVirial = virialAccumulator/steps;
return 1.0+0.5∗meanVirial/(N∗getMeanTemperature()); // quantity PA/NkT

}

public double getHeatCapacity() {
double meanTemperature = getMeanTemperature();
double meanTemperatureSquared = totalKineticEnergySquaredAccumulator/steps;
// heat capacity related to fluctuations of kinetic energy
double sigma2 = meanTemperatureSquared−meanTemperature∗meanTemperature;
double denom = sigma2/(N∗meanTemperature∗meanTemperature) − 1.0;
return N/denom;

}

public void resetAverages() {
steps = 0;
virialAccumulator = 0;
totalPotentialEnergyAccumulator = 0;
totalKineticEnergyAccumulator = 0;
totalKineticEnergySquaredAccumulator = 0;
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}

We now list the beginning of the LJParticles class including the usual import statements,
instance variables, and an initialize method. If you include all of the code we have discussed in
a single file, you will have a working LJparticles class.

Listing 8.10: Beginning of class LJParticles.
package org.opensourcephysics.sip.ch08.md;
import java.awt.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;
import org.opensourcephysics.numerics.∗;

public class LJParticles implements Drawable, ODE {
public double state[];
public double ax[], ay[];
public int N, nx, ny; // number of particles , number per row, number per column
public double Lx, Ly;
public double rho = N/(Lx∗Ly);
public double initialKineticEnergy;
public int steps = 0;
public double dt = 0.01;
public double t;
public double totalPotentialEnergyAccumulator;
public double totalKineticEnergyAccumulator, totalKineticEnergySquaredAccumulator;
public double virialAccumulator;
public String initialConfiguration ;
public double radius = 0.5; // radius of particles on screen
Verlet ode solver = new Verlet(this);

public void initialize () {
N = nx∗ny;
t = 0;
rho = N/(Lx∗Ly);
resetAverages();
state = new double[1+4∗N];
ax = new double[N];
ay = new double[N];
if ( initialConfiguration .equals(”crystal”)) {

setTriangularLattice ();
} else if ( initialConfiguration .equals(”rectangular”)) {

setRectangularLattice();
} else {

setRandomPositions();
}
setVelocities ();
computeAcceleration();
ode solver . setStepSize(dt);
computeAccelerationNow = false;

}
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A target class to run the simulation is given in Listing 8.11. When the user presses the Stop
button, various thermodynamic averages are displayed in the message area of the control window.
As you will find in Problem 8.8, a very time consuming part of a molecular dynamics simulation
is equilibrating the system, especially at high densities. The quickest way to do so is to start with
a configuration that is typical of the configurations at the desired energy and density. Hence, we
will want to be able to read the positions and velocities of the particles from a previously saved
file. We provide the class LJParticlesLoader for saving configurations. Note how this class is
used in the program’s getLoader method. The mechanism for saving a model’s configuration is
described in Appendix 8A.

Listing 8.11: The LJParticlesApp target class.
package org.opensourcephysics.sip.ch08.md;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;
import org.opensourcephysics.display.GUIUtils;

public class LJParticlesApp extends AbstractSimulation {
LJParticles md = new LJParticles();
PlotFrame pressureData = new PlotFrame(”time”, ”PA/NkT”, ”Mean Pressure”);
PlotFrame temperatureData = new PlotFrame(”time”, ”temperature”, ”Mean Temperature”);
HistogramFrame xVelocityHistogram = new HistogramFrame(”vx”, ”H(vx)”, ”Velocity Histogram”);
DisplayFrame display = new DisplayFrame(”x”, ”y”, ”Lennard−Jones Particles”);
public void initialize () {

md.nx = control.getInt(”nx”); // number of particles per row
md.ny = control.getInt(”ny”); // number of particles per column
md.initialKineticEnergy = control.getDouble(” initial kinetic energy per particle ”);
md.Lx = control.getDouble(”Lx”);
md.Ly = control.getDouble(”Ly”);
md.initialConfiguration = control .getString(” initial configuration”);
md.dt = control.getDouble(”dt”);
md. initialize ();
display .addDrawable(md);
display .setPreferredMinMax(0, md.Lx, 0, md.Ly); // assumes vmax = 2∗initalTemp and bin width = Vmax/N
xVelocityHistogram.setBinWidth(2∗md.initialKineticEnergy/md.N);

}

public void doStep() {
md.step(xVelocityHistogram);
pressureData.append(0, md.t, md.getMeanPressure());
temperatureData.append(0, md.t, md.getMeanTemperature());

}

public void stop() {
control . println(”Density = ”+decimalFormat.format(md.rho));
control . println(”Number of time steps = ”+md.steps);
control . println(”Time step dt = ”+decimalFormat.format(md.dt));
control . println(”<T>= ”+decimalFormat.format(md.getMeanTemperature()));
control . println(”<E> = ”+decimalFormat.format(md.getMeanEnergy()));
control . println(”Heat capacity = ”+decimalFormat.format(md.getHeatCapacity()));
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control . println(”<PA/NkT> = ”+decimalFormat.format(md.getMeanPressure()));
}

public void startRunning() {
md.dt = control.getDouble(”dt”);
double Lx = control.getDouble(”Lx”);
double Ly = control.getDouble(”Ly”);
if ((Lx!=md.Lx)||(Ly!=md.Ly)) {

md.Lx = Lx;
md.Ly = Ly;
md.computeAcceleration();
display .setPreferredMinMax(0, Lx, 0, Ly);
resetData();

}
}

public void reset() {
control .setValue(”nx”, 8);
control .setValue(”ny”, 8);
control .setAdjustableValue(”Lx”, 20.0);
control .setAdjustableValue(”Ly”, 15.0);
control .setValue(” initial kinetic energy per particle ” , 1.0);
control .setAdjustableValue(”dt”, .01);
control .setValue(” initial configuration” , ”rectangular”);
enableStepsPerDisplay(true);
display .setSquareAspect(true); // so particles will appear as circular disks

}

public void resetData() {
md.resetAverages();
GUIUtils.clearDrawingFrameData(false); // clears old data from the plot frames

}

public static XML.ObjectLoader getLoader() {
return new LJParticlesLoader();

}

public static void main(String[] args) {
SimulationControl control = SimulationControl.createApp(new LJParticlesApp());
control .addButton(”resetData”, ”Reset Data”);

}
}

A complete listing of all the methods can be downloaded as usual. In Problem 8.3 we use
LJParticles and LJParticlesApp to simulate the approach of a system to equilibrium.

Listing 8.12: The LJParticlesLoader class for saving configurations.
package org.opensourcephysics.sip.ch08.md;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.GUIUtils;
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public class LJParticlesLoader implements XML.ObjectLoader {
public Object createObject(XMLControl element) {

return new LJParticlesApp();
}

public void saveObject(XMLControl control, Object obj) {
LJParticlesApp model = (LJParticlesApp) obj;
control .setValue(” initial configuration ” , model.md.initialConfiguration);
control .setValue(”state” , model.md.state);

}

public Object loadObject(XMLControl control, Object obj) {
// GUI has been loaded with the saved values; now restore the LJ state
LJParticlesApp model = (LJParticlesApp) obj;
model.initializeAnimation (); // reads values from the GUI into the LJ model
model.md.initialConfiguration = control.getString(” initial configuration ”);
model.md.state = (double[]) control.getObject(”state”);
int N = (model.md.state.length−1)/4;
model.md.ax = new double[N];
model.md.ay = new double[N];
model.md.computeAcceleration();
model.md.resetAverages();
GUIUtils.clearDrawingFrameData(false); // clears old data from the plot frames
return obj;

}
}

Problem 8.3. Approach to equilibrium

a. Consider N = 64 particles interacting via the Lennard-Jones potential in a square central cell
of linear dimension L = 10. Start the system on a square lattice with an initial temperature
corresponding to T = 1.0. Let ∆t = 0.01 and run the application to make sure that it is
working properly. The total energy should be approximately conserved and the trajectories of
all 64 particles should be seen on the screen.

b. The kinetic temperature of the system is given by (8.5). View the evolution of the temperature
of the system starting from the initial temperature. Does the temperature reach an equilibrium
value? That is, does it eventually fluctuate about some mean value? What is the mean value
of the temperature for the given total energy of the system?

c. Modify method setRectangularLattice so that all the particles are initially on the left side
of a box of size Lx = 20 and Ly = 10. Does the system become more or less random as time
increases?

d. Modify your application so it computes n(t), the number of particles in the left half of the
cell, and plot n(t) as a function of t. What is the qualitative behavior of n(t)? What is the
mean number of particles on the left half after the system has reached equilibrium? Compare
your qualitative results with the results you found in Problem 7.2. Would the approach to
equilibrium be better defined if you choose N = 256?
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Figure 8.4: Example of a special initial condition; the arrows represent the magnitude and the
direction of each particle’s velocity.

Problem 8.4. Sensitivity to initial conditions

a. Modify your program to consider the following initial condition corresponding to N = 11 parti-
cles moving in the same direction with the same velocity (see Figure 8.4). Choose Lx = Ly = 10
and ∆t = 0.01.

for (int i = 0; i < N; i++) {
x[ i ] = Lx/2;
y[ i ] = ( i − 0.5)∗Ly/N;
vx[i ] = 1;
vy[i ] = 0;

}

Does the system eventually reach equilibrium? Why or why not?

b. Change the velocity of particle 6 so that vx[6] = 0.99999 and vy[6] = 0.00001. Is the
behavior of the system qualitatively different than in part (a)? Does the system eventually reach
equilibrium? Are the trajectories of the particles sensitive to the initial conditions? Explain
why this behavior implies that almost all initial states lead to the same qualitative behavior
(for a given total energy).

c. Modify LJParticlesApp so that the application runs for a predetermined time interval such as
a 100 time steps, and then continues with the time reversed process, that is, the motion that
would occur if the direction of time were reversed. This reversal is equivalent to letting v → −v
for all particles. Do the particles return to their original positions? What happens if you reverse
the velocities at a later time? What happens if you choose a smaller value of ∆t?

d. What can you conclude about the chaotic nature of the trajectories from your results? Are the
computed trajectories the same as the “true” trajectories?

From the microscopic viewpoint of Problems 8.3 and 8.4, the trajectories appear rather com-
plex. The system can be described more simply by specifying its macroscopic state. For example,
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in Problem 8.3 we described the approach of the system to equilibrium by specifying n(t), the
number of particles in the left half of the cell at time t. Your observations of the macroscopic
variable n(t) should be consistent with the following two general properties of systems of many
particles:

1. After the removal of an internal constraint, an isolated system changes in time from a “less
random” to a “more random” state.

2. A system whose macroscopic state is independent of time is said to be in equilibrium. The
equilibrium macroscopic state is characterized by relatively small fluctuations about a mean
that is independent of time. The relative fluctuations become smaller as the number of
particles becomes larger.

In Problems 8.3b and 8.3c we found that the particles filled the box and did not return to their
initial configuration. Hence, we were able to define a direction of time. This direction becomes
better defined if we consider more particles. Note that Newton’s laws of motion are time reversible
and there is no a priori reason that gives the time a preferred direction.

Before we consider other macroscopic variables, we need to monitor the total energy and verify
our claim that the Verlet algorithm maintains conservation of energy with a reasonable choice of
∆t. We also introduce a check for momentum conservation.

Problem 8.5. Tests of the Verlet algorithm

a. One essential check of a molecular dynamics program is that the total energy be conserved to the
desired accuracy. Determine the value of ∆t necessary for the total energy to be conserved to a
given accuracy over a time interval of t = 2. One way is to compute ∆Emax(t), the maximum
value of the difference, |E(t) − E(0)|, over the time interval t, where E(0) is the initial total
energy, and E(t) is the total energy at time t. Verify that ∆Emax(t) decreases when ∆t is made
smaller for fixed t. If your application is working properly, then the use of the Verlet algorithm
implies that ∆Emax(t) should decrease as approximately (∆t)2. (Remember that the Verlet
algorithm is a second-order algorithm.)

b. Another way of monitoring how well the program is conserving the total energy is to analyze
the time series E(t) using a least squares fit of E(t) to a straight line. The slope of the line can
be interpreted as the drift and the root mean square deviation from the straight line can be
interpreted as the noise (σy in the notation of Section 7.6). How does the drift and the noise
depend on ∆t for a fixed time interval t? Most research applications conserve the energy to
within 1 part in 104 or better over the duration of the run.

c. Because of the use of periodic boundary conditions, all points in the central cell are equivalent
and the system is translationally invariant. As you might have learned, translational invariance
implies that the total linear momentum is conserved. However, floating point error and the trun-
cation error associated with a finite difference algorithm can cause the total linear momentum
to drift. Programming errors also might be detected by checking for conservation of momentum.
Hence, it is a good idea to monitor the total linear momentum at regular intervals and reset the
total momentum equal to zero if necessary. The method setVelocities in Listing 8.3 chooses
the velocities so that the total momentum is initially zero. Add a method that resets the total
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momentum to zero and call it at regular intervals, for example, every 1000–10000 time steps.
How well does class LJParticles conserve the total linear momentum for ∆t = 0.01?

d.∗ Consider one of the higher-order algorithms discussed in Appendix 3A for the solution of
Newton’s equations of motion. Can you choose a larger value of ∆t to achieve the same degree
of energy conservation that you found using the Verlet algorithm? Does the total energy
fluctuate or eventually drift?

8.7 Thermodynamic Quantities

In the following we discuss how some of the macroscopic quantities of interest such as the tem-
perature and the pressure can be related to time averages over the phase space trajectories of the
particles.

We have already introduced the definition of the kinetic temperature in (8.5). The temperature
that we measure in a laboratory experiment is the mean temperature, which corresponds to the
time average of T (t) over many configurations of the particles. For two dimensions (d = 2) and
our choice of units, we write the mean temperature T as

kT =
1

2N

N∑
i=1

mivi(t) · vi(t). (two dimensions) (8.6)

where X denotes the time average of X(t). The relation (8.6) is an example of the relation of
a macroscopic quantity (the mean temperature) to a time average over the trajectories of the
particles.

The relation (8.6) holds only if the momentum of the center of mass of the system is zero – we
do not want the motion of the center of mass to change the temperature. In a laboratory system
the walls of the container ensure that the center of mass motion is zero (if the mean momentum of
the walls is zero). In our simulation, we impose the constraint that the center of mass momentum
(in each of the d directions) be zero. Consequently, the system has dN − d independent velocity
components rather than dN components, and we should replace (8.6) by

kT =
1

d(N − 1)

N∑
i=1

mivi(t) · vi(t). (correction for fixed center of mass) (8.7)

The presence of the factor d(N −1) rather than dN in (8.7) is an example of a finite size correction
and becomes unimportant for large N . We shall ignore this correction in the following.

Another macroscopic quantity of interest is the mean pressure of the system. The pressure
is related to the force per unit area normal to an imaginary surface in the system. By Newton’s
second law, this force is related to the momentum that crosses the surface per unit time. We
could use this relation to determine the pressure, but this relation uses information only from the
fraction of particles that are crossing an arbitrary surface at a given time. Instead we will use the
relation of the pressure to the virial , which involves all the particles in the system.
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In general, the momentum flux across a surface has two contributions. The easiest contribution
to understand is the one carried by the particles due to their motion. This contribution, equal to
the pressure of an ideal gas, is derived in many texts using simple kinetic theory arguments and is
given by NkT/V , where V is the volume (or area) of the system.

The other contribution to the momentum flux arises from the momentum transferred across
the surface due to the forces between particles on different sides of the surface. The instantaneous
pressure at time t including both contributions to the momentum flux is given by

P (t) =
NkT (t)

V
+

1
dV

∑
i<j

rij(t) · Fij(t), (8.8)

where rij = ri − rj and Fij is the force on particle i due to particle j. The second term in (8.8)
is related to the virial and represents the correction to the ideal gas equation of state due to the
interactions between the particles. (In two and one dimensions, we replace V by the area and
length, respectively.)

The mean pressure, P = P (t), is found by computing a time average of the right-hand side of
(8.8). The computed quantity is not P , but the ratio

PV

NkT
− 1 =

1
dNkT

∑
i<j

rij · Fij . (8.9)

In class LJParticles, the sum on the right-hand side of (8.9) is computed in computeAcceleration
and accumulated in the variable virialAccumulator.

The relation of information at the microscopic level to macroscopic quantities such as the
temperature and pressure is one of the fundamental results of statistical mechanics. In brief,
molecular dynamics allows us to compute various time averages of the trajectory in phase space
over finite time intervals. One practical question is whether our time intervals are sufficiently long
to allow the system to explore phase space and yield meaningful averages. In statistical mechanics,
a time average is replaced by an ensemble average over all possible configurations. The quasi-
ergodic hypothesis asserts the equivalence of these two types of averages if the same quantities
are held fixed. In statistical mechanics, the ensemble of systems at fixed E, V , and N is called
the microcanonical ensemble. Averages in this ensemble correspond to the time averages that we
use in molecular dynamics which are at fixed E, V and N . (Molecular dynamics also imposes
an additional, but unimportant, constraint on the center of mass motion.) Ensemble averages are
explored using Monte Carlo methods in Chapter 15. A test for determining if a molecular dynamics
simulation is exploring a reasonable amount of phase space is discussed in Project 8.22.

The goal of the following problems is to explore some of the qualitative features of gases,
liquids, and solids. Because we will consider relatively small systems and relatively short runs, our
results will only be qualitatively consistent with averages calculated in the thermodynamic limit
where N → ∞.

Problem 8.6. Distribution of speeds and velocities

a. In Section 7.2 we discussed how to use the HistogramFrame class from the Open Source Physics
library. LJParticlesApp uses this class to compute the equilibrium probability P (vx)∆vx that
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a particle has a velocity in the x-direction between vx and vx + ∆vx. Add code to determine
the probability density for the y component of the velocity. What is the most probable value
for the x and y velocity components? What are their average values? Plot the probability
densities P (vx) versus vx and P (vy) versus vy. Better results can be found by plotting the
average 1

2 [P (vx = u) + P (vy = u)] versus u. What is the qualitative form of P (v)?

b. Write a method to compute the equilibrium probability P (v)∆v that a particle has a speed
between v and v+∆v. Does the probability density P (v) for the speed have the same qualitative
form as the probability density for the velocity? What is the qualitative form of P (v)? What is
the most probable value of v? What is the approximate width of P (v)? Compare your measured
result to the theoretical form (in two dimensions)

P (v)dv = Ae−mv2/2kT vdv. (8.10)

The form (8.10) of the distribution of speeds is known as the Maxwell-Boltzmann probability
distribution.

c. Repeat part (b) for other systems at different densities and temperatures. Does the form of
P (v) depend on the density or temperature?

Problem 8.7. Qualitative properties of a liquid and a gas

a. Generate an initial configuration using setLatticePositions with N = 64 and Lx = Ly = 12
and a desiredTemperature of 2.0. What is the density? What is the initial energy of the
system? Modify your program so that the values of the temperature and pressure are not
accumulated until the system has reached equilibrium. One criterion for equilibrium is to
compute the average values of T and P over finite time intervals and check that these averages
do not drift with time.

b. Choose a value of the time step ∆t so that the total energy is conserved to the desired accuracy
and run the simulation for a sufficient time to estimate the equilibrium pressure and tempera-
ture. Compare your estimate for the ratio PV/NkT with its value for an ideal gas. (We have
written V for the area of the system, so that the ideal gas equation of state has a familiar form.)
Save the final configuration of your simulation in a file (see Appendix 8A).

c. One way of starting a simulation is to use the positions saved from an earlier run. The simplest
way of obtaining an initial condition corresponding to a different density, but the same value of
N , is to rescale the positions of the particles and the linear dimensions of the cell. The following
code shows one way to do so.

for (int i = 0; i < N; i++) {
x[ i ] ∗= rescale ; // add rescale as a class variable
y[ i ] ∗= rescale ;

}
Lx = rescale∗Lx
Ly = rescale∗Ly

Incorporate this code into your program in a separate method, and add a button that lets
the user call this method without initialization. This method must be used with care when
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increasing the density. If the density is increased too quickly, it is likely that two particles
would become very close to each other so that the force would be too large and the numerical
algorithm would break down. Make a small density change, allow the system to equilibrate, and
then repeat until you reach the desired density. How do you expect P and T to change when
the system is compressed? Use a saved configuration from part (b) and change the density by
a factor of 0.95. Determine the mean temperature and pressure and compare your result for
PV/NkT to the ideal gas result. Save the final configuration of your simulation in a file and
use it as the initial condition for another run. Gradually increase the density and determine
how PV/NkT changes with increasing density. Can you distinguish the different phases? (The
determination of the phase boundary between a gas, liquid, and a solid is non-trivial and is
discussed in Problem 15.26.)

Another useful thermal quantity is the heat capacity at constant volume defined by the re-
lation CV = (∂E/∂T )V . (The subscript V denotes that the partial derivative is taken with the
volume held fixed.) CV is an example of a linear response function, that is, the response of the
temperature to a change in the energy of the system. One way to obtain CV is to determine T (E),
the temperature as a function of E. (Remember that T is obtained as a function of E in the
microcanonical ensemble.) The heat capacity is given by ∆E/∆T for two runs that have slightly
different temperatures. This method is straightforward, but requires that simulations at different
energies be done before the derivative can be estimated. An alternative way of estimating CV from
the fluctuations of the kinetic energy is discussed in Problem 8.8c.

Problem 8.8. Energy dependence of the temperature and pressure

a. We found in Problem 8.7 that the total energy is determined by the initial conditions, and the
temperature is a derived quantity found only after the system has reached thermal equilibrium.
For this reason it is difficult to study the system at a particular temperature. The temperature
can be changed to the desired value by rescaling the velocities of the system, but we have to be
careful not to increase the velocities too quickly. Run your program to create an equilibrium
configuration for Lx = Ly = 12 and N = 64 and determine T (E), the energy dependence of
mean temperature, in the range T = 1.0 to T = 1.2. Rescale the velocities by the desired
amount over some time interval. For example, multiply all the velocities by a factor λ after
each time step for a certain number of time steps. In general, the desired temperature is reached
by a series of velocity rescalings over a sufficiently long time such that the system remains close
to equilibrium during the rescaling.

b. Use your data for T (E) found in part (a) to plot the total energy E as a function of T . Is T
a monotonically increasing function of E? Estimate the contribution to CV from the potential
energy. What percentage of the contribution to the heat capacity is due to the potential energy?
Why is an accurate determination of CV difficult to achieve?

c.∗ In our molecular dynamics simulations, the total energy is fixed, but the kinetic and potential
energies can fluctuate. Another way of determining CV is to relate it to the fluctuations of
the kinetic energy. (In Chapter 15 we will find that CV is related to the fluctuations of the
total energy in the canonical ensemble in which T , V , N are held fixed.) It can be shown that
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Figure 8.5: Each particle has six nearest neighbors in a triangular lattice.

(cf. Ray and Graben)
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1 − dNk

2CV

]
, (8.11)

or

CV =
dNk

2

[
1 − 2

dN

(T 2 − T
2
)

(kT )2

]−1

(8.12)

Note that the relation (8.12) reduces to the ideal gas result if T 2 = T
2
. Method getHeatCapacity

determines CV from (8.12). Compare your results obtained using the temperature fluctuations
with the determination of CV in part (b). What are the advantages and disadvantages of
determining CV from the fluctuations of the temperature compared to the method used in
part (b)?

To simulate a solid we need to choose the shape of the central cell to be consistent with the
symmetry of the solid phase of the system. This choice is necessary even though we have used
periodic boundary conditions to minimize surface effects. If the cell does not correspond to the
correct crystal structure, the particles cannot form a perfect crystal, and some of the particles will
wander around in an endless search for their “correct” position. Consequently, a simulation of a
small number of particles at high density and low temperature would lead to spurious results. We
know that the crystalline solid at T = 0 is the configuration of lowest energy. In Problem 8.9
we compute the energy of a Lennard-Jones solid in two dimensions for the square and triangular
lattices.

Problem 8.9. Ground state energy of two-dimensional lattices
The symmetry of the triangular lattice can be seen from Figure 8.5. Each particle has six nearest
neighbors. Although it is possible to choose the central cell of the triangular lattice to be a rhombus,
it is more convenient to choose the cell to be rectangular. For a perfect crystal the linear dimensions
of the cell are Lx = 1 and Ly =

√
3Lx/2, respectively. Use method setTriangularLattice in

Listing 8.13 to generate the positions of the particles in a triangular lattice. Then compute the
potential energy per particle of a system of N particles interacting via the Lennard-Jones potential.
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Consider both the triangular and square lattices, and choose the linear dimension of the square
lattice to be L =

√
LxLy, so that both lattices have the same density. Choose N = 64 and

determine the potential energy for Lx = 8 and Lx = 9. What is the density of the system for each
case? Do your results for E/N depend on the size of the lattice? Which lattice symmetry has
a lower potential energy for a given density? Explain your results in terms of the ability of the
triangular lattice to pack the particles closer together.

Listing 8.13: Method for generating a triangular lattice.
public void setTriangularLattice() { // place particles on triangular lattice

double dnx = Math.sqrt(N);
int ns = (int) dnx;
if (dnx−ns>0.001) {

ns++;
}
double dx = Lx/ns;
double dy = Ly/ns;
int i = 0;
int iy = 0;
while(i<N) {

for(int ix = 0;ix<ns;++ix) {
if ( i<N) {

state[4∗ i+2] = dy∗(iy+0.5);
if (iy%2==0) {

state[4∗ i ] = dx∗(ix+0.25);
} else {

state[4∗ i ] = dx∗(ix+0.75);
}
i++;

}
}
iy++;

}
}

If we rapidly lower the temperature of a liquid below its freezing temperature, it is likely that
the resulting state will not be an equilibrium crystal, but rather a supercooled liquid that will
eventually nucleate to a crystal. If the properties of the supercooled state do not change with
time for a time interval that is sufficiently long to obtain meaningful averages, we say that the
system is in a metastable state. In general, we must carefully prepare our system so as to minimize
the probability that the system becomes trapped in a metastable state. However, there is much
interest in metastable states and how they eventually evolve to a more stable state.

Problem 8.10. Metastability

a. What happens if the initial positions of the particles correspond to a square lattice. As we found
in Problem 8.9, this symmetry is not consistent with the lowest energy state corresponding to
a triangular lattice. If the initial velocities are set to zero, what happens when you run the
program? Choose N = 64 and Lx = Ly = 9.
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b. We can show that the system in part (a) is in a metastable state by giving the particles a small
random initial velocity in the interval [−0.5,+0.5]. Does the symmetry of the lattice immediately
change or is there a delay? When do you begin to see local structure that resembles a triangular
lattice?

c. Repeat part (b) with random velocities in the interval [−0.1,+0.1].

Problem 8.11. The solid state and melting

a. Choose N = 64, Lx = 8, and Ly =
√

3Lx/2, and place the particles on a triangular lattice. Give
each particle zero initial velocity. What is the total energy of the system? Do a simulation and
measure the temperature and pressure as a function of time. Does the system remain a solid?

b. Give each particle a random velocity in the interval [−0.5,+0.5]. What is the total energy?
Equilibrate the system and determine the mean temperature and pressure. Describe the trajec-
tories of the particles. Are the particles localized? Is the system a solid? Save an equilibrium
configuration for use in part (c).

c. Choose the initial configuration to be an equilibrium configuration from part (b), but gradually
increase the kinetic energy by a factor of two. What is the new total energy? Describe the
qualitative behavior of the motion of the particles. What is the equilibrium temperature and
pressure of the system? After equilibrium is reached, increase the temperature again by rescaling
the velocities in the same way. Repeat this rescaling and measure P (T ) and E(T ) for several
different temperatures.

d. Use your results from part (c) to plot E(T )−E(0) and P (T ) as a function of T . Is the difference
E(T )−E(0) proportional to T? What is the mean potential energy for a harmonic solid? What
is its heat capacity?

e. Choose an equilibrium configuration from part (b) and decrease the density by rescaling Lx, Ly

and the particle coordinates by a factor of 1.1. What is the nature of the trajectories? Decrease
the density of the system until the system melts. What is your qualitative criterion for melting?

Problem 8.12. Microscopic model of friction
In introductory physics texts sliding friction is usually described by the empirical law

f = −µFN , (8.13)

where FN is the normal force acting on the sliding object and µ is the coefficient of friction. If
the object is not moving, then (8.13), with µ equal to the static coefficient of friction, represents
the frictional force needed to start the motion. If the object is moving, then (8.13), with µ equal
to the kinetic coefficient of friction, represents the kinetic frictional force, which is assumed to be
independent of the speed of the sliding object.

In this problem we explore a simple model discussed by Ringlein and Robbins where the
interaction between the atoms in two surfaces interact via the Lennard-Jones potential. The
stationary surface is modeled by a line of fixed particles spaced a distance of a = 21/6 apart. The
sliding object is modeled by two rows of atoms in a triangular lattice configuration initially spaced
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at a distance 2a from each other such that the initial net force due to the line of atoms is zero. The
bottom row of atoms in the sliding object is a vertical distance a from the line of fixed particles.
To keep the sliding object together, stiff springs with a spring constant of 500 (in reduced units)
connect each atom to its nearest neighbors on the triangular lattice. The left-most atom on the
bottom row has a damping force equal to −10(vxx̂ + vy ŷ to help stabilize the motion. In addition,
there is an external horizontal spring with spring constant equal to unity attached to the right-most
atom on the bottom row. This spring is pulled at a constant rate causing this force on the atom
to increase linearly. When this spring force is sufficiently large, the atoms start to move and the
spring force suddenly drops. The point where this decrease occurs defines the magnitude of the
static frictional force.

a. Modify your molecular dynamics program to simulate this model of friction. Choose the sliding
object to consist of 13 atoms, 7 on the bottom row and 6 on the top row. Your program should
show the pulling force due to the spring on the right-most atom as a function of time, and a
visual display of the atoms in the system. A reasonable rate for pulling the spring is 0.1, that
is, the external horizontal spring force is 0.1t− u, where u is the horizontal displacement of the
right-most atom from its initial position.

b. Run your program. You should see the spring force suddenly drop when it reaches about 14.
Try different pulling rates and determine if its value affects your results or the static friction
force.

c. Now add a load that is equivalent to increasing the normal force. To add a load W to the
system, add a vertical force of −W/N to each of the N = 13 atoms in the sliding object. Find
the static friction force, fs as a function of W for W between −20 and +40. To what does a
negative load correspond? Determine the coefficient of static friction from the slope of fs versus
W .

d. Reduce the surface area by eliminating 4 atoms, 2 from each row. Rerun your simulations and
discuss the results. Repeat for an increased size of 17 atoms, and fit your results to the form

fs = µsW + cA, (8.14)

where A is the number of atoms in the bottom row, and c is a constant. Notice that the area
dependence is different from what is usually assumed for sliding friction in introductory physics
courses. For macroscopic objects the surfaces are typically rough at the microscopic level and
thus the effective area of contact is much smaller than the surface area. Also, the effective area
could be proportional to the load and thus both terms in (8.14) would be proportional to the
load consistent with the usual assumption in introductory physics courses.

8.8 Radial Distribution Function

We can gain more insight into the structure of a many body system by looking at how the positions
of the particles are correlated with one another due to their interactions. The radial distribution
function g(r) is a measure of this correlation and is defined as follows. Suppose that N particles
are in a region of volume V with number density ρ = N/V . Choose one of the particles to be
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the origin. Then the mean number of other particles in the shell between r and r + dr is given
by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2), and 2dr (d = 1). If
the interparticle interaction is spherically symmetric and the system is a gas or a liquid, then g(r)
depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫
g(r) dr = N − 1 ≈ N. (8.15)

Equation (8.15) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0 as
r → 0, because the repulsive force between particles increases rapidly as r → ∞. We also expect
that g(r) → 1 as r → ∞, because the correlation of a given particle with other particles decreases
as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle,
the potential energy of interaction between this particle and all other particles between r and r+dr
is u(r)ρg(r)dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫
g(r)u(r) dr. (8.16)

It also can be shown that the relation (8.9) for the mean pressure can be rewritten in terms of g(r)
so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫
g(r) r

du(r)
dr

dr. (8.17)

To determine g(r) for a particular configuration of particles, we first compute n(r, ∆r), the
number of particles in a spherical (circular) shell of radius r and a small, but nonzero width ∆r,
with the center of the shell centered about each particle. A method for computing n(r) is given in
the following:

Listing 8.14: Method to compute n(r).
public void computeRDF() {

// accumulate data for n(r)
for (int i = 0; i < N−1; i++) {

for (int j = i+1; i < N; j++) {
double dx = PBC.separation(x[i] − x[j],Lx);
double dy = PBC.separation(y[i] − y[j],Ly);
double dy = (dy + Ly) % 0.5∗Ly;
double r2 = dx∗dx + dy∗dy;
double r = Math.sqrt(r2);
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int bin = (int)(r/dr ); // dr = shell width
RDFAccumulator[bin]++;

}
}
numberRDFMeasurements++;

}

The use of periodic boundary conditions in computeRDF implies that the maximum separation
between any two particles in the x and y direction is Lx/2 and Ly/2, respectively. Hence for a
square cell, we can determine g(r) only for r ≤ 1

2L. The results for n(r) for different configurations
are accumulated in the array RDFAccumulator[].

To obtain g(r) from n(r), we note that for a given particle i, we consider only those particles
whose index j is greater than the index i (see computeRDF). Hence, there are a total of 1

2N(N − 1)
separations that are considered. In two dimensions we compute n(r, ∆r) for a circular shell whose
area is 2πr∆r. These considerations imply that g(r) is related to n(r) by

ρg(r) =
n(r, ∆r)

1
2N 2πr∆r

. (two dimensions) (8.18)

Note the factor of N/2 in the denominator of (8.18). The following method normalizes the array
RDFAccumulator and yields g(r):

Listing 8.15: Method for obtaining g(r) from n(r).
public void normalizeRDF(PlotFrame dataRDF) {

double density = N/(Lx∗Ly);
double L = Math.min(Lx,Ly);
// maximum index is one less than binMax
int binMax = (int)(L/(2∗dr));
double normalization = density∗numberRDFMeasurements∗N/2;
for (int bin = 0; bin < binMax; bin++) {

shellArea = Math.PI∗(Math.pow(bin+dr,2) − Math.pow(bin,2));
double RDF = RDFAccumulator[bin]/(normalization∗shellArea);
dataRDF.append(0,dr∗(bin+0.5),g); // adds results to be plotted

}
}

The shell thickness ∆r needs to be sufficiently small so that the important features of g(r) are
found, but large enough so that each bin has a reasonable number of contributions. The value of
∆r should be a class variable. A reasonable choice for its magnitude is ∆r = 0.025.

Problem 8.13. The structure of g(r) for a dense liquid and a solid

a. Incorporate computeRDF and normalizeRDF into your program and compute g(r) for a system
of N = 64 particles that are fixed on a triangular lattice with Lx = 8 and Ly =

√
3Lx/2. What

is the density of the system? What is the nearest neighbor distance between sites? At what
value of r does the first maximum of g(r) occur? What is the next nearest distance between
sites? Does your calculated g(r) have any other relative maxima? If so, relate these maxima to
the structure of the triangular lattice.
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σ

Figure 8.6: The closest distance between two hard disks is σ. The disks exert no force on one
another unless they touch.

b. Use your molecular dynamics program to compute g(r) for a dense fluid (ρ > 0.6, T ≈ 1.0)
using at least N = 64 particles. How many relative maxima can you observe? In what ways
do they change as the density is increased? How does the behavior of g(r) for a dense liquid
compare to that of a dilute gas and a solid?

8.9 Hard disks

How can we understand the temperature and density dependence of the equation of state and the
structure of a dense liquid? One way to gain more insight is to modify the interaction and see how
the properties of the system change. In particular, we would like to understand the relative role
of the repulsive and attractive parts of the interaction. For this reason, we consider an idealized
system of hard disks for which the interaction u(r) is purely repulsive:

u(r) =

{
+∞, r < σ

0, r ≥ σ
(8.19)

The length σ is the diameter of the hard disks (see Figure 8.6). In three dimensions the interaction
(8.19) describes the interaction of hard spheres (billiard balls); in one dimension (8.19) describes
the interaction of hard rods.

Because the interaction u(r) between hard disks is a discontinuous function of r, the dynamics
of hard disks is qualitatively different than it is for a continuous interaction such as the Lennard-
Jones potential. For hard disks, the particles move in straight lines at constant speed between
collisions and change their velocities instantaneously when a collision occurs. Hence the problem
becomes finding the next collision and computing the change in the velocities of the colliding pair.
The dynamics is “event driven” and can be computed exactly in principle and is limited only by
roundoff errors.

The dynamics of a system of hard disks can be treated as a sequence of two-body elastic
collisions. The idea is to consider all pairs of particles i and j and to find the collision time tij for
their next collision ignoring the presence of all other particles. In many cases, the particles will be
going away from each other and the collision time is infinite. From the collection of collision times
for all pairs of particles, we find the minimum collision time. We then move all particles forward
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in time until the collision occurs and calculate the postcollision velocities of the colliding pair. The
main problem will be dealing with the large number of possible collision events.

We first determine the particle velocities after a collision. Consider a collision between particles
i and j. Let vi and vj be their velocities before the collision and v′

i and v′
j be their velocities after

the collision. Because the particles have equal mass, it follows from conservation of energy and
linear momentum that

v′i
2 + v′j

2 = vi
2 + vj

2, (8.20)

v′
i + v′

j = vi + vj . (8.21)

From (8.21) we have

∆vi = v′
i − vi = −(v′

j − vj) = −∆vj . (8.22)

When two hard disks collide, the force is exerted along the line connecting their centers,
rij = ri − rj . Hence, the components of the velocities parallel to rij are exchanged, and the
perpendicular components of the velocities are unchanged. It is convenient to write the velocity of
particles i and j as a vector sum of its components parallel and perpendicular to the unit vector
r̂ij = rij/|rij |. We write the velocity of particle i as

vi = vi,‖ + vi,⊥, (8.23)

where vi,‖ = (vi · r̂ij)r̂ij , and

v′
i,‖ = vj,‖ v′

j,‖ = vi,‖, (8.24a)

v′
i,⊥ = vi,⊥ v′

j,⊥ = vj,⊥. (8.24b)

Hence, we can write v′
i as

v′
i = v′

i,‖ + v′
i,⊥ = vj,‖ + vi,⊥

= vj,‖ − vi,‖ + vi,‖ + vi,⊥

=
[
(vj − vi) · r̂ij

]
r̂ij + vi. (8.25)

The change in the velocity of particle i at a collision is given by

∆vi = v′
i − vi = −

[
(vi − vj) · r̂ij

]
r̂ij , (8.26)

or

∆vi = −∆vj =
(

rij bij

σ2

)
contact

, (8.27)

where bij = vij · rij , vij = vi − vj , and we have used the fact that |rij | = σ at contact.

Exercise 8.14. Velocity distribution of hard rods
Use (8.20) and (8.21) to show that v′i = vj and v′j = vi in one dimension, that is, two colliding
hard rods of equal mass exchange velocities. If you start a system of hard rods with velocities
chosen from a uniform random distribution, will the velocity distribution approach the equilibrium
Maxwell-Boltzmann distribution?
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We now consider the criteria for a collision to occur. Consider disks i and j at positions ri

and rj at t = 0. If they collide at a time tij later, their centers will be separated by a distance σ:

|ri(tij) − rj(tij)| = σ. (8.28)

During the time tij , the disks move with constant velocities. Hence we have

ri(tij) = ri(0) + vi(0) tij , (8.29)

and
rj(tij) = r2(0) + v2(0) tij . (8.30)

If we substitute (8.29) and (8.30) into (8.28), we find

[rij + vijtij ]2 = σ2, (8.31)

where rij = ri(0) − rj(0), vij = vi(0) − vj(0), and

tij =
−vij · rij ±

√
(vij · rij)2 − vij

2(rij
2 − σ2)

vij
2

. (8.32)

Because tij > 0 for a collision to occur, we see from (8.32) that the condition,

vij · rij < 0, (8.33)

must be satisfied. That is if vij · rij > 0, the particles are moving away from each other and there
is no possibility of a collision.

If the condition (8.33) is satisfied, then the discriminant in (8.32) must satisfy the condition

(vij · rij)2 − vij
2(rij

2 − σ2) ≥ 0. (8.34)

If the condition (8.34) is satisfied, then the quadratic in (8.32) has two roots. The smaller root
corresponds to the physically significant collision because the disks are impenetrable. Hence, the
physically significant solution for the time of a collision tij for particles i and j is given by

tij =
−bij −

[
bij

2 − vij
2 (rij

2 − σ2)
]1/2

vij
2

. (8.35)

Problem 8.15. Calculation of collision times
Write a short program that determines the collision times (if any) of the following pairs of particles.
It would be a good idea to draw the trajectories to confirm your results. Consider the three cases:
r1 = (2, 1), v1 = (−1,−2), r2 = (1, 3), v2 = (1, 1); r1 = (4, 3), v1 = (2,−3), r2 = (3, 1),
v2 = (−1,−1); and r1 = (4, 2), v1 = (−2, 1

2 ), r2 = (3, 1), v2 = (−1, 1). As usual, choose
units so that σ = 1.

The main thermodynamic quantity of interest for hard disks is the mean pressure P . Because
the forces act only when two disks are in contact, we have to modify the form of (8.9). We write
Fij(t) = Iij δ(t − tc), where tc is the time at which the collision occurs. This form of Fij implies
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that the force is nonzero only when there is a collision between i and j. The delta function δ(t) is
infinite for t = 0 and is zero otherwise; δ(t) is defined by its use in an integral as shown in (8.36).
This form of the force yields ∫ t

0

Iij δ(t′ − tc) dt′ = Iij = m∆vij , (8.36)

where we have used Newton’s second law and assumed that a single collision has occurred during
the time interval t. The quantity ∆vij is given by ∆vij = v′

i − vi − (v′
j − vj). If we explicitly

include the time average to account for all collisions during the time interval t, we can write (8.9)
as

PV

NkT
− 1 =

1
dNkT

1
t

∑
ij

∫ t

0

rij · Iij δ(t′ − tc) dt′

=
1

dNkT

1
t

∑
cij

m∆vij · rij . (8.37)

The sum in (8.37) is over all collisions cij between disks i and j in the time interval t; rij is the
vector between the centers of the disks at the time of a collision; the magnitude of rij in (8.37) is
σ.

Our hard disk program implements the following steps. We first find the collision times and
the collision partners for all pairs of particles i and j. We then

1. locate the minimum collision time tmin;

2. advance all particles using a straight line trajectory until the collision occurs, that is, displace
particle i by vi tmin and update its next collision time;

3. compute the postcollision velocities of the colliding pair nextCollider and nextPartner;

4. calculate the quantities of interest and accumulate data;

5. update the collision partners of the colliding pair, nextCollider and nextPartner, and all
other particles that were to collide with either nextCollider or nextPartner if nextCollider
and nextPartner had not collided first;

6. repeat steps 1–5 indefinitely.

The methods for carrying out these steps are listed in the following:

Listing 8.16: Methods for each step of the hard disk system.
public void step() {

minimumCollisionTime(); // finds minimum collision time from list of collision times
move(); // moves particles for time equal to minimum collision time

t += timeToCollision;
contact (); // changes velocities of two colliding particles
// set collision times to bigTime for those particles set to collide with
// two colliding particles .
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setDefaultCollisionTimes();
newCollisionTimes(); // finds new collision times between all particles
// and two colliding particles
numberOfCollisions++;

}

public void minimumCollisionTime() {
timeToCollision = bigTime; // sets collision time very large
// so that can find minimum collision time
for(int k = 0; k<N; k++) {

if (collisionTime[k]<timeToCollision) {
timeToCollision = collisionTime[k ];
nextCollider = k;

}
}
nextPartner = partner[nextCollider];

}

public void move() {
for(int k = 0; k<N; k++) {

collisionTime[k] −= timeToCollision;
x[k] = PBC.position(x[k]+vx[k]∗timeToCollision, Lx);
y[k] = PBC.position(y[k]+vy[k]∗timeToCollision, Ly);

}
}

public void contact() {
// computes collision dynamics between nextCollider and nextPartner at contact

double dx = PBC.separation(x[nextCollider]−x[nextPartner], Lx);
double dy = PBC.separation(y[nextCollider]−y[nextPartner], Ly);
double dvx = vx[nextCollider]−vx[nextPartner];
double dvy = vy[nextCollider]−vy[nextPartner];
double factor = dx∗dvx+dy∗dvy;
double delvx = −factor∗dx;
double delvy = −factor∗dy;
vx[nextCollider] += delvx;
vy[nextCollider] += delvy;
vx[nextPartner] −= delvx;
vy[nextPartner] −= delvy;
virialSum += delvx∗dx+delvy∗dy;

}

public void setDefaultCollisionTimes() {
collisionTime[nextCollider] = bigTime;
collisionTime[nextPartner] = bigTime;

// sets collision times to bigTime for all particles set to collide with
// the two colliding particles
for(int k = 0; k<N; k++) {

if (partner[k]==nextCollider) {
collisionTime[k] = bigTime;
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} else if (partner[k]==nextPartner) {
collisionTime[k] = bigTime;

}
}

}

public void newCollisionTimes() {
// finds new collision times for all particles which were set to collide
// with two colliding particles ; also finds new collision
// times for two colliding particles .
for(int k = 0; k<N; k++) {

if ((k!=nextCollider)&&(k!=nextPartner)) {
checkCollision(k, nextPartner);
checkCollision(k, nextCollider );

}
}

}

The colliding pair and the next collision time are found in method minimumCollisionTime,
and all the particles are moved forward in move until contact occurs. The collision dynamics of the
colliding pair is computed in method contact, where the contribution to the virial also is found. In
setDefaultCollisionTimes we set all the collisions times to an arbitrarily large value, bigTime,
for all pairs of particles that need to be updated. Then in newCollisionTimes we update the
collision times for those particles in step 5.

In method initialize we initialize various variables and most importantly compute the
minimum collision time for each particle using method checkCollision. The ith element in the
array, collisionTime, stores the minimum collision time for particle i with all the other particles.
The array element partner[i] stores the particle label of the collision partner corresponding to
this time. The collision time for each particle is initially set to an arbitrarily large value, bigTime,
to take into account that at any given time, some particles have no collision partners. The methods
for setting the initial positions and velocities are the same as those used for simulating Lennard-
Jones particles.

Listing 8.17: Method for initializing the simulation of hard disks.
public void initialize (String configuration) {

resetAverages();
x = new double[N];
y = new double[N];
vx = new double[N];
vy = new double[N];
collisionTime = new double[N];
partner = new int[N];
if (configuration .equals(”regular”)) {

setRegularPositions ();
} else {

setRandomPositions();
}
setVelocities ();
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for(int i = 0; i<N; ++i) {
collisionTime[ i ] = bigTime; // sets unknown collision times to a big number

}
// find initial collision times for all particles
for(int i = 0; i<N−1; i++) {

for(int j = i+1; j<N; j++) {
checkCollision( i , j );

}
}

}

public void resetAverages() {
t = 0;
virialSum = 0;

}

Method checkCollision uses the relations (8.33) and (8.35) to determine whether particles i
and j will collide and if so, the time tij until their collision. We check for collisions with particle
j in the central cell as well as with particle j in the eight image cells surrounding the central cell
as shown in Figure 8.7. For very dilute systems we might need to check further periodic images.
However, for the systems we will be considering, such a check should not be necessary.

Listing 8.18: Method for checking the collision time and collision partners of each particle.
public void checkCollision(int i , int j ) {
// consider collisions between i and j and periodic images of j

double dvx = vx[i]−vx[j];
double dvy = vy[i]−vy[j];
double v2 = dvx∗dvx+dvy∗dvy;
for(int xCell = −1; xCell<=1; xCell++) {

for(int yCell = −1; yCell<=1; yCell++) {
double dx = x[i]−x[j]+xCell∗Lx;
double dy = y[i]−y[j]+yCell∗Ly;
double bij = dx∗dvx+dy∗dvy;
if (bij<0) {

double r2 = dx∗dx+dy∗dy;
double discriminant = bij∗bij−v2∗(r2−1);
if (discriminant>0) {

double tij = (−bij−Math.sqrt(discriminant))/v2;
if ( tij <collisionTime[i ]) {

collisionTime[ i ] = tij ;
partner[ i ] = j ;

}
if ( tij <collisionTime[j ]) {

collisionTime[ j ] = tij ;
partner[ j ] = i ;

}
}

}
}

}
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Figure 8.7: The positions and velocities of disks 1 and 2 in the figure are such that disk 1 collides
with an image of disk 2 that is not the image closest to disk 1. The periodic images of disk 2 are
not shown.

}

The pressure is computed as follows:

Listing 8.19: Method for calculating the pressure.
public double pressure() {

double area = Lx∗Ly;
return 1+virialSum/(2∗t∗area∗N∗temperature);

}

As discussed in Problem 8.16, an important check on the calculated trajectories of a hard disk
system is that no two disks overlap. The following method tests for this condition.

public void checkOverlap() {
for (int i = 0; i < N−1; ++i) {

for(int j = i+1; j < N; ++j) {
double dx = PBC.separation(x[i] − x[j],Lx);
double dy = PBC.separation(y[i] − y[j],Ly);
if (dx∗dx+dy∗dy < 1.0) {

System.out.println(”Particles ” + i + ” and” + j + ” overlap”);
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}
}

}
}

To complete class HardDisks, we need to add the class declarations, which we show in List-
ing 8.20 and the draw method, which is the same as in class LJParticles. You can use a slightly
modified version of class LJParticlesApp as the target class for this application, but note that
you will need to modify the LJParticlesLoader class to store different arrays. The number of
collisions, the time, and a plot of the pressure versus time should be displayed. We will leave the
task of writing the target class to you.

Listing 8.20: Class declarations for HardDisks.
package org.opensourcephysics.sip.ch08.hd;
import java.awt.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.numerics.∗;

public class HardDisks implements Drawable {
public double x[], y [], vx [], vy [];
public double collisionTime[];
public int partner [];
public int N;
public double Lx;
public double Ly;
public double keSum = 0, virialSum = 0;
public int nextCollider, nextPartner;
public double timeToCollision;
public double t = 0;
public double bigTime = 1.0E10;
public double temperature;
public int numberOfCollisions = 0;

Problem 8.16. Initial test of class HardDisks

a. Because even a small error in computing the trajectories of the disks will eventually lead to
their overlap and hence to a fatal error, it is necessary to test class HardDisks carefully. For
simplicity, start from a lattice configuration. The most important test of the program is to
monitor the computed positions of the hard disks for overlaps. If the distance between the
centers of any two hard disks is less then unity (distances are measured in units of σ), there
must be a serious error in the program. To check for the overlap of hard disks, include method
checkOverlap in method step while you are testing the program.

b. The temperature for a system of hard disks is constant and can be defined as in (8.6). Why does
the temperature not fluctuate as it does for a system of particles interacting with a continuous
potential? The constancy of the temperature can be used as another check on your program.
What is the effect of increasing all the velocities by a factor of two? What is the natural unit
of time? Explain why the state of the system is determined only by the density and not by the
temperature.
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c. Generate equilibrium configurations of a system of N = 64 disks in a square cell of linear
dimension L = 12. Suppose that at t = 0, the constraint that 0 ≤ x ≤ 12 is removed, and the
disks are allowed to move in a rectangular cell with Lx = 24 and Ly = 12. Does the system
become more or less random? What is the qualitative nature of the time dependence of n(t),
the number of disks on the left half of the cell?

d. Modify your program so that averages are not computed until the system is in equilibrium.
Compute the virial (8.37) and make a rough estimate of the error in your determination of the
mean pressure due to statistical fluctuations.

e. Modify your program so that you can compute the velocity and speed distributions and verify
that the computed distributions have the desired forms.

Problem 8.17. Static properties of hard disks

a. As we have seen in Section 8.7, a very time consuming part of the simulation is equilibrating a
system from an arbitrary initial configuration. One way to obtain a set of initial positions is to
add the hard disks sequentially with random positions and reject an additional hard disk if it
overlaps any disks already present. Although this method is very inefficient at high densities, try
it so that you will have a better idea of how difficult it is to obtain a high density configuration
in this way. A much better method is to place the disks on the sites of a lattice.

b. The largest number of hard disks that can be placed into a fixed volume defines the maximum
density. What is the maximum density if the disks are placed on a square lattice? What is
the maximum density if the disks are placed on a triangular lattice? Suppose that the initial
condition is chosen to be a square lattice with N = 100 and L = 11 so that each particle has four
nearest neighbors. What is the qualitative nature of the system after several hundred collisions
have occurred? Do most particles still have four nearest neighbors or are there regions where
most particles have six neighbors?

c. The dependence of the mean pressure P on the density ρ is of interest, just as it is for a system
with a continuous potential. Is P a monotonically increasing function of ρ? Is a system of hard
disks always a fluid or is there a fluid to solid transition at higher densities? We will not be
able to find definitive answers to these questions for N = 64. However, many simulations in the
1960s and 70s were done for systems of N = 108 hard disks and the largest simulations were
for several hundred particles. Find the dependence of the pressure on the density, beginning
at low densities and slowly increasing the density starting from a configuration from a lower
density. At any given time the maximum density increase is given by the minimum distance
between any two disks. To increase the density, rescale all the positions and the cell size so that
the minimum distance is reduced by a factor of two. Repeat this procedure until you reach the
desired density. You will need to equilibrate the system between rescalings.

d. Compute the radial distribution function g(r) for the same densities as you considered for the
Lennard-Jones interaction. Compare the qualitative behavior of g(r) for the two interactions.
On the basis of your results, which part of the Lennard-Jones interaction plays the dominant
role in determining the structure of a dense Lennard-Jones liquid? Computing g(r) is more
subtle for the hard disk system than it is for a system with a continuous potential. For the
latter system, we can accumulate the sums needed to compute g(r) at regular intervals and
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simply take the average of the computed quantities. However in an event driven dynamics,
the time does not evolve uniformly. The simplest procedure is to keep track of the number of
collisions and to compute the necessary sums after a certain number of collisions has occurred.
If the number of collisions is sufficiently large, the time interval will be approximately the same.
The relation of the pressure to g(r) for hard disks is discussed on page 677.

Simulations of systems of hard disks and hard spheres have shown that the structure of
these systems does not differ significantly from the structure of systems with more complicated
interactions. Given this insight, our present theories of liquids are based on the use of the hard
sphere (disk) system as a reference system; the differences between the hard sphere interaction
and the more complicated interaction of interest are treated as a perturbation about this reference
system. Thus even though the particles interact strongly in a dense gas and a liquid, we now have
a perturbation theory of liquids thanks to the insight gained from simulations.

In Problem 8.18 we consider two physical quantities associated with the dynamics of a system
of hard disks, namely the mean free time and the mean free path, quantities of interest in kinetic
theory.

Problem 8.18. Mean free path and collision time

a. Class HardDisks provides the information needed to determine the mean free time tc, that
is, the average time a particle travels between collisions. For example, suppose we know that
40 collisions occurred in a time t = 2.5 for a system of N = 16 disks. Because two particles
are involved in each collision, there was an average of 80/16 collisions per particle. Hence
tc = 2.5/(80/16) = 0.5. Write a method to compute tc and determine tc as a function of ρ.

b.∗ The mean free path � is the mean distance a particle travels between collisions. In introductory
textbooks, the relation of � to tc is given by the simple relation � = vtc, where v is the root-mean
square velocity, v =

√
v2. Write a method to compute the mean free path of the particles.

Note that the displacement of particle i during the time t is vit, where vi is the speed of particle
i. What relation do you find between � and tc?

c.∗ Write a method to determine the distribution of times between collisions. What is the quali-
tative form of the distribution? How does the width of this distribution depend on ρ?

8.10 Dynamical Properties

The mean free time and the mean free path are well defined for hard disks for which the meaning of
a collision is clear. From kinetic theory we know that both quantities are related to the transport
properties of a dilute gas. However, the concept of a collision is not well-defined for systems with
a continuous interaction such as the Lennard-Jones potential. In the following, we take a more
general approach to the dynamics of a many body system and discuss how the transport of particles
in a system near equilibrium is related to the equilibrium properties of the system.

Consider the trajectory of a particular particle, for example, particle 1, in a system that is
in equilibrium. At some arbitrarily chosen time t = 0, its position is r1(0). At a later time t, its
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displacement is r1(t) − r1(0). If there were no net force on the particle during this time interval,
then r1(t) − r1(0) would increase linearly with t. However, a particle in a fluid undergoes many
collisions, and on the average its net displacement would be zero. A more interesting quantity is
the mean square displacement defined as

R(t)2 = [r1(t) − r1(0)]2. (8.38)

The average in (8.38) is over all possible choices of the time origin. If the system is in equilibrium,
the choice of t = 0 is arbitrary, and R1(t)2 depends only on the time difference t.

If the collisions of particle 1 with the other particles are random, then we would suspect that
particle 1 undergoes a random walk, and the t dependence of R(t)2 would be given by (see (7.8))

R(t)2 = 2dDt, (t → ∞) (8.39)

where d is the spatial dimension. The coefficient D in (8.39) is known as the self-diffusion coefficient
and is an example of a transport coefficient. Because the average behavior of all the particles should
be the same, we would find much better results if we average over all particles.

The relation (8.39) relates the macroscopic transport coefficient D to a microscopic quantity,
R(t)2, and gives us a way of computing D for an equilibrium system. The easiest way of computing
R(t)2 is to save the position of a particle at regular time intervals in a file. We later can use a
separate program to read the data file and compute R(t)2.

To understand the procedure for computing R(t)2, we consider a simple example. Suppose that
the position of a particle in a one-dimensional system is given by x(t = 0) = 1.65, x(t = 1) = 1.62,
x(t = 2) = 1.84, and x(t = 3) = 2.22. If we average over all possible time origins, we obtain

R(t = 1)2 =
1
3
[(

x(1) − x(0)
)2 +

(
x(2) − x(1)

)2 +
(
x(3) − x(2)

)2]
=

1
3
[
0.0009 + 0.0484 + 0.1444

]
v = 0.0646

R(t = 2)2 =
1
2
[(

x(2) − x(0)
)2 + (x(3) − x(1)

)2]
=

1
2
[
0.0361 + 0.36

]
= 0.1981

R(t = 3)2 =
[
x(3) − x(0)

]2 = 0.3249

Note that there are fewer combinations of the positions as the time difference increases.
Below we show a method that computes R(t)2 assuming that data has been collected for n

times, each time labeled by k for all N particles in arrays xSave[i][k] and ySave[i][k]. The
time interval between saving the data is dt, so that the kth time is k*dt. The method averages
over all time origins, which are labeled by k0.

We cannot find the distance moved by a particle by just keeping track of its position. Imagine
that a particle moved in only one direction and returned to its original position because of the
periodic boundary conditions. If we just subtracted the coordinates of the position, we would find
that the particle’s displacement was zero when in fact it really moved an amount equal to the
size of the simulation cell. To keep track of the movement of each particle we use two arrays,
xWrap and yWrap. Every time the ith particle moves past the right boundary in the time interval
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Figure 8.8: The time dependence of the mean square displacement R(t)2 for one particle in a
two-dimensional Lennard-Jones system with N = 16, L = 5, and E = 5.8115. The position of a
particle was saved at intervals of 0.5. Much better results can be obtained by averaging over all
particles and over a longer run. The least squares fit was made between t = 1.5 and t = 5.5. As
expected, this fit does not pass through the origin. The slope of the fit is 0.61.

k*dk to (k+1)*dk, xWrap[i][k] is incremented by Lx. Every time the particle moves past the left
boundary xWrap[i][k] is decremented by Lx. A similar procedure must be used for yWrap.

Listing 8.21: Listing of method computeR2 for finding the mean square displacement.
public void computeR2(PlotFrame data) {

for(int dk = 1; dk < n−1; ++dk) { // loops over time intervals
int norm = 0;
double r2 = 0;
for(int i = 0; i < N; i++) { // loops over particles

for(int k0 = 0; k0 < n−dk−1; ++k0) { // loops over time origins
double dx = (xSave[i][k0+dk]+xWrap[i][k0+dk])−(xSave[i][k0]+xWrap[i][k0+dk]);
double dy = (ySave[i][k0+dk]+yWrap[i][k0+dk])−(ySave[i][k0]+yWrap[i][k0+dk]);
r2 += dx∗dx + dy∗dy;
norm++;

}
}
data.append(0,dk∗timeInterval,r2/norm);

}
}

We show our results for R(t)2 for a system of Lennard-Jones particles in Figure 8.8. Note
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that R(t)2 increases approximately linearly with t with a slope of roughly 0.61. From (8.39) the
corresponding self-diffusion coefficient is D = 0.61/4 ≈ 0.15. In Problem 8.19 we use method
computeR2 to compute the self-diffusion coefficient. An easier, but less direct way of computing D
is discussed in Project 8.22.

Problem 8.19. The self-diffusion coefficient

a. Use either your hard disk or molecular dynamics program and visually follow the motion of
a particular particle by “tagging” it, for example, by drawing its path with a different color.
Describe its motion qualitatively.

b. Modify your program so that the coordinates of a particular particle are saved at regular inter-
vals. The desired time interval needs to be determined empirically. If you save the coordinates
too often, the data file will become too large, and you will waste time saving the coordinates.
If you do not save the positions often enough, you will lose information. Because the time step
∆t must be small compared to any interesting time scale, we know that the time interval for
saving the positions must be at least an order of magnitude greater than ∆t. A good first guess
is to choose the time interval for saving the coordinates to be the order of 10–20 time steps.
The easiest procedure for hard disks is to save the coordinates at intervals measured in terms
of the number of collisions. If we average over a sufficient number of collisions, we can find the
relation between the elapsed time and the number of collisions.

c. Compute R(t)2 for conditions that correspond to a dense fluid. Does R(t)2 increase as t2 as for
a free particle or more slowly? Does R(t)2 increase linearly with t for longer times?

d. Use the relation (8.39) to estimate the magnitude of D from the slope of R(t)2 for the time
interval for which R(t)2 is approximately linear. Obtain D for several different temperatures and
densities. (A careful study of R(t)2 for much larger systems and much longer times would show
that R(t)2 is not proportional to t in two dimensions. Instead R(t)2 has a term proportional
to t log t, which dominates the linear t term if t is sufficiently large. However, we will not be
able to observe the effects of this logarithmic term, and we can interpret our results for R(t)2 in
terms of an “effective” diffusion coefficient. No such problem exists for three dimensions. See
Problem prob:md/ztd.)

e. Note that for a finite system, the time difference t cannot be chosen to be too large because the
displacement of a particle is bounded. What is the maximum value of R2(t)?

f. Estimate the accuracy of your determination of D. How sensitive is it to the value of ∆t? How
does this accuracy compare to your estimates of other physical quantities such as the mean
pressure?

g. Compute R(t)2 for an equilibrium configuration corresponding to a harmonic solid. What is
the qualitative behavior of R(t)2?

h. Compute R(t)2 for an equilibrium configuration corresponding to a dilute gas. Is R(t)2 propor-
tional to t for small times? Do the particles diffuse over short time intervals?
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Another physically important single particle property is the velocity autocorrelation function
C(t). Suppose that particle i has velocity vi at time t = 0. If there were no net force on particle i,
its velocity would remain constant. However, its interactions with other particles in the fluid will
change the particle’s velocity, and we expect that after several collisions, its velocity will not be
strongly correlated with its velocity at an earlier time. We define C(t) as

C(t) =
1
v2
0

vi(t) · vi(0), (8.40)

where v2
0 = vi(0) · vi(0) = dkT/m. We have defined C(t) such that C(t = 0) = 1. As in our

discussion of the mean square displacement, the average in (8.40) is over all possible time origins.
Better results would be obtained by averaging over all particles. For large time differences t, we
expect vi(t) to be independent of vi(0), and hence C(t) → 0 for t → ∞. (Note that we have
implicitly assumed that vi(t) = 0.)

It can be shown that the self-diffusion coefficient defined by (8.39) can be related to an integral
of C(t):

D = v2
0

∫ ∞

0

C(t) dt. (8.41)

Other transport coefficients such as the shear viscosity and the thermal conductivity also can be
expressed as a integral over a corresponding autocorrelation function. The qualitative properties
of the velocity autocorrelation function are explored in Problem 8.20.

Problem 8.20. The velocity autocorrelation function

a. Modify your hard disk program so that the velocity of a particular particle is saved at regular
time intervals. Then modify method computeR2 so that you can compute C(t). The following
code might be useful.

for(int timeDifference = 1; timeDifference < maxTimeDifference; timeDifference++)
for(int timeInterval = 0; timeInterval < maxTimeInterval − timeDifference; timeInterval++) {

correl [timeDifference] += vxSave[timeInterval + timeDifference]∗vx[timeInterval];
correl [timeDifference] += vySave[timeInterval + timeDifference]∗vy[timeInterval];
normalization[timeDifference]++;

}

First compute C(t) for a relatively low density system. Plot C(t) versus t and describe its
qualitative behavior. Does it more or less decay exponentially?

b. Increase the density and compute C(t) again. How does the qualitative behavior of C(t) change?
Why does C(t) become negative after a relatively short time?

c.∗ To obtain quantitative results, modify your program so that C(t) is averaged over all particles.
Compute C(t) for time differences in the range 10–40 mean collision times and densities that
are about a factor of two less than maximum close packing. Also choose N > 200. If you
are careful, you will be able to observe that C(t) decays as t−1 for very long time differences.
This long-time tail is due to hydrodynamic effects, that is, part of the velocity of a particle
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is stored in a microscopic vortex that dies off very slowly. The existence of this tail was first
found by simulations and implies that that the self-diffusion constant is not defined in two
dimensions because the integral (8.41) does not exist (the integral diverges for large t). In
three dimensions, C(t) ∼ t−3/2.

d. Compute C(t) for an equilibrium solid. Plot C(t) versus t and describe its qualitative behavior.
Explain your results in terms of the oscillatory motion of the particles about their lattice sites.

e. Contrast the behavior of the mean square displacement, the velocity autocorrelation function,
and the radial distribution function in the solid and fluid phases and explain how these quantities
can be used to indicate the nature of the phase.

8.11 Extensions

The primary goals of this chapter have been to introduce the method of molecular dynamics, some
of the concepts of statistical mechanics and kinetic theory, and the qualitative behavior of systems
of many particles. Although we found that simulations of systems as small as 64 particles show
some of the qualitative properties of macroscopic systems, we would need to simulate larger systems
to obtain quantitative results. Fortunately, most simulations of systems with simple interactions
require only several hundred to several thousand particles to obtain reliable results for equilibrium
quantities such as the equation of state. How do we know if the size of our system is sufficient to
yield quantitative results? The simple answer is to repeat the simulation for larger N . How do
we know if our runs are long enough to give statistically meaningful averages? Again the simple
answer is to run longer and see if the averages change significantly.

In general, the most time consuming parts of a molecular dynamics simulation are generating
an appropriate initial configuration and doing the bookkeeping necessary for the force and energy
calculations. If the force is sufficiently short range, there are a number of ways to reduce the
equilibration time. For example, suppose we want to simulate a system of 864 particles in three
dimensions. We first can simulate a system of 108 particles and allow the small system to come to
equilibrium at the desired temperature. After equilibrium has been established, the small system
can be replicated twice in each direction to generate the desired system of 864 particles. All of
the velocities are reassigned at random using the Maxwell-Boltzmann distribution. Equilibration
of the new system usually is established quickly.

The computer time required for our simple molecular dynamics program is order N2 for each
time step. The reason for this N2 dependence is that the energy and force calculations require
sums over all 1

2N(N − 1) pairs of particles. If the interactions are short range, the time required
for these sums can be reduced to approximately order N . The idea is to take advantage of the fact
that many pairs of particles are separated by a distance much greater than the effective range rc of
the interparticle interaction. For example, if the distance between two particles interacting via the
Lennard-Jones potential is sufficiently large, the magnitude of the potential is so small that it can
be ignored. Popular choices for the cutoff rc are 2.3σ and 2.5σ. The use of a cutoff is equivalent
to assuming that u(r) in (8.2) is given by the usual Lennard-Jones form for r < rc and is zero for
r > rc. However, this use of a cutoff implies that u(r) has a discontinuity at r = rc, which means
that whenever a particle pair “crosses” the cutoff distance, the energy jumps, thus affecting the
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apparent energy conservation. To avoid this problem, it is a good idea to modify the potential so
as to eliminate the discontinuity in both u(r) and the force −du/dr. Hence, we write

umodified(r) = u(r) − u(rc) −
du(r)

dr

∣∣∣∣
r=rc

(r − rc), (8.42)

where u(r) is the usual Lennard-Jones potential.
The use of the interparticle potential ((8.42) to calculate the force and the energy requires

the consideration of only those pairs of particles whose separation is less than rc. Because testing
whether each pair satisfies this criterion is an order N2 calculation, we have to limit the number
of pairs tested. One way is to divide the box into small cells and to compute the distance between
particles that are in the same cell or in nearby cells. Another method is to maintain a list for
each particle of its neighbors whose separation is less than a distance rl, where rl is chosen to be
slightly greater than rc so that the neighbor list can be used for several time steps before it is
updated again. Both the cell method and the neighbor list method do not become efficient until
N is approximately a few hundred.

Usually, the neighbor list leads to fewer particle pairs used in the force calculation than the
cell list. We provide a method to compute the neighbor list below. A more efficient approach is to
use cells to construct the neighbor list.

public void computeNeighborList() {
for(int i = 0; i < N−1; i++) {

numberInList[i] = 0;
for(int j = i+1; j < N; j++) {

double dx = separation(x[i] − x[j],Lx);
double dy = separation(y[i] − y[j],Ly);
double r2 = dx∗dx + dy∗dy;
if (r2 < r2ListCutoff) {

list [ i ][ numberInList[i]] = j ;
numberInList[i]++;

}
}

}
}

To use this list in method computeAcceleration, we replace the for loops by

for (int i = 0; i < N−1; i++) {
for (int k = 0; k < numberInList[i]; k++) {

int j = list [ i ][ k ];
}

}

The idea is to use the same list of neighbors for several time steps (usually 10–20) so that the time
consuming job of updating the list of neighbors does not have to be done too often. The method
computeNeighborList should be called before a particle may have moved a distance equal to the
difference rl − rc. This time depends on the density, the temperature, and rl − rc. For dense
systems a reasonable value for rl is 2.7σ. Simulations of small systems can be used to determine
the time between calls of computeNeighborList.
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Note that in method computeNeighborList only particles j > i are included in list[i]. In
Section 15.10 we will consider Monte Carlo simulations where a particle is chosen at random and
its potential energy of interaction must be computed. In this case we cannot take advantage of
Newton’s third law and a neighbor list must be created for all j that are within a distance rl of i.

∗Problem 8.21. Neighbor lists

a. Simulate a system of N = 64 Lennard-Jones particles in a cell of size 10σ by 10σ at a temperature
T = 2.0. After the system has reached equilibrium, determine the shortest time for any particle
to move a distance equal to 0.2. Use half this time in the rest of the program as the time
between updates of the neighbor list.

b. Run your Lennard-Jones simulation with and without the neighbor list starting from identical
initial configurations. Choose rc = 2.3 and use the modified potential given in (8.42). Calculate
g(r), the pressure, the heat capacity (see Problem 8.8), and the temperature. Make sure your
results are identical. Compare the amount of cpu time with and without the use of the neighbor
list.

c. Repeat part (b) with N = 256, but with the same density and total energy. You can adjust the
total energy by scaling the initial velocities. Increase N until the cpu time for the neighbor list
version is faster.

d. Continue increasing the number of particles by a factor of four, but only use the program with
the neighbor list. Determine the cpu time required for one time step as a function of N .

So far we have discussed molecular dynamics simulations at fixed energy, volume, and number
of particles. Molecular dynamics simulations at fixed temperature are discussed in Project 8.23.
It also is possible to modify the dynamics so as to do molecular dynamics simulations at constant
pressure and to do simulations in which the shape of the cell is determined by the dynamics
rather than imposed by the program. Such a simulation is essential for the study of solid-to-solid
transitions where the major change is the shape of the crystal.

In addition to these technical advances, there is much more to learn about the properties
of the system. For example, how are transport properties such as the viscosity and the thermal
conductivity related to the trajectories? We also have not discussed one of the most fundamental
properties of a many body system, namely, its entropy. In brief, not all macroscopic properties of
a many body system, including the entropy, can be defined as a time average over some function
of the phase space coordinates of the particles (but see Ma). However, changes in the entropy can
be computed by using thermodynamic integration.

The fundamental limitation of molecular dynamics is the existence of multiple time scales. We
must choose the time step ∆t to be smaller than any physical time scale in the system. For a solid,
the smallest time scale is the period of the oscillatory motion of individual particles about their
equilibrium positions. If we want to know how the solid responds to the addition of an interstitial
particle or a vacancy, we would have to run for millions of small time steps for the vacancy to
move several interparticle distances. Although this particular problem can be overcome by using
a faster computer, there are many problems for which no imaginable supercomputer would be
sufficient. One of the biggest current challenges is the protein folding problem. The biological
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function of a protein is determined by its three-dimensional structure which is encoded by the
sequence of amino acids in the protein. At present, we know little about how the protein forms its
three-dimensional structure. Such formidable computational challenges remind us that we cannot
simply put a problem on a computer and let the computer tell us the answer. In particular,
molecular dynamics methods need to be complemented by other simulation methods, especially
Monte Carlo methods (see Chapter 15).

The emphasis in current applications of molecular dynamics is shifting from studies of simple
equilibrium fluids to studies of more complex fluids and nonequilibrium systems. For example,
how does a solid form when the temperature of a liquid is lowered quickly? How does a crack
propagate in a brittle solid? What is the nature of the glass transition? Molecular dynamics and
related methods will play an important role in aiding our understanding of these and many other
problems.

8.12 Projects

Many of the pioneering applications of molecular dynamics were done on relatively small systems.
It is interesting to peruse the research literature of the past three decades and to see how much
physical insight was obtained from these simulations. Many research-level problems can be gener-
ated by first reproducing previously published work and then extending the work to larger systems
or longer run times to obtain better statistics. Many related projects are discussed in Chapter 15.

Project 8.22. Single particle metrics and ergodic behavior
As mentioned in Section 8.7, the quasi-ergodic hypothesis assumes that time averages and ensemble
averages are identical for a system in thermodynamic equilibrium. The assumption is that if we
run a molecular dynamics simulation for a sufficiently long time, then the dynamical trajectory
will fill the accessible phase space.

One way to confirm the quasi-ergodic hypothesis is to compute an ensemble average by sim-
ulating many independent copies of the system of interest using different initial configurations.
Another way is to simulate a very large system and compare the behavior of different parts. A
more direct measure of ergodicity has been proposed by Thirumalai and Mountain and is based
on a comparison of the time averaged quantity fi(t) of fi for particle i to its average for all other
particles. If the system is ergodic, then all particles see the same average environment, and the
time average fi(t) for each particle will be the same if t is sufficiently long. Note that fi(t) is the
average of the quantity fi over the time interval t and not the value of fi at time t. The time
average of fi is defined as

fi(t) =
1
t

∫ t

0

f(t′) dt′, (8.43)

and the average of fi(t) over all particles is given by

〈f(t)〉 =
1
N

N∑
i=1

fi(t). (8.44)
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One of the physical quantities of interest is the energy of a particle, ei, defined as

ei =
p2

i

2mi
+

1
2

∑
i �=j

u(rij). (8.45)

The factor of 1/2 is included in the potential energy term in (8.45) because the interaction energy
is shared between pairs of particles. The above considerations lead us to define the energy metric,
Ωe(t), as

Ωe(t) =
1
N

N∑
i=1

[
ei(t) − 〈e(t)〉

]2

. (8.46)

a. Compute Ωe(t) for a system of Lennard-Jones particles at a relatively high temperature. Deter-
mine ei(t) at time intervals of 0.5 or less and average Ωe over as many time origins as possible. If
the system is ergodic over the time interval t, then it can be shown that Ωe(t) decreases as 1/t.
Plot 1/Ωe(t) versus t. Do you find that 1/Ωe(t) eventually behaves linearly with t? Nonergodic
behavior might be found by rapidly reducing the kinetic energy (a temperature quench) and
obtaining an amorphous solid or glass rather than a crystalline solid. However, it would be
necessary to consider three-dimensional rather than two-dimensional systems because the latter
system forms a crystalline solid very quickly.

b. Another quantity of interest is the velocity metric Ωv:

Ωv(t) =
1

dN

N∑
i=1

[
vi(t) − 〈v(t)〉

]2
. (8.47)

The factor of 1/d in (8.47) is included because the velocity is a vector with d components. If we
choose the total momentum of the system to be zero, then 〈v(t)〉 = 0, and we can write (8.47)
as

Ωv(t) =
1

dN

N∑
i=1

vi(t) · vi(t). (8.48)

As we will see, the time dependence of Ωv(t) is not a good indicator of ergodicity, but can be
used to determine the diffusion coefficient D. We write

vi(t) =
1
t

∫ t

0

vi(t′) dt′ =
1
t

[
ri(t) − ri(0)

]
. (8.49)

If we substitute (8.49) into (8.48), we can express the velocity metric in terms of the mean
square displacement:

Ωv(t) =
1

dNt2

N∑
i=1

[
ri(t) − ri(0)

]2 =
R2(t)
d t2

. (8.50)
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The average in (8.50) is over all particles. If the particles are diffusing during the time interval
t, then R2(t) = 2dDt, and

Ωv(t) = 2D/t. (8.51)

From (8.51) we see that Ωv(t) goes to zero as 1/t as claimed in part (a). However, if the
particles are localized (as in a crystalline solid and a glass), then R2 is bounded for all t, and
Ωv(t) ∼ 1/t2. Because a crystalline solid is ergodic and a glass is not, the velocity metric is not
a good measure of the lack of ergodicity. Use the t dependence of Ωv(t) in (8.51) to determine
D for the same configurations as in Problem 8.19.

Project 8.23. Constant temperature molecular dynamics
In the molecular dynamics simulations we have discussed so far the energy is constant up to
truncation and floating point errors, and the temperature fluctuates. However, sometimes it is
more convenient to do simulations at constant temperature. In Chapter 15 we will see how to
simulate systems at constant T , V , and N (the canonical ensemble) by using Monte Carlo methods.
However, we can also do constant temperature simulations by modifying the dynamics.

A crude way of maintaining a constant temperature is to rescale the velocities after every
time step to keep the mean kinetic energy per particle constant. This approach is equivalent to a
constant temperature simulation when N → ∞. However, the fluctuations of the kinetic energy
can be non-negligible in small systems. For such systems keeping the total kinetic energy constant
in this way is not equivalent to a constant temperature simulation.

One better way of maintaining a constant temperature is based on imagining that the system
is connected to a much larger system called a heat bath. The heat bath is sufficiently large so that
it has a constant temperature even if it loses or gains energy. The particles in the system of interest
occasionally collide with particles in this heat bath. The effect of these collisions is to give the
particles random velocities with the desired probability distribution (see Problem 8.6). We first
list the algorithm and give its rationale later. Add the following statements to method step after
all the particles have been moved.

Listing 8.22: Andersen thermostat.
for (int i = 0; i < N; i++) {

if (Math.random() < collisionProbability) {
double r1 = Math.random();
double r2 = Math.random()∗2.0∗Math.PI;
state[4∗ i+1] = Math.sqrt(−2.0∗temperature∗Math.log(r1))∗Math.cos(r2); // vx
state[4∗ i+3] = Math.sqrt(−2.0∗temperature∗Math.log(r1))∗Math.sin(r2); // vy

}
}

The parameter collisionProbability is much less than unity and determines how often there
is a collision with the heat bath. This way of maintaining constant temperature is known as the
Anderson thermostat.

a. Do a constant energy simulation as before, using an initial configuration for which the desired
temperature is equal to 1.0. Make sure the total momentum is zero. Choose N = 64 and
place the particles initially on a triangular lattice with Lx = 10 and Ly =

√
3Lx/2. Plot the
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instantaneous temperature defined as in (8.5) and compute the average temperature. Estimate
the magnitude of the temperature fluctuations. Repeat your simulation for some other initial
configurations.

b. Modify your program to use the Anderson thermostat at a constant temperature set equal to
1.0. Set collisionProbability = 0.0001. Repeat the calculations of part (a) and compare
them. Discuss the differences. Do the results change significantly?

c. Modify your program to do a simple constant kinetic energy ensemble where the velocities are
rescaled after every time step so that the total kinetic energy does not change. What is the final
temperature now? How do your results compare with parts (a) and (b)? Are the differences in
the computed thermodynamic averages statistically significant?

d. Compute the velocity probability distribution for each case. How do they compare? Consider
collisionProbability = 0.001 and 0.00001.

e. A deterministic algorithm for constant temperature molecular dynamics is the Nosé-Hoover
thermostat. The idea is to introduce an additional degree of freedom s that plays the role of
the heat bath. The derivation of the appropriate equations of motion is an excellent example of
the Lagrangian formulation of mechanics. The equations of motion of Nosé-Hoover dynamics
are

dpi

dt
= Fi(t) − spi (8.52)

ds

dt
=

1
M

[∑
i

p2
i

mi
− dNkT

]
, (8.53)

where T is the desired temperature and M is a parameter that can be interpreted as the mass
associated with the extra degree of freedom. Equation (8.52) is similar to Newton’s equations of
motion with an additional friction term. However, the coefficient s can be positive or negative.
Equation (8.53) defines the way s is changed to control the temperature. It is important to
choose M so that it is neither too small nor too big. Apply the Nosé-Hoover algorithm to
simulate a simple harmonic oscillator at constant temperature.

Project 8.24. Simulations on the surface of a sphere
Because of the long-range nature of the Coulomb potential, we have to sum all the periodic images
of the particles to compute the force on a given particle. Although there are special methods to
do these sums so that they converge quickly (Ewald sums), the simulation of systems of charged
particles is more difficult than systems with short-range potentials. An alternative approach that
avoids periodic boundary conditions is to not have any boundaries at all. For example, if we wish
to simulate a two-dimensional system, we can consider the motion of the particles on the surface
of a sphere. If the radius of the sphere is sufficiently large, the curvature of the surface can be
neglected. Of course, there is a price – the coordinate system is no longer Cartesian.

Although this approach also can be applied to systems with short-range interactions, it is more
interesting to apply it to charged particles. The simplest system of interest is a model of charged
particles moving in a uniform background of opposite charge to ensure overall charge neutrality (the
one-component plasma (OCP)). In two dimensions this system is a simplified model of electrons
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on the surface of liquid Helium. The properties of the OCP are determined by the dimensionless
parameter Γ given by the ratio of the potential energy between nearest neighbor particles to the
mean kinetic energy of a particle, Γ = (e2/a)/kT , where ρπa2 = 1 and ρ is the number density.
Systems with Γ >> 1 are called strongly coupled. For Γ ∼ 100 in two dimensions, the system
forms a solid. Strongly coupled one-component plasmas in three dimensions are models of dense
astrophysical matter.

Assume that the origin of the coordinate system is at the center of the sphere and that ui is
a unit vector from the origin to the position of particle i on the sphere. Then Rθij is the length of
the chord joining particle i and j, where cos θij = ui · uj . Then Newton’s equation of motion for
the ith electron has the form

müi = − e2

R2

∑
j �=i

1
θ2

ij sin θij
[uj − (cos θijui]. (8.54)

Note that the unit vector wij = [uj − (cos ψijui]/ sin θij is orthogonal to ui. In addition, we must
take into account that the particles must stay on the surface of the sphere, so there is an additional
force on particle i toward the center of magnitude m|u̇i|2/R.

a. What are the appropriate units for length, time, and the self-diffusion constant?

b. Write a program to compute the velocity correlation function given by

C(t) =
1
v2
0

u̇(t) · u̇(0), (8.55)

where v2
0 = u(0) · u(0). To compute the self-difusion constant D, we let cos θ(t) = u(t) · u(0),

so that Rθ is the circular arc from the initial position of a particle to its position on the sphere
at time t. We then define

D(t) =
1
a2

θ2(t)
4t

, (8.56)

where D and t are dimensionless variables. The self-diffusion constant D corresponds to the
limit t → ∞. Choose N = 104 and a radius R corresponding to Γ ≈ 36 as in the original
simulations by Hansen et al., and then consider bigger systems. Can you conclude that the
self-diffusion exists for the two-dimensional OCP?

c. Use a similar procedure to compute the velocity autocorrelation function and the self-difusion
constant D for a two-dimensional system of Lennard-Jones particles. Can you conclude that
the self-diffusion exists for this two-dimensional system?

Project 8.25. Granular matter
Recently, physicists have become very interested in granular matter such as sand. The key dif-
ference between molecular systems and granular systems is that the inter-particle interactions in
the latter are inelastic. The lost energy goes into the internal degrees of freedom of a grain, and
ultimately is dissipated. From the point of view of the motion of the granular particles, the energy
is lost. Experimentalists have studied models of granular material composed of small steel balls
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or glass beads, using sophisticated imaging techniques that can track the motion of individual
particles. There also have been many computer simulation studies.

What are some of the interesting properties of granular matter? Because the interactions
are inelastic, granular particles will ultimately come to rest unless there is an external source of
energy, usually a vibrating wall or gravity (for example, the fall of particles through a funnel).
When granular particles come to rest, they can form a granular solid which is different than
molecular solids. One difference is that there frequently exists a complex network of force lines
within the solid. In addition, unlike ordinary liquids, the pressure does not increase with depth
because the walls of the container help support the grains. As a consequence, sand flowing out of
an aperture flows at a constant rate independent of the height of the sand above the aperture. For
this reason sand is used in hour glasses. Another interesting property is that under some conditions
the large grains in a mixture of large and small grains can move to the top while the container is
being vibrated – the “Brazil nut” effect. Under other conditions the large grains might move to
the bottom. What happens depends on the size and density of the large grains compared to the
small grains (see Sanders et al.).

It also is well known that there is a critical angle for the slope of a sand pile, above which the
sand pile is unstable. This slope is called the angle of repose. These and many other effects have
been studied using theoretical, computational, and experimental techniques.

The first step in simulating granular matter is to determine the effective force law between
particles. For granular gases the details of the force do not influence the qualitative results, as
long as the force is purely repulsive and short range, and there is some mechanism for dissipating
energy. Common examples of force laws are spring-like forces with stiff spring constants and hard
core particles with a frictional force upon contact. For simplicity, we will consider the Lennard-
Jones potential with a cut off at rc = 21/6σ so that the force is always repulsive. To remove energy
during a collision, we will use a viscous damping force given by

fij = −γ(vij · rij)
rij

r2
ii

, (8.57)

where the viscous damping coefficient γ = 100 in reduced units. A more realistic force model
necessary for granular flow problems is given by Hirchfeld et al.

a. Modify class LJParticles so that the cutoff is at 21/6σ. Is the total energy conserved. If not,
why?

b. Include a viscous damping force (proportional to v) and plot the kinetic energy per particle
versus time. Choose N = 64, Lx = Ly = 20, and ∆t = 0.001. We will define the kinetic
temperature to be the mean kinetic energy per particle. Why does this definition of temperature
not have the same significance as the temperature in molecular systems in which the energy is
conserved? Begin with a random configuration and initial kinetic temperature equal to 10. How
long does it take for the kinetic temperature to decrease to 10% of its initial value? Describe
the spatial distribution of the particles at this time.

c. Obtain the kinetic energy versus time averaged over three runs, and plot the kinetic energy per
particle versus time. What functional form describes your results at long times?
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d. To prevent “granular collapse” where the particles ultimately come to rest, we need to add
energy to the system. The simplest way of doing so is to give random kicks to randomly selected
particles. You can use the same algorithm we used to set the initial velocities in LJParticles:

int i = (int)(N∗math.random()) // selects random particle
double r = Math.random(); // use to generate Gaussian distribution
double a = −Math.log(r);
double theta = 2.0∗Math.PI∗Math.random();
// assign velocities according to Maxwell−Boltzmann distribution using Box−Muller method
state[4∗ i+1] = Math.sqrt(2.0∗desiredKE∗a)∗Math.cos(theta); // vx
state[4∗ i+3] = Math.sqrt(2.0∗desiredKE∗a)∗Math.sin(theta); // vy

Assume that at each time step one particle is chosen at random and receives a random kick.
Adjust desiredKE so that the mean kinetic energy per particle remains roughly constant at
about 5.0. Compute the velocity distribution function for each component of the velocity.
Compare this distribution on the same plot to the Gaussian distribution

p(vx) =
1√

2πσ2
e−(vx−〈vx〉)2/2σ2

, (8.58)

where σ2 = 〈v2
x〉 − 〈vx〉2. Is the velocity distribution function of the system a Gaussian? If not,

give a physical explanation for the difference.

Appendix: Reading and Saving Configurations

For most of the problems in this chapter qualitative results can be obtained fairly quickly, and
we need not obtain quantitative results. However, in research applications the time for running a
simulation is likely to be much longer than a few minutes and runs that require days or even months
are not uncommon. In such cases it is important to be able to save the intermediate configurations
to prevent the potential loss of data in the case of a computer crash or power failure.

Also, in many cases it is easier to save the configurations periodically and then use a separate
program to analyze the configurations and compute the quantities of interest. In addition, if we
wish to compute averages as a function of a parameter such as the temperature, it is convenient
to make small changes in the temperature and use the last configuration from the previous run as
the initial configuration for the simulation at the new temperature.

The standard Java API has methods for reading and writing files. The usual way of saving a
configuration is to use these methods to write all the positions and velocities simply as numbers
into a file. Additional simulation parameters and information about configuration would be saved
using a custom format. Although this approach is the traditional one for data storage, the use of
a custom format means that you might not remember the format later and sharing data between
programs and other users becomes more difficult.

An alternative is to use a more structured and widely shared format for storing data. The
Open Source Physics library has support for Extensive Markup Language (XML). The XML format
offers a number of advantages for computational physics: clear markup of input data and results,
standardized data formats, and easier exchange and archival stability of data. In simple terms the
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main advantage of XML is that it is a human readable format; just by looking at an XML file you
can get an idea of the nature of the data.

The XML classes in the Open Source Physics library can be understood by the XMLExampleApp
example which we will now descibe. The XML API is very similar to the control API. For example,
we use setValue to add data to an XML control, and we use getInt, getDouble, and getString to
read data. We start by importing the necessary definitions from the controls package and defining
the main method for the ExampleXMLApp class. Note that XMLControl defines an interface and
XMLControlElement defines an implementation of this interface.

import org.opensourcephysics.controls.XMLControl;
import org.opensourcephysics.controls.XMLControlElement;

public class ExampleXMLApp {
public static void main(String[] args) {
...

}

The following Java statements are placed in the body of the main method. An empty XML
document is created using an XMLControl object by calling the XMLControlElement constructor
without any parameters.

XMLControl xmlOut = new XMLControlElement();

Invoking the control’s setValue method creates an XML element consisting of a tag and and a
data value. The tag is the first parameter and the data to be stored is the second. Data that can
be stored includes numbers, number arrays, and strings. Because the tag is unique, the data can
later be retrieved from the control using the appropriate get method.

xmlOut.setValue(”comment”, ”An XML description of an array.”);
xmlOut.setValue(”x positions”, new double[]{1,3,4});
xmlOut.setValue(”x velocities” , new double[]{0,−1,1});

Once the data has been stored in an XMLControl object, it can be exported to a file by calling the
write method. In this example, the name of the file is MDconfiguration.xml.

xmlOut.write(”MDconfiguration.xml”);

An XMLControl also can be used to read XML data from a file. In the next example, we will
read from the file that we just saved. We start by instantiating a new XMLControl named xmlIn.

XMLControl xmlIn = new XMLControlElement(”particle configuration.xml”);

The new XMLControl object, xmlIn, contains the same data as the object we saved, xmlOut. Its
data can be accessed using a tag name. Note that the getObject method returns a generic Object
and must be cast to the appropriate data type.

System.out.println(xmlIn.getString(”comment”));
double[] xPos = (double[])xmlIn.getObject(”x positions”);
double[] xVel = (double[])xmlIn.getObject(”x velocities”);
for(int i = 0; i < xPos.length; i++) {

System.out.println(”x[ i ] = ” + xPos[i] +” vx[i ] = ” + xVel[i ]);
}
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Exercise 8.26. Saving xml data

a. Combine the above statements to create a working XMLControlApp class. Examine the saved
data using a text editor. Describe how the parameters are stored.

b. Run HardDisksApp and save the control’s configuration using the Save As item under the file
menu in the toolbar. Examine the saved file using a text editor and describe how this file is
different from the previous file.

c. What is the minimum amount of information that must be stored in a configuration file to
specify the current HardDisks state?

d. Add custom buttons to HardDisksApp to store and load the current HardDisks state. Test
your code by showing that quantities, such as temperature, remain the same if a configuration
is stored and reloaded.

OSP user interfaces, such as a SimulationControl, store a program’s configuration in two
steps. During the first step, parameters from the graphical user interface are stored. During
the second step, the model is given the opportunity to store runtime data using an ObjectLoader.
Study the LJParticlesLoader class and note how storing and loading are done in the saveObject
and loadObject methods, respectively. You will adapt this ObjectLoader to store HardDisks
data in Problem 8.27. Additional information about how OSP applications store XML-based
configurations is provided in the Open Source Physics Guide.

Problem 8.27. Hard disk configuration

a. Create a HardDisksLoader class that stores the HardDisks runtime data.

b. Add the getLoader method to HardDisksApp and test the loader.

public static XML.ObjectLoader getLoader() {
return new HardDisksLoader();

}

This method allows the SimulationControl to obtain a HardDisksLoader, which will be used
to store the runtime data. Data written by the loader’s saveObject method will be included
in the output file when the user saves a program configuration. Describe how the initialization
parameters and the runtime data are separated in the XML file.

Because XML allows for the creation of custom tags, various companies and professional orga-
nizations have defined other XML grammars such as MathML. See <http://xml.comp-phys.org/>
for another example of the use of XML in computational physics.
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