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We study simple nonlinear deterministic models that exhibit chaotic behavior. We will find that
the use of the computer to do numerical experiments will help us gain insight into the nature of
chaos.

6.1 Introduction

Most natural phenomena are intrinsically nonlinear. Weather patterns and the turbulent motion
of fluids are everyday examples. Although we have explored some of the properties of nonlinear
systems in Chapter 4, it is easier to introduce some of the important concepts in the context of
ecology. Our first goal will be to motivate and analyze the one-dimensional difference equation

xn+1 = 4rxn(1 − xn), (6.1)

where xn is the ratio of the population in the nth generation to a reference population. We shall see
that the dynamical properties of (6.1) are surprisingly intricate and have important implications
for the development of a more general description of nonlinear phenomena. The significance of the
behavior of (6.1) is indicated by the following quote from the ecologist Robert May:

“Its study does not involve as much conceptual sophistication as does elementary calculus.
Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in
research but also in the everyday world of politics and economics we would all be better off if
more people realized that simple nonlinear systems do not necessarily possess simple dynamical
properties.”

The study of chaos is of much current interest, but the phenomena is not new and has been
of interest, particularly to astronomers and mathematicians, for over one hundred years. Much of
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the current interest is due to the use of the computer as a tool for making empirical observations.
We will use the computer in this spirit.

6.2 A Simple One-Dimensional Map

Many biological populations effectively consist of a single generation with no overlap between
successive generations. Imagine an island with an insect population that breeds in the summer
and leaves eggs that hatch the following spring. Because the population growth occurs at discrete
times, it is appropriate to model the population growth by a difference equation rather than
by a differential equation. A simple model of population growth that relates the population in
generation n + 1 to the population in generation n is given by

Pn+1 = aPn, (6.2)

where Pn is the population in generation n and a is a constant. In the following, we assume that
the time interval between generations is unity, and will refer to n as the time.

If a > 1, each generation will be a times larger than the previous one. In this case (6.2)
leads to geometrical growth and an unbounded population. Although the unbounded nature of
geometrical growth is clear, it is remarkable that most of us do not integrate our understanding
of geometrical growth into our everyday lives. Can a bank pay 4% interest each year indefinitely?
Can the world’s human population grow at a constant rate forever?

It is natural to formulate a more realistic model in which the population is bounded by the
finite carrying capacity of its environment. A simple model of density-dependent growth is

Pn+1 = Pn(a − bPn). (6.3)

Equation (6.3) is nonlinear due to the presence of the quadratic term in Pn. The linear term
represents the natural growth of the population; the quadratic term represents a reduction of this
natural growth caused, for example, by overcrowding or by the spread of disease.

It is convenient to rescale the population by letting Pn = (a/b)xn and rewriting (6.3) as

xn+1 = axn(1 − xn). (6.4)

The replacement of Pn by xn changes the units used to define the various parameters. To write
(6.4) in the form (6.1), we define the parameter r = a/4 and obtain

xn+1 = f(xn) = 4rxn(1 − xn). (6.5)

The rescaled form (6.5) has the desirable feature that its dynamics are determined by a single
control parameter r. Note that if xn > 1, xn+1 will be negative. To avoid this unphysical feature,
we impose the conditions that x is restricted to the interval 0 ≤ x ≤ 1 and 0 < r ≤ 1. Because
the function f(x) defined in (6.5) transforms any point on the one-dimensional interval [0, 1] into
another point in the same interval, the function f is called a one-dimensional map. The form of
f(x) in (6.5) is known as the logistic map. The logistic map is a simple example of a dynamical
system, that is, the map is a deterministic, mathematical prescription for finding the future state
of a system given its present state.
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The sequence of values x0, x1, x2, . . . is called the trajectory. To check your understanding,
suppose that the initial value of x0 or seed is x0 = 0.5 and r = 0.2. Do a calculation to show that
the trajectory is x1 = 0.2, x2 = 0.128, x3 = 0.089293, . . . The first thirty iterations of (6.5) are
shown for two values of r in Figure 6.1.
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Figure 6.1: (a) The trajectory of x for r = 0.2 and x0 = 0.6. Note that the stable fixed point is
x = 0. (b) The trajectory for r = 0.7 and x0 = 0.1. Note the initial transient behavior. The lines
between the points are a guide to the eye.

The class IterateMapApp computes the trajectory of the logistic map in (6.5). Note that we
have extended the AbstractCalculation class, which is appropriate because many of the results
of Sections 6.1–6.4 were discovered using a programmable calculator.

Listing 6.1: The IterateMapApp program iterates the logistic map and plots the resulting trajec-
tory.

package org.opensourcephysics.sip.ch06;
import org.opensourcephysics.controls.AbstractCalculation;
import org.opensourcephysics.controls.CalculationControl;
import org.opensourcephysics.frames.PlotFrame;

public class IterateMapApp extends AbstractCalculation {
int datasetIndex = −1;
PlotFrame plotFrame = new PlotFrame(”iterations”, ”x”, ”trajectory”);
public IterateMapApp() {

plotFrame.setMarkerSize(1, 1);
}

public void reset() {
plotFrame.clearData();
plotFrame.repaint();
control .setValue(”r” , 0.2);
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control .setValue(”x” , 0.6);
control .setValue(” iterations ” , 50);

}

public void calculate() {
double r = control.getDouble(”r”);
double x = control.getDouble(”x”);
int iterations = control . getInt(” iterations ”);
datasetIndex++;
for(int i = 0;i<=iterations;i++) {

plotFrame.append(datasetIndex, i, x);
x = map(r, x);

}
}

double map(double r, double x) {
return 4∗r∗x∗(1−x); // iterate map

}

public static void main(String[] args) {
CalculationControl.createApp(new IterateMapApp());

}
}

In Problems 6.1 and 6.3 we use IterateMapApp to explore the dynamical properties of the logistic
map.

Problem 6.1. Exploration of period-doubling

a. Explore the dynamical behavior of (6.5) with r = 0.24 for different values of x0. Show that
x = 0 is a stable fixed point. That is, the iterated values of x converge to x = 0 independently
of the value of x0. If x represents the population of insects, describe the qualitative behavior of
the population.

b. Explore the dynamical behavior of (6.5) for r = 0.26, 0.5, 0.74, and 0.748. A fixed point is
unstable if for almost all values of x0 near the fixed point, the trajectories diverge from it.
Verify that x = 0 is an unstable fixed point for r > 0.25. Show that for the suggested values
of r, the iterated values of x do not change after an initial transient, that is, the long time
dynamical behavior is period 1. In Appendix 6A we show that for r < 3/4 and for x0 in the
interval 0 < x0 < 1, the trajectories approach the stable attractor at x = 1 − 1/4r. The set of
initial points that iterate to the attractor is called the basin of the attractor. For the logistic
map, the interval 0 < x < 1 is the basin of attraction of the attractor x = 1 − 1/4r.

c. Explore the dynamical properties of (6.5) for r = 0.752, 0.76, 0.8, and 0.862. For r = 0.752
and 0.862 approximately 1000 iterations are necessary to obtain convergent results. Show that
if r is increased slightly beyond 0.75, x oscillates between two values after an initial transient
behavior. That is, instead of a stable cycle of period 1 corresponding to one fixed point, the
system has a stable cycle of period 2. The value of r at which the single fixed point x∗ splits or
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bifurcates into two values x1
∗ and x2

∗ is r = b1 = 3/4. The pair of x values, x1
∗ and x2

∗, form
a stable attractor of period 2.

d. What are the stable attractors of (6.5) for r = 0.863 and 0.88? What is the corresponding
period?

e. What are the stable attractors and corresponding periods for r = 0.89, 0.891, and 0.8922?
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Figure 6.2: Bifurcation diagram of the logistic map. For each value of r, the iterated values of
xn are plotted after the first 1000 iterations are discarded. Note the transition from periodic to
chaotic behavior and the narrow windows of periodic behavior within the region of chaos.

Another way to determine the behavior of (6.5) is to plot the values of x as a function of r (see
Figure 6.2). The iterated values of x are plotted after the initial transient behavior is discarded.
Such a plot is generated by BifurcateApp. For each value of r, the first ntransient values of x are
computed but not plotted. Then the next nplot values of x are plotted, with the first half in one
color and the second half in another. Why? This process is repeated for a new value of r until the
desired range of r values is reached. A typical value of ntransient should be in the range of 100–
1000 iterations. The magnitude of nplot should be at least as large as the longest period that you
wish to observe. BifurcateApp extends AbstractSimulation rather than AbstractCalculation
because the calculations can become time consuming, and hence you might want to stop them
before they are finished and reset some of the parameters.
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Listing 6.2: The BifurcateApp program generates a bifurcation plot of the logistic map.
package org.opensourcephysics.sip.ch06;
import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;
import org.opensourcephysics.frames.PlotFrame;

public class BifurcateApp extends AbstractSimulation {
double r; // control parameter
double dr; // incremental change of r , suggest dr <= 0.01
int ntransient ; // number of iterations not plotted
int nplot ; // number of iterations plotted
PlotFrame plotFrame = new PlotFrame(”r”, ”x”, ”Bifurcation diagram”);
public BifurcateApp() {

plotFrame.setMarkerSize(0, 0); // small size gives better resolution
plotFrame.setMarkerSize(1, 0);

}

public void initialize () {
plotFrame.clearData();
r = control .getDouble(” initial r”);
dr = control.getDouble(”dr”);
ntransient = control . getInt(”ntransient”);
nplot = control. getInt(”nplot”);

}

public void doStep() {
if (r<1.0) {

double x = 0.5;
for(int i = 0;i<ntransient;i++) { // x values not plotted

x = map(x, r);
}
for(int i = 0;i<nplot/2;i++) { // plot half the points in dataset zero

x = map(x, r);
plotFrame.append(0, r, x); // show different x−values for given value of r

}
for(int i = nplot/2+1;i<nplot;i++) { // plot remaining points in dataset one

x = map(x, r);
plotFrame.append(1, r, x); // dataset one has a new color
i++;

}
r += dr;

}
}

public void reset() {
control .setValue(” initial r” , 0.2);
control .setValue(”dr” , 0.005);
control .setValue(”ntransient” , 200);
control .setValue(”nplot” , 50);
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}

double map(double x, double r) {
return 4∗r∗x∗(1−x);

}

public static void main(String[] args) {
SimulationControl.createApp(new BifurcateApp());

}
}

Problem 6.2. Qualitative features of the logistic map

a. Use BifurcateApp to identify period 2, period 4, and period 8 behavior as can be seen in
Figure 6.2. It might be necessary to “zoom in” on a portion of the plot. How many period-
doublings can you find?

b. Change the scale so that you can follow the iterations of x from period 4 to period 16 behavior.
How does the plot look on this scale in comparison to the original scale?

c. Describe the shape of the trajectory near the bifurcations from period 2 → period 4, period 4
→ 8, etc. These bifurcations are frequently called pitchfork bifurcations .

The bifurcation diagram in Figure 6.2 indicates that the period-doubling behavior ends at
r ≈ 0.892. This value of r is known very precisely and is given by r = r∞ = 0.892486417967 . . .
At r = r∞, the sequence of period-doublings accumulate to a trajectory of infinite period. In
Problem 6.3 we explore the behavior of the trajectories for r > r∞.

Problem 6.3. Chaotic behavior

a. For r > r∞, two initial conditions that are very close to one another can yield very different
trajectories after a small number of iterations. As an example, choose r = 0.91 and consider
x0 = 0.5 and 0.5001. How many iterations are necessary for the iterated values of x to differ by
more than ten percent? What happens for r = 0.88 for the same choice of seeds?

b. The accuracy of floating point numbers retained on a digital computer is finite. To test the
effect of the finite accuracy of your computer, choose r = 0.91 and x0 = 0.5 and compute
the trajectory for 200 iterations. Then modify your program so that after each iteration, the
operation x = x/10 is followed by x = 10*x. This combination of operations truncates the last
digit that your computer retains. Compute the trajectory again and compare your results. Do
you find the same discrepancy for r < r∞?

c. What are the dynamical properties for r = 0.958? Can you find other windows of periodic
behavior in the interval r∞ < r < 1?
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6.3 Period-Doubling

The results of the numerical experiments that we did in Section 6.2 probably have convinced you
that the dynamical properties of a simple nonlinear deterministic system can be quite complicated.

To gain more insight into how the dynamical behavior depends on r, we introduce a simple
graphical method for iterating (6.5). In Figure 6.3 we show a graph of f(x) versus x for r = 0.7. A
diagonal line corresponding to y = x intersects the curve y = f(x) at the two fixed points x∗ = 0
and x∗ = 9/14 ≈ 0.642857 (see (6.6b)). If x0 is not fixed point, we can find the trajectory in the
following way. Draw a vertical line from (x = x0, y = 0) to the intersection with the curve y = f(x)
at (x0, y0 = f(x0)). Next draw a horizontal line from (x0, y0) to the intersection with the diagonal
line at (y0, y0). On this diagonal line y = x, and hence the value of x at this intersection is the first
iteration x1 = y0. The second iteration x2 can be found in the same way. From the point (x1, y0),
draw a vertical line to the intersection with the curve y = f(x). Keep y fixed at y = y1 = f(x1),
and draw a horizontal line until it intersects the diagonal line; the value of x at this intersection is
x2. Further iterations can be found by repeating this process.
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Figure 6.3: Graphical representation of the iteration of the logistic map (6.5) with r = 0.7 and
x0 = 0.9. Note that the graphical solution converges to the fixed point x∗ ≈ 0.643.

This graphical method is illustrated in Figure 6.3 for r = 0.7 and x0 = 0.9. If we begin with
any x0 (except x0 = 0 and x0 = 1), the iterations will converge to the fixed point x∗ ≈ 0.643.
Repeat the procedure shown in Figure 6.3 by hand and convince yourself that you understand the
nature of the graphical solution of the iterated values of the map. For this value of r, the fixed
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point is stable (an attractor of period 1). In contrast, no matter how close x0 is to the fixed point
at x = 0, the iterates diverge away from it, and this fixed point is unstable.

How can we explain the qualitative difference between the fixed point at x = 0 and at x∗ =
0.642857 for r = 0.7? We know that the local slope of the curve y = f(x) determines the distance
moved horizontally each time f is iterated. A slope steeper than 45◦ leads to a value of x further
away from its initial value. Hence, the criterion for the stability of a fixed point is that the
magnitude of the slope at the fixed point must be less than 45◦. That is, if |df(x)/dx|x=x∗ is less
than unity, then x∗ is stable; conversely, if |df(x)/dx|x=x∗ is greater than unity, then x∗ is unstable.
An inspection of f(x) in Figure 6.3 shows that x = 0 is unstable because the slope of f(x) at x = 0
is greater than unity. In contrast, the magnitude of the slope of f(x) at x = x∗ ≈ 0.643 is less
than unity and this fixed point is stable. In Appendix 6A, we use similar analytical arguments to
show that

x∗ = 0 is stable for 0 < r < 1/4, (6.6a)

and

x∗ = 1 − 1
4r

is stable for 1/4 < r < 3/4. (6.6b)

Thus for 0 < r < 3/4, the eventual behavior after many iterations is known.
What happens if r is greater than 3/4? We found in Section 6.2 that if r is slightly greater

than 3/4, the fixed point of f becomes unstable and gives birth (bifurcates) to a cycle of period 2.
Now x returns to the same value only after every second iteration, and the fixed points of f

(
f(x)

)
are the stable attractors of f(x). In the following, we write f (2)(x) = f

(
f(x)

)
and f (n)(x) for the

nth iterate of f(x). (Do not confuse f (n)(x) with the nth derivative of f(x).) For example, the
second iterate f (2)(x) is given by the fourth-order polynomial:

f (2)(x) = 4r[4rx(1 − x)] − 4r[4rx(1 − x)]2

= 4r[4rx(1 − x)]
[
1 − 4rx(1 − x)

]
= 16r2x

[
− 4rx3 + 8rx2 − (1 + 4r)x + 1

]
. (6.7)

What happens if we increase r still further? Eventually the magnitude of the slope of the
fixed points of f (2)(x) exceeds unity and the fixed points of f (2)(x) become unstable. Now the
cycle of f is period 4, and we can study the stability of the fixed points of the fourth iterate
f (4)(x) = f (2)

(
f (2)(x)

)
= f

(
f
(
f(f(x)

))
. These fixed points also eventually bifurcate, and we are

led to the phenomena of period-doubling that we observed in Problem 6.2.
GraphicalSolutionApp implements the graphical analysis of f(x). The nth order iterates

are defined in f(x,r,iterate) a recursive method. (The quantity iterate is 1, 2, and 4 for
the functions f(x), f (2)(x), and f (4)(x) respectively.) Recursion is an idea that is simple once
you understand it, but it can be difficult to grasp the idea initially. One way to understand how
recursion works is to think of a stack, such as a stack of trays in a cafeteria. The first time a
recursive function is called, the function is placed on the top of the stack. Each time the function
calls itself, an exact copy of the function, with possibly different values of the input parameters,
is placed on top of the stack. When a copy of the function is finished, this copy is removed from
(“popped off”) the stack, just as the top tray of a stack of trays would be removed first.
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Figure 6.4: Example of the calculation of f(0.4,0.8,3) using the recursive function defined in
GraphicalSolutionApp. The number in each box is the value of the variable iterate. The values
of x = 0.4 and r = 0.8 are not shown. The value of f(x,r,3) = 0.7842.

To understand the function f(x,r,iterate), suppose we want to compute f(0.4,0.8,3).
First we write f(0.4,0.8,3) as in Figure 6.4a. Follow the statements within the function until
another call to f(0.4,0.8,iterate) occurs. In this case, the call is to f(0.4,0.8,iterate-1)
which equals f(0.4,0.8,2). Write f(0.4,0.8,2) above f(0.4,0.8,3) (see Figure 6.4b). When
you come to the end of the definition of the function, write down the value of f that is actually
returned, and remove the function from the stack by crossing it out (see Figure 6.4d). This returned
value for f equals y if iterate > 1, or it is the output of the function for iterate = 1. Continue
deleting copies of f as they are finished, until there are no copies left on the paper. The final value
of f is the value returned by the computer. Write a short program that defines f(x,r,iterate)
and prints the value of f(0.4,0.8,3). Is the answer the same as your hand calculation?

Listing 6.3: GraphicalSolutionApp displays the graphical solution of the logistic map trajectory.
package org.opensourcephysics.sip.ch06;

import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;
import org.opensourcephysics.frames.PlotFrame;

public class GraphicalSolutionApp extends AbstractSimulation {
PlotFrame plotFrame = new PlotFrame(”iterations”, ”x”, ”graphical solution”);
double r; // control parameter
int iterate ; // iterate of f(x)
double x, y;
double x0, y0;
public GraphicalSolutionApp() {

plotFrame.setPreferredMinMax(0,1,0,1);
plotFrame.setConnected(true);
plotFrame.setXPointsLinked(true);
plotFrame.setMarkerShape(0, 0); // second argument indicates no marker



CHAPTER 6. THE CHAOTIC MOTION OF DYNAMICAL SYSTEMS 153

plotFrame.setMarkerShape(2, 0); // second argument indicates no marker
}

public void reset() {
control .setValue(”r” , 0.89);
control .setValue(”x” , 0.2);
control .setValue(” iterate” , 1);

}

public void initialize () {
r = control .getDouble(”r”);
x = control.getDouble(”x”);
iterate = control . getInt(” iterate”);
x0 = x;
y0 = 0;
clear ();

}

public void startAnimation() {
if ( iterate !=control.getInt(” iterate”)) {

iterate = control . getInt(” iterate”);
clear ();

}
r = control .getDouble(”r”);
super.startAnimation();

}

public void stepAnimation() {
if ( iterate !=control.getInt(” iterate”)) {

iterate = control . getInt(” iterate”);
clear ();

}
r = control .getDouble(”r”);
super.stepAnimation();

}

public void doStep() {
y = f(x, r , iterate );
plotFrame.append(1, x0, y0);
plotFrame.append(1, x0, y);
plotFrame.append(1, y, y);
x = x0 = y0 = y;
control .setValue(”x”, x);

}

void drawFunction() {
int nplot = 200; // # of points at which function computed
double delta = 1.0/nplot;
double x = 0;
double y = 0;
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for(int i = 0;i<=nplot;i++) {
y = f(x, r , iterate );
plotFrame.append(0, x, y);
x += delta;

}
}

void drawLine() { // draws line y = x
for(double x = 0;x < 1;x += 0.001) {

plotFrame.append(2, x, x);
}

}

public double f(double x, double r, int iterate) {
if ( iterate>1) {

double y = f(x, r, iterate−1);
return 4∗r∗y∗(1−y);

} else {
return 4∗r∗x∗(1−x);

}
}

public void clear() {
plotFrame.clearData();
drawFunction();
drawLine();
plotFrame.repaint();

}

public static void main(String[] args) {
SimulationControl control = SimulationControl.createApp(new GraphicalSolutionApp());
control .addButton(”clear”, ”Clear”, ”Clears the trajectory .” );

}
}

Problem 6.4. Qualitative properties of the fixed points

a. Use GraphicalSolutionApp to show graphically that there is a single stable fixed point of f(x)
for r < 3/4. It would be instructive to modify the program so that the value of the slope
yn = f(xn) is shown at each iteration as you step each iteration. At what value of r does the
absolute value of this slope exceed unity? Let b1 denote the value of r at which the fixed point
of f(x) bifurcates and becomes unstable. Verify that b1 = 0.75.

b. Describe the trajectory of f(x) for r = 0.785. What is the nature of the fixed point given by
x = 1 − 1/4r? What is the nature of the trajectory if x0 = 1 − 1/4r? What is the period of
f(x) for all other choices of x0? What are the values of the two-point attractor?

c. The function f(x) is symmetrical about x = 1/2 where f(x) is a maximum. What are the
qualitative features of the second iterate f (2)(x) for r = 0.785? Is f (2)(x) symmetrical about
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x = 1/2? For what value of x does f (2)(x) have a minimum? Iterate xn+1 = f (2)(xn) for
r = 0.785 and find its two fixed points x1

∗ and x2
∗. (Try x0 = 0.1 and x0 = 0.3.) Are the

fixed points of f (2)(x) stable or unstable? How do these values of x1
∗ and x2

∗ compare with
the values of the two-point attractor of f(x)? Verify that the slopes of f (2)(x) at x1

∗ and x2
∗

are equal.

d. Verify the following properties of the fixed points of f (2)(x). As r is increased, the fixed points
of f (2)(x) move apart and the slope of f (2)(x) at its fixed points decreases. What is the value
of r = s2 at which one of the two fixed points of f (2) equals 1/2? What is the value of the
other fixed point? What is the slope of f (2)(x) at x = 1/2? What is the slope at the other
fixed point? As r is further increased, the slopes at the fixed points become negative. Finally
at r = b2 ≈ 0.8623, the slopes at the two fixed points of f (2)(x) equal −1, and the two fixed
points of f (2) become unstable. (The exact value of b2 is b2 = (1 +

√
6)/4.)

e. Show that for r slightly greater than b2, for example, r = 0.87, there are four stable fixed points
of the map f (4)(x). What is the value of r = s3 when one of the fixed points equals 1/2? What
are the values of the three other fixed points at r = s3?

f. Estimate the value of r = b3 at which the four fixed points of f (4) become unstable.

g. Choose r = s3 and estimate the number of iterations that are necessary for the trajectory to
converge to period 4 behavior. How does this number of iterations change when neighboring
values of r are considered? Choose several values of x0 so that your results do not depend on
the initial conditions.

Problem 6.5. Periodic windows in the chaotic regime

a. If you look closely at the bifurcation diagram in Figure 6.2, you will see that the range of
chaotic behavior for r > r∞ is interrupted by intervals of periodic behavior. Magnify your
bifurcation diagram so that you can look at the interval 0.957107 ≤ r ≤ 0.960375, where a
periodic trajectory of period 3 occurs. (Period 3 behavior starts at r = (1 +

√
8)/4.) What

happens to the trajectory for slightly larger r, for example, for r = 0.9604?

b. Plot the map f (3)(x) versus x at r = 0.96, a value of r in the period 3 window. Draw the
line y = x and determine the intersections with f (3)(x). The stable fixed points satisfy the
condition x∗ = f (3)(x∗). Because f (3)(x) is an eighth-order polynomial, there are eight solutions
(including x = 0). Find the intersections of f (3)(x) with y = x and identify the three stable fixed
points. What are the slopes of f (3)(x) at these points? Then decrease r to r = 0.957107, the
(approximate) value of r below which the system is chaotic. Draw the line y = x and determine
the number of intersections with f (3)(x). Note that at this value of r, the curve y = f (3)(x)
is tangent to the diagonal line at the three stable fixed points. For this reason, this type of
transition is called a tangent bifurcation. Note that there also is an unstable point at x ≈ 0.76.

c. Plot xn+1 = f (3)(xn) versus n for r = 0.9571, a value of r just below the onset of period 3
behavior. How would you describe the behavior of the trajectory? This type of chaotic motion is
an example of intermittency , that is, nearly periodic behavior interrupted by occasional irregular
bursts.
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d. To understand the mechanism behind the intermittent behavior, we need to “zoom in” on the
values of x near the stable fixed points that you found in part (c). To do so you can change
the arguments of the setPreferredMinMax method. If you zoom in enough, you will see a
narrow channel between the diagonal line y = x and the plot of f (3)(x) near each fixed point.
The trajectory can require many iterations to squeeze through the channel, and we see period
3 behavior during this time. Eventually, the trajectory escapes from the channel and bounces
around until it is again sent into a channel at some unpredictable later time.

6.4 Universal Properties and Self-Similarity

In Sections 6.2 and 6.3 we found that the trajectory of the logistic map has remarkable properties
as a function of the control parameter r. In particular, we found a sequence of period-doublings
accumulating in a chaotic trajectory of infinite period at r = r∞. For most values of r > r∞,
the trajectory is very sensitive to the initial conditions. We also found “windows” of period 3, 6,
12, . . . embedded in the range of chaotic behavior. How typical is this type of behavior? In the
following, we will find further numerical evidence that the general behavior of the logistic map is
independent of the details of the form (6.5) of f(x).

You might have noticed that the range of r between successive bifurcations becomes smaller
as the period increases (see Table 6.1). For example, b2 − b1 = 0.112398, b3 − b2 = 0.023624, and
b4 − b3 = 0.00508. A good guess is that the decrease in bk − bk−1 is geometric, that is, the ratio
(bk − bk−1)/(bk+1 − bk) is a constant. You can check that this ratio is not exactly constant, but
converges to a constant with increasing k. This behavior suggests that the sequence of values of
bk has a limit and follows a geometrical progression:

bk ≈ r∞ − C δ−k, (6.8)

where δ is known as the Feigenbaum number and C os a constant. From (6.8) it is easy to show
that δ is given by the ratio

δ = lim
k→∞

bk − bk−1

bk+1 − bk
. (6.9)

Problem 6.6. Estimation of the Feigenbaum constant

a. Plot δk = (bk − bk−1)/(bk+1 − bk) versus k using the values of bk in Table 6.1 and estimate the
value of δ. Are the number of decimal places given in Table 6.1 for bk sufficient for all the values
of k shown? The best estimate of δ is

δ = 4.669 201 609 102 991 . . . (6.10)

The number of decimal places in (6.10) is shown to indicate that δ is known precisely. Use (6.8)
and (6.10) and the values of bk to estimate the value of r∞.

b. In Problem 6.4 we found that one of the four fixed points of f (4)(x) is at x∗ = 1/2 for r =
s3 ≈ 0.87464. We also found that the convergence to the fixed points of f (4)(x) for this value
of r is more rapid than at nearby values of r. In Appendix 6A we show that these superstable
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k bk

1 0.750 000
2 0.862 372
3 0.886 023
4 0.891 102
5 0.892 190
6 0.892 423
7 0.892 473
8 0.892 484

Table 6.1: Values of the control parameter r = bk for the onset of the kth bifurcation. Six decimal
places are shown.

trajectories occur whenever one of the fixed points is at x = 1/2. The values of r = sm

that give superstable trajectories of period 2m−1 are much better defined than the points of
bifurcation, r = bk. The rapid convergence to the final trajectories also gives better numerical
estimates, and we always know one member of the trajectory, namely x = 1/2. It is reasonable
that δ can be defined as in (6.9) with bk replaced by sm. Use s1 = 0.5, s2 ≈ 0.809017, and
s3 = 0.874640 to estimate δ. The numerical values of sm are found in Project 6.22 by solving
the equation f (m)(x = 1/2) = 1/2 numerically; the first eight values of sm are listed in Table 6.2
in Section 6.11.

We can associate another number with the series of pitchfork bifurcations. From Figure 6.3
and Figure 6.5 we see that each pitchfork bifurcation gives birth to “twins” with the new generation
more densely packed than the previous generation. One measure of this density is the maximum
distance Mk between the values of x describing the bifurcation (see Figure 6.5). The disadvantage
of using Mk is that the transient behavior of the trajectory is very long at the boundary between
two different periodic behaviors. A more convenient measure of the density is the quantity dk =
xk

∗ − 1/2, where xk* is the value of the fixed point nearest to the fixed point x∗ = 1/2. The first
two values of dk are shown in Figure 6.6 with d1 ≈ 0.3090 and d2 ≈ −0.1164. The next value is
d3 ≈ 0.0460. Note that the fixed point nearest to x = 1/2 alternates from one side of x = 1/2 to
the other. We define the quantity α by the ratio

α = lim
k→∞

−
( dk

dk+1

)
. (6.11)

The estimates α = 0.3090/0.1164 = 2.65 for k = 1 and α = 0.1164/0.0460 = 2.53 for k = 2 are
consistent with the asymptotic value α = 2.5029078750958928485 . . .

We now give qualitative arguments that suggest that the general behavior of the logistic map
in the period-doubling regime is independent of the detailed form of f(x). As we have seen, period-
doubling is characterized by self-similarities, for example, the period-doublings look similar except
for a change of scale. We can demonstrate these similarities by comparing f(x) for r = s1 = 0.5
for the superstable trajectory with period 1 to the function f (2)(x) for r = s2 ≈ 0.809017 for the
superstable trajectory of period 2 (see Figure 6.7). The function f(x, r = s1) has unstable fixed
points at x = 0 and x = 1 and a stable fixed point at x = 1/2. Similarly the function f (2)(x, r = s2)
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Figure 6.5: The first few bifurcations of the logistic equation showing the scaling of the maximum
distance Mk between the asymptotic values of x describing the bifurcation.

has a stable fixed point at x = 1/2 and an unstable fixed point at x ≈ 0.69098. Note the similar
shape, but different scale of the curves in the square box in part (a) and part (b) of Figure 6.7. This
similarity is an example of scaling. That is, if we scale f (2) and change (renormalize) the value of
r, we can compare f (2) to f . (See Chapter 12 for a discussion of scaling and renormalization in
another context.)

This graphical comparison is meant only to be suggestive. A precise approach shows that if
we continue the comparison of the higher-order iterates, for example, f (4)(x) to f (2)(x), etc., the
superposition of functions converges to a universal function that is independent of the form of the
original function f(x).

Problem 6.7. Further estimates of the exponents α and δ

1. Write a method to find the appropriate scaling factor and superimpose f and the rescaled
form of f (2) found in Figure 6.7.

2. Use arguments similar to those discussed in the text in Figure 6.7 and compare the behavior
of f (4)(x, r = s3) in the square about x = 1/2 with f (2)(x, r = s2) in its square about x = 1/2.
The size of the squares are determined by the unstable fixed point nearest to x = 1/2. Find
the appropriate scaling factor and superimpose f (2) and the rescaled form of f (4).
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Figure 6.6: The quantity dk is the distance from x∗ = 1/2 to the nearest element of the attractor
of period 2k. It is convenient to use this quantity to determine the exponent α.

It is easy to modify your programs to consider other one-dimensional maps. In Problem 6.8
we consider several one-dimensional maps and determine if they also exhibit the period-doubling
route to chaos.

∗Problem 6.8. Other one-dimensional maps
Determine the qualitative properties of the one-dimensional maps:

f(x) = xer(1−x) (6.12)

f(x) = r sinπx. (6.13)

The map in (6.12) has been used by ecologists (cf. May) to study a population that is limited
at high densities by the effect of epidemic disease. Although it is more complicated than (6.5),
its advantage is that the population remains positive no matter what (positive) value is taken for
the initial population. There are no restrictions on the maximum value of r, but if r becomes
sufficiently large, x eventually becomes effectively zero, rendering the population extinct. What is
the behavior of the time series of (6.12) for r = 1.5, 2, and 2.7? Describe the qualitative behavior
of f(x). Does it have a maximum?

The sine map (6.13) with 0 < r ≤ 1 and 0 ≤ x ≤ 1 has no special significance, except that it
is nonlinear. If time permits, estimate the value of δ for both maps. What limits the accuracy of
your determination of δ?
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Figure 6.7: Comparison of f(x, r) for r = s1 with the second iterate f (2)(x) for r = s2. (a) The
function f(x, r = s1) has unstable fixed points at x = 0 and x = 1 and a stable fixed point at
x = 1/2. (b) The function f (2)(x, r = s1) has a stable fixed point at x = 1/2. The unstable fixed
point of f (2)(x) nearest to x = 1/2 occurs at x ≈ 0.69098, where the curve f (2)(x) intersects the
line y = x. The upper right-hand corner of the square box in (b) is located at this point, and the
center of the box is at (1/2, 1/2). Note that if we reflect this square about the point (1/2, 1/2),
the shape of the reflected graph in the square box is nearly the same as it is in part (a), but on a
smaller scale.

The above qualitative arguments and numerical results suggest that the quantities α and δ are
universal , that is, independent of the detailed form of f(x). In contrast, the values of the accumu-
lation point r∞ and the constant C in (6.8) depend on the detailed form of f(x). Feigenbaum has
shown that the period-doubling route to chaos and the values of δ and α are universal property of
maps that have a quadratic maximum, that is, f ′(x)|x=xm

= 0 and f ′′(x)|x=xm
< 0.

Why is the universality of period-doubling and the numbers δ and α more than a curiosity?
The reason is that because this behavior is independent of the details, there might exist realistic
systems whose underlying dynamics yield the same behavior as the logistic map. Of course, most
physical systems are described by differential rather than difference equations. Can these systems
exhibit period-doubling behavior? Several workers (cf. Testa et al.) have constructed nonlinear
RLC circuits driven by an oscillatory source voltage. The output voltage shows bifurcations, and
the measured values of the exponents δ and α are consistent with the predictions of the logistic
map.

Of more general interest is the nature of turbulence in fluid systems. Consider a stream
of water flowing past several obstacles. We know that at low flow speeds, the water flows past
obstacles in a regular and time-independent fashion, called laminar flow. As the flow speed is
increased (as measured by a dimensionless parameter called the Reynolds number), some swirls
develop, but the motion is still time-independent. As the flow speed is increased still further,
the swirls break away and start moving downstream. The flow pattern as viewed from the bank
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becomes time-dependent. For still larger flow speeds, the flow pattern becomes very complex and
looks random. We say that the flow pattern has made a transition from laminar flow to turbulent
flow.

This qualitative description of the transition to chaos in fluid systems is superficially similar
to the description of the logistic map. Can fluid systems be analyzed in terms of the simple models
of the type we have discussed here? In a few instances such as turbulent convection in a heated
saucepan, period doubling and other types of transitions to turbulence have been observed. The
type of theory and analysis we have discussed has suggested new concepts and approaches, and
the study of turbulent flows is a subject of much current interest.

6.5 Measuring Chaos

How do we know if a system is chaotic? The most important characteristic of chaos is sensitivity
to initial conditions. In Problem 6.3 for example, we found that the trajectories starting from
x0 = 0.5 and x0 = 0.5001 for r = 0.91 become very different after a small number of iterations.
Because computers only store floating numbers to a certain number of digits, the implication of
this result is that our numerical predictions of the trajectories of chaotic systems are restricted to
small time intervals. That is, sensitivity to initial conditions implies that even though the logistic
map is deterministic, our ability to make numerical predictions of its trajectory is limited.

How can we quantify this lack of predictably? In general, if we start two identical dynamical
systems from slightly different initial conditions, we expect that the difference between the trajec-
tories will change as a function of n. In Figure 6.8 we show a plot of the difference |∆xn| versus n
for the same conditions as in Problem 6.3a. We see that roughly speaking, ln |∆xn| is a linearly
increasing function of n. This result indicates that the separation between the trajectories grows
exponentially if the system is chaotic. This divergence of the trajectories can be described by the
Lyapunov exponent λ, which is defined by the relation:

|∆xn| = |∆x0| eλn, (6.14)

where ∆xn is the difference between the trajectories at time n. If the Lyapunov exponent λ is
positive, then nearby trajectories diverge exponentially. Chaotic behavior is characterized by the
exponential divergence of nearby trajectories.

A naive way of measuring the Lyapunov exponent λ is to run the same dynamical system
twice with slightly different initial conditions and measure the difference of the trajectories as a
function of n. We used this method to generate Figure 6.8. Because the rate of separation of the
trajectories might depend on the choice of x0, a better method would be to compute the rate of
separation for many values of x0. This method would be tedious, because we would have to fit the
separation to (6.14) for each value of x0 and then determine an average value of λ.

A more important limitation of the naive method is that because the trajectory is restricted
to the unit interval, the separation |∆xn| ceases to increase when n becomes sufficiently large.
Fortunately, there is a better way of determining λ. To understand it, we take the natural logarithm
of both sides of (6.14), and write λ as

λ =
1
n

ln
∣∣∣∣∆xn

∆x0

∣∣∣∣. (6.15)
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Figure 6.8: The evolution of the difference ∆xn between the trajectories of the logistic map at
r = 0.91 for x0 = 0.5 and x0 = 0.5001. The separation between the two trajectories increases with
n, the number of iterations, if n is not too large. (Note that |∆x1| ∼ 10−8 and that the trend is
not monotonic.)

Because we want to use the data from the entire trajectory after the transient behavior has ended,
we use the fact that

∆xn

∆x0
=

∆x1

∆x0

∆x2

∆x1
· · · ∆xn

∆xn−1
. (6.16)

Hence, we can express λ as

λ =
1
n

n−1∑
i=0

ln
∣∣∣∣∆xi+1

∆xi

∣∣∣∣. (6.17)

The form (6.17) implies that we can interpret xi for any i as the initial condition.
We see from (6.17) that the problem of computing λ has been reduced to finding the ratio

∆xi+1/∆xi. Because we want to make the initial difference between the two trajectories as small
as possible, we are interested in the limit ∆xi → 0.

The idea of the more sophisticated procedure is to compute the differential dxi from the
equation of motion at the same time that the equation of motion is being iterated. We use the
logistic map as an example. The differential of (6.5) can be written as

dxi+1

dxi
= f ′(xi) = 4r(1 − 2xi). (6.18)
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Figure 6.9: The Lyapunov exponent calculated using the method in (6.19) as a function of the
control parameter r. Compare the behavior of λ to the bifurcation diagram in Figure 6.2. Note
that λ < 0 for r < 3/4 and approaches zero at a period doubling bifurcation. A negative spike
corresponds to a superstable trajectory. The onset of chaos is visible near r = 0.892, where λ
first becomes positive. For r > 0.892, λ generally increases except for dips below zero whenever a
periodic window occurs. Note the dip due to the period 3 window near r = 0.96. For each value of
r, the first 1000 iterations were discarded, and 105 values of ln |f ′(xn)| were used to determine λ.

We can consider xi for any i as the initial condition and the ratio dxi+1/dxi as a measure of the
rate of change of xi. Hence, we can iterate the logistic map as before and use the values of xi and
the relation (6.18) to compute dxi+1/dxi at each iteration. The Lyapunov exponent is given by

λ = lim
n→∞

1
n

n−1∑
i=0

ln |f ′(xi)| , (6.19)

where we begin the sum in (6.19) after the transient behavior is finished. We have included
explicitly the limit n → ∞ in (6.19) to remind ourselves to choose n sufficiently large. Note that
this procedure weights the points on the attractor correctly, that is, if a particular region of the
attractor is not visited often by the trajectory, it does not contribute much to the sum in (6.19).

Problem 6.9. Lyapunov exponent for the logistic map

a. Modify BifurcateApp and first compute the Lyapunov exponent λ for the logistic map using
the naive approach. Choose r = 0.91, x0 = 0.5, and ∆x0 = 10−6, and plot ln |∆xn/∆x0| versus
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n. What happens to ln |∆xn/∆x0| for large n? Estimate λ for r = 0.91, r = 0.97, and r = 1.0.
Does your estimate of λ for each value of r depend significantly on your choice of x0 or ∆x0?

b. Compute λ using the algorithm discussed in the text for r = 0.76 to r = 1.0 in steps of
∆r = 0.01. What is the sign of λ if the system is not chaotic? Plot λ versus r, and explain
your results in terms of behavior of the bifurcation diagram shown in Figure 6.2. Compare your
results for λ with those shown in Figure 6.9. How does the sign of λ correlate with the behavior
of the system as seen in the bifurcation diagram? If λ < 0, the two trajectories converge and
the system is not chaotic. If λ = 0, then the trajectories diverge algebraically, that is, as a
power of n, as will show in the following. For what value of r is λ a maximum?

c. In Problem 6.3b we saw that roundoff errors in the chaotic regime make the computation of
individual trajectories meaningless. That is, if the system’s behavior is chaotic, then small
roundoff errors are amplified exponentially in time, and the actual numbers we compute for
the trajectory starting from a given initial value are not “real.” Given this limitation, how
meaningful is our computation of the Lyapunov exponent? Repeat your calculation of λ for
r = 1 by changing the roundoff error as you did in Problem 6.3b. Does your computed value of λ
change? We will encounter a similar question in Chapter 8 where we compute the trajectories of
a system of many particles. The answer appears to be that although the trajectory we compute
is not the one we thought we were trying to compute, the computed trajectory is close to a
possible trajectory of the system. Quantities such as λ that are averaged over many possible
trajectories are independent of the detailed behavior of an individual trajectory.

In some cases a dynamical system is at the “edge of chaos” where the Lyapunov exponent
vanishes. Such systems are said to exhibit weak chaos to distinguish their behavior from the
strongly chaotic behavior that we have been discussing. In strong chaos two nearby orbits will
diverge exponentially as shown in (6.14). If we define z ≡ |∆xn|/|∆x0|, then z will satisfy the
differential equation

dz

dn
= λz. (6.20)

For weak chaos we do not find an exponential divergence, but instead a divergence that is algebraic
and is given by

dz

dn
= λqz

q, (6.21)

where q is a parameter that needs to be determined. The solution to (6.21) is

z = [1 + (1 − q)λqn]1/(1−q), (6.22)

which can be checked by substituting (6.22) into (6.21). In the limit q → 1, we recover the usual
exponential dependence.

We can determine the type of chaos using the crude approach of choosing a large number of
initial values of x0 and x0 + ∆x0 and plotting the average of ln z versus n. If we do not obtain a
straight line, then the system does not exhibit strong chaos. How can we check for the behavior
shown in (6.22)? The easiest way is to plot the function

z1−q − 1
1 − q

, (6.23)
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which will equal nλq if (6.22) is applicable. We explore these ideas in the following problem.

∗Problem 6.10. Measuring weak chaos

a. Write a program that plots ln z if q = 1 or zq if q 	= 1 as a function of n. Your program should
have q, |∆x0|, the number of seeds, and the number of interations as input parameters. To
compare with published work by Añaños and Tsallis, use a variation of the logistic map given
by

xn+1 = 1 − ax2
n, (6.24)

where −1 ≤ xn ≤ 1 and 0 ≤ a ≤ 2. The edge of chaos is at a = 1.401155189. The seeds x0

should be equally spaced in the interval −1 < x0 < 1.

b. Consider strong chaos at a = 2. Choose q = 1, 50 iterations, and at least 1000 values of x0.
Try |∆x0| = 10−6. Do you obtain a straight line for ln z versus n? Does the curve eventually
stop growing? If so why? Try |∆x0| = 10−12. How do your results differ and how are they
the same? If you run into problems, you may have lost too much precision. To overcome this
problem, also iterate ∆x directly:

∆xn+1 = xn+1 − x̃n+1 = −a(x2
n − x̃2

n) = −a(xn − x̃n)(xn + x̃n) = −a∆xn(xn + x̃n), (6.25)

where xn is the iterate starting at x0 and x̃n is the iterate starting at x0 + ∆x0. Show that
straight lines are not obtained for your plot if q 	= 1.

c. Repeat part (a) with a = 1.401155189 and various values of q. Simulations with 105 starting
points show that linear behavior is obtained for q ≈ 0.36.

In the study of many particle systems it is asumed that a system of fixed energy (and number
of particles and volume) has an equal probability of being in any microstate specified by the
positions and velocities of the particles (see Sec 15.2). This idea is closely related to chaos because
the particles evolve deterministically, yet they are expected to behave as if they are random. One
way of measuring the ability of a system to be in any state is to measure its entropy defined by

S = −
∑

i

pi ln pi, (6.26)

where the sum is over all states and pi is the probability or relative frequency of being in the ith
state. For example, if the system is always in only one state, then S = 0, the smallest possible
entropy. If the system explores all states equally, then S = ln Ω, where Ω is the number of possible
states. (You can show this result by letting pi = 1/Ω.)

∗Problem 6.11. Entropy of the logistic map

a. We can determine S for the logistic map by dividing the interval [0, 1] into Ω bins or subintervals
and determining the relative number of times the trajectory falls into each bin. Write a program
to compute S and determine its dependence on r in the range 0.7 ≤ r ≤ 1. At each value of r
the map should be iterated for a fixed number of steps, for example, n = 1000. Choose a bin
width of ∆x = 0.01. What happens to the entropy when the trajectory is chaotic?
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b. Repeat part (a) with n = 10000. For what values of r does the entropy change significantly?
Decrease ∆x to 0.001 and repeat. Does this decrease make a difference?

c. Plot pi as a function of x for r = 1. For what value(s) of x is the plot a maximum?

We also can measure the (generalized) entropy as a function of time for short times. As will
be seen in Problem 6.12, for strong chaos S(n) increases linearly with n until all the possible states
are visited. However, for weak chaos this behavior is not found. We can generalize the entropy to
a q-dependent function defined by

Sq =
1 −

∑
i pq

i

q − 1
, (6.27)

where in the limit q → 1 we find Sq → S. The following problem discusses measuring the entropy
for the same system as in Problem 6.10.

∗Problem 6.12. Entropy of weak and strong chaotic systems

a. Write a program that iterates the map (6.24) and plots S if q = 1 or Sq if q 	= 1 as a function of
n. The input parameters should be q, the number of random seeds in a single bin, the number
of bins, and the number of iterations. At each iteration compute the entropy as a function of
n. Then average S over many trials corresponding to a randomly chosen initial interval for the
seeds.

b. Consider strong chaos at a = 2. Choose q = 1, 20 iterations, at least 1000 intervals, and ten
times as many starting points. Do you obtain a straight line for S versus n? Does the curve
eventually stop growing? If so why? Vary the number of intervals. How do your results differ
and how are they the same? Show that straight lines are not obtained for your plot if q 	= 1.

c. Repeat part (a) with a = 1.401155189 and various values of q. Simulations with 105 intervals
show that linear behavior is obtained for q ≈ 0.36, the same value as for the measurments in
Problem 6.10.

6.6 *Controlling Chaos

The dream of classical physics was that if the initial conditions and all the forces acting on a system
were known, then we could predict the future with as much precision as we desire.

The existence of chaos has shattered that dream. However, if a system is chaotic, we still
might be able to control its behavior with small, but carefully chosen perturbations of the system.
We will illustrate the method for the logistic map. The application of the method to other one-
dimensional systems is straightforward, but the extension to higher dimensional systems is more
complicated (cf. Ott, Lai).

Suppose that we want the trajectory to be periodic even though the parameter r is in the
chaotic regime. How can we make the trajectory have periodic behavior without drastically chang-
ing r or imposing an external perturbation that is so large that the internal dynamics of the map
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become irrelevant? The key to the solution is that for any value of r in the chaotic regime, there is
an infinite number of trajectories that have unstable periods. This property of the chaotic regime
means that if we choose the value of the seed x0 to be precisely equal to a point on an unstable
trajectory with period p, the subsequent trajectory will have this period. However, if we choose a
value of x0 that differs ever so slightly from this special value, the trajectory will not be periodic.
Our goal is to make slight perturbations to the system to keep it on the desired unstable periodic
trajectory.

The first step is to find the values of x(i), i = 1 to p, that constitute the unstable periodic
trajectory. It is an interesting numerical problem to find the values of x(i), and we consider this
problem first. The trick is to find a fixed point of the map f (p). That is, we need to find the value
of x∗ such that

g(p)(x∗) ≡ f (p)(x∗) − x∗ = 0. (6.28)

The algorithms for finding the solution to (6.28) are called root finding algorithms. You might
have heard of Newton’s method, which we describe in Appendix 6B. Here we use the simplest
root-finding algorithm, the bisection method. The algorithm works as follows:

a. Choose two values, xleft and xright, with xleft < xright, such that the product g(p)(xleft)g(p)(xright) <
0. There must be a value of x such that g(p)(x) = 0 in the interval

[
xleft, xright

]
.

b. Choose the midpoint, xmid = xleft + 1
2 (xright − xleft) = 1

2 (xleft + xright), as the guess for x∗.

c. If g(p)(xmid) has the same sign as g(p)(xleft), then replace xleft by xmid; otherwise, replace xright

by xmid. The interval for the location of the root is now reduced.

d. Repeat steps 2 and 3 until the desired level of precision is achieved.

The following program implements this algorithm for the logistic map. An alternative imple-
mentation named FixedPointApp that does not use use recursion is not shown, but is available
in the Chapter 6 package. One possible problem is that some of the roots of g(p)(x) = 0 also are
roots of g(p′)(x) = 0 for p′ equal to a factor of p. (For example, if p = 6, 2 and 3 are factors.) As
p increases, it might become more difficult to find a root that is part of a period p trajectory and
not part of a period p′ trajectory.

Listing 6.4: The RecursiveFixedPointApp program finds stable and unstable periodic trajectories
with the given period using the bisection root finding algorithm.

package org.opensourcephysics.sip.ch06;
import org.opensourcephysics.controls.AbstractCalculation;
import org.opensourcephysics.controls.CalculationControl;

public class RecursiveFixedPointApp extends AbstractCalculation {
double r; // control parameter
int period;
double xleft, xright ;
double gleft, gright ;
public void resetCalculation() {
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control .setValue(”r” , 0.8); // control parameter r
control .setValue(”period” , 2); // period
control .setValue(”epsilon” , 0.0000001); // desired precision
control .setValue(”xleft” , 0.01); // guess for xleft
control .setValue(”xright” , 0.99); // guess for xright

}

public void calculate() {
double epsilon = control.getDouble(”epsilon”); // desired precision
r = control .getDouble(”r”);
period = control.getInt(”period”);
xleft = control .getDouble(”xleft”);
xright = control .getDouble(”xright”);
gleft = map(xleft, r , period)−xleft;
gright = map(xright, r, period)−xright;
if ( gleft ∗gright<0) {

while(Math.abs(xleft−xright)>epsilon) {
bisection ();

}
double x = 0.5∗(xleft+xright);
control . println(” explicit search for period ”+period+” behavior”);
control . println(0+”\t”+x); // result
for(int i = 1;i<=2∗period+1;i++) {

x = map(x, r, 1);
control . println( i+”\t”+x);

}
} else {

control . println(”range does not enclose a root”);
}

}

public void bisection() {
// midpoint between xleft and xright
double xmid = 0.5∗(xleft+xright);
double gmid = map(xmid, r, period)−xmid;
if (gmid∗gleft>0) {

xleft = xmid; // change xleft
gleft = gmid;

} else {
xright = xmid; // change xright
gright = gmid;

}
}

double map(double x, double r, double period) {
if (period>1) {

double y = map(x, r, period−1);
return 4∗r∗y∗(1−y);

} else {
return 4∗r∗x∗(1−x);
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}
}

public static void main(String[] args) {
CalculationControl.createApp(new RecursiveFixedPointApp());

}
}

Problem 6.13. Unstable periodic trajectories for the logistic map

a. Test RecursiveFixedPointApp for values of r for which the logistic map has a stable period
with p = 1 and p = 2. Set the desired precision ε equal to 10−7. Initially use xleft = 0.01
and xright = 0.99. Calculate the stable attractor analytically and compare the results of your
program with the analytical results.

b. Set r = 0.95 and find the periodic trajectories for p = 1, 2, 5, 6, 7, 12, 13, and 19.

c. Modify RecursiveFixedPointApp so that nb, the number of bisections needed to obtain the
unstable trajectory, is listed. Choose three of the cases considered in part (b), and compute
nb for the precision ε equal to 0.01, 0.001, 0.0001, and 0.00001. Determine the functional
dependence of nb on ε.

Now that we know how to find the values of the unstable periodic trajectories, we discuss an
algorithm for stabilizing this period. Suppose that we wish to stabilize the unstable trajectory of
period p for a choice of r = r0. The idea is to make small adjustments of r = r0 + ∆r at each
iteration so that the difference between the actual trajectory and the target periodic trajectory is
small. If the actual trajectory is xn and we wish the trajectory to be at x(i), we make the next
iterate xn+1 equal to x(i + 1) by expanding the difference xn+1 − x(i + 1) in a Taylor series and
setting the difference to zero to first-order. We have xn+1 − x(i + 1) = f(xn, r)− f(x(i), r0). If we
expand f(xn, r) about (x(i), r0), we have to first-order:

xn+1 − x(i + 1) =
∂f(x, r)

∂x
[xn − x(i)] +

∂f(x, r)
∂r

∆r = 0. (6.29)

The partial derivatives in (6.29) are evaluated at x = x(i) and r = r0. The result can be expressed
as

4r0

[
1 − 2x(i)

][
xn − x(i)

]
+ 4x(i)

[
1 − x(i)

]
∆r = 0. (6.30)

The solution of (6.30) for ∆r can be written as

∆r = −r0

[
1 − 2x(i)

][
xn − x(i)

]
x(i)

[
1 − x(i)

] . (6.31)

The procedure is to iterate the logistic map at r = r0 until xn is sufficiently close to a x(i). The
nature of chaotic systems is that the trajectory is guaranteed to come close to the desired unstable
trajectory eventually. Then we use (6.31) to change the value of r so that the next iteration is
closer to x(i + 1). We summarize the algorithm for controlling chaos as follows:
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1. Find the unstable periodic trajectory x(1), x(2) . . . x(p), for the desired value of r0.

2. Iterate the map with r = r0 until xn is within ε of x(i). Then use (6.31) to determine r.

3. To turn off the control, set r = r0.

Problem 6.14. Controlling chaos

a. Write a program that allows the user to turn the control on and off. The trajectory can be seen
by plotting xn versus n. The program should incorporate as input the desired unstable periodic
trajectory x(i), the period p, the value of r0, and the parameter ε.

b. Test your program with r0 = 0.95 and the periods p = 1, 5, and 13. Use ε = 0.02.

c. Modify your program so that the values of r are shown as well as the values of xn. How does r
change if we vary ε? Try ε = 0.05, 0.01, and 0.005.

d. Add a method to compute nε, the number of iterations necessary for the trajectory xn to be
within ε of x(1) when the control is on. Find 〈nε〉, the average value of nε, by starting with 100
random values of x0. Compute 〈nε〉 as a function of ε for δ = 0.05, 0.005, 0.0005, and 0.00005.
What is the functional dependence of 〈nε〉 on ε?

6.7 *Higher-Dimensional Models

So far we have discussed the logistic map as a mathematical model that has some remarkable
properties and produces some interesting computer graphics. In this section we discuss some two-
and three-dimensional systems that also might seem to have little to do with realistic physical
systems. However, as we will see in Sections 6.8 and 6.9, similar behavior is found in realistic
physical systems under the appropriate conditions.

We begin with a two-dimensional map and consider the sequence of points (xn, yn) generated
by

xn+1 = yn + 1 − axn
2 (6.32a)

yn+1 = bxn. (6.32b)

The map (6.32) was proposed by Hénon who was motivated by the relevance of this dynamical
system to the behavior of asteroids and satellites.

Problem 6.15. The Hénon map

a. Write a program to iterate (6.32) for a = 1.4 and b = 0.3 and plot 104 iterations starting from
x0 = 0, y0 = 0. Make sure you compute the new value of y using the old value of x and not the
new value of x. Do not plot the initial transient. Look at the trajectory in the region defined
by |x| ≤ 1.5 and |y| ≤ 0.45. Make a similar plot beginning from the second initial condition,
x0 = 0.63135448, y0 = 0.18940634. Compare the shape of the two plots. Is the shape of the two
curves independent of the initial conditions?
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b. Increase the scale of your plot so that all points in the region 0.50 ≤ x <≤ 0.75 and 0.15 ≤ y ≤
0.21 are shown. Begin from the second initial condition and increase the number of computed
points to 105. Then make another plot showing all points in the region 0.62 ≤ x <≤ 0.64 and
0.185 ≤ y ≤ 0.191. If patience permits, make an additional enlargement and plot all points
within the box defined by 0.6305 ≤ x <≤ 0.6325 and 0.1889 ≤ y ≤ 0.1895. (You will have
to increase the number of computed points to order 106.) What is the structure of the curves
within each box? Does the attractor appear to have a similar structure on smaller and smaller
length scales? Is there a region in the plane from which the points cannot escape? The region
of points that do not escape is the basin of the Hénon attractor. The attractor itself is the set
of points to which all points in the basin are attracted. That is, two trajectories that begin
from different conditions will soon lie on the attractor.

c. Determine if the system is chaotic, that is, sensitive to initial conditions. Start two points very
close to each other and watch their trajectories for a fixed time. Choose different colors for the
two trajectories.

d. It is straightforward in principle to extend the method for computing the Lyapunov exponent
that we used for a one-dimensional map to higher-dimensional maps. The idea is to linearize
the difference (or differential) equations and replace dxn by the corresponding vector quantity
drn. This generalization yields the Lyapunov exponent corresponding to the divergence along
the fastest growing direction. If a system has f degrees of freedom, it has a set of f Lyapunov
exponents. A method for computing all f exponents is discussed in Project 6.24.

One of the earliest indications of chaotic behavior was in an atmospheric model developed by
Lorenz. His goal was to describe the motion of a fluid layer that is heated from below. The result is
convective rolls, where the warm fluid at the bottom rises, cools off at the top, and then falls down
later. Lorenz simplified the description by restricting the motion to two spatial dimensions. This
situation has been modeled experimentally in the laboratory and is known as a Rayleigh-Benard
cell. The equations that Lorenz obtained are

dx

dt
= −σx + σy (6.33a)

dy

dt
= −xz + rx − y (6.33b)

dz

dt
= xy − bz, (6.33c)

where x is a measure of the fluid flow velocity circulating around the cell, y is a measure of the
temperature difference between the rising and falling fluid regions, and z is a measure of the
difference in the temperature profile between the bottom and the top from the normal equilibrium
temperature profile. The dimensionless parameters σ, r, and b are determined by various fluid
properties, the size of the Raleigh-Benard cell, and the temperature difference in the cell. Note
that the variables x, y, and z have nothing to do with the spatial coordinates, but are measures of
the state of the system. Although it is not expected that you will understand the relation of the
Lorenz equations to convection, we have included these equations here to reinforce the idea that
simple sets of equations can exhibit chaotic behavior.
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Figure 6.10: A trajectory of the Lorenz model with σ = 10, b = 8/3, and r = 28 and the initial
condition x0 = 1, y0 = 1, z0 = 20. A time interval of t = 20 is shown with points plotted at
intervals of 0.01. The fourth-order Runge-Kutta algorithm was used with ∆t = 0.0025.

To make three-dimensional plots, we use the EJSFrame class; the only argument of its con-
structor is the title for the plot. The following code sets up a plot where the class Lorenz contains
the code for drawing the attractor.

EJSFrame frame = new EJSFrame(”Lorenz Attractor”);
Lorenz lorenz = new Lorenz();
frame.setPreferredMinMax ( −15.0, 15.0, −15.0, 15.0, 0.0, 50.0);
frame.setDecorationType(DrawingPanel3D.DECORATION AXES);
frame.addDrawable(lorenz);

Lorenz extends GroupDrawable and must import org.opensourcephysics.displayejs.*. Two
useful drawing objects are
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InteractiveParticle ball = new
InteractiveParticle ( InteractiveParticle .ELLIPSE);
InteractiveTrace trace =
new InteractiveTrace();

The properties of these objects are determined by

ball .setSizeXYZ(1, 1, 1); // sets size of ball in world coordinates
ball . getStyle (). setFillPattern (java.awt.Color.RED); // sets color
add(trace); // adds trace to Lonenz
add(ball ); // adds ball to Lorenz

To plot each part of the trace, use the method trace.addpoint(x,y,z) and to plot the current
position, use ball.setXYZ(x,y,z). The user can then rotate the three-dimensional plot using the
mouse.

Problem 6.16. The Lorenz model

a. Use a Runge-Kutta algorithm (see Appendix 3A) to obtain a numerical solution of the Lorenz
equations (6.33). Generate three-dimensional plots using EJSFrame. Explore the basin of the
attractor with σ = 10, b = 8/3, and r = 28.

b. Determine qualitatively the sensitivity to initial conditions. Start two points very close to each
other and watch their trajectories for approximately 104 time steps.

c. Let zm denote the value of z where z is a relative maximum for the mth time. You can determine
the value of zm by finding the average of the two values of z when the right-hand side of (6.33)
changes sign. Plot zm+1 versus zm and describe what you find. This procedure is one way that
a continuous system can be mapped onto a discrete map. What is the slope of the zm+1 versus
zm curve? Is its magnitude always greater than unity? If so, then this behavior is an indication
of chaos. Why?

The application of the Lorenz equations to weather prediction has led to a popular metaphor
known as the butterfly effect. This metaphor is made even more meaningful by inspection of
Figure 6.10. The “butterfly effect” is often ascribed to Lorenz. In a 1963 paper he remarked that:

“One meteorologist remarked that if the theory were correct, one flap of a seagull’s wings
would be enough to alter the course of the weather forever.”

By 1972, the sea gull had evolved into the more poetic butterfly and the title of his talk was
“Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”

6.8 Forced Damped Pendulum

We now consider the dynamics of nonlinear mechanical systems described by classical mechanics.
The general problem in classical mechanics is the determination of the positions and velocities of
a system of particles subjected to certain forces. For example, we considered in Chapter 5 the
celestial two-body problem and were able to predict the motion at any time. We will find that we
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cannot make long-time predictions for the trajectories of nonlinear classical systems when these
systems exhibit chaos.

A familiar example of a nonlinear mechanical system is the simple pendulum (see Chapter 3).
To make its dynamics more interesting, we assume that there is a linear damping term present
and that the pivot is forced to move vertically up and down. Newton’s second law for this system
is (cf. McLaughlin or Percival and Richards)

d2θ

dt2
= −γ

dθ

dt
− [ω0

2 + 2A cos ωt] sin θ, (6.34)

where θ is the angle the pendulum makes with the vertical axis, γ is the damping coefficient,
ω0

2 = g/L is the natural frequency of the pendulum, and ω and A are the frequency and amplitude
of the external force. Note that the effect of the vertical acceleration of the pivot is equivalent to
a time-dependent gravitational field.

How do we expect the driven, damped simple pendulum to behave? Because there is damping
present, we expect that if there is no external force, the pendulum would come to rest. That is,
(x = 0, v = 0) is a stable attractor. As A is increased from zero, this attractor remains stable for
sufficiently small A. At a value of A equal to Ac, this attractor becomes unstable. How does the
driven nonlinear oscillator behave as we increase the amplitude A?

Because we are mainly interested in the (stable and unstable) fixed points of the motion, it is
convenient to analyze the motion by plotting a point in phase space after every cycle of the external
force. Such a phase space plot is called a Poincaré map. Hence, we will plot dθ/dt versus θ for
values of t equal to nT for n equal to 1, 2, 3, . . . If the system has a period T , then the Poincaré
map consists of a single point. If the period of the system is nT , there will be n points.

PoincareApp uses the fourth-order Runge-Kutta algorithm to compute θ(t) and the angu-
lar velocity dθ(t)/dt for the pendulum described by (6.34). This equation is modeled in the
DampedDrivenPendulum class, but is not shown here because it is similar to other ODE imple-
mentations. A phase diagram for dθ(t)/dt versus θ(t) is shown in one frame. In the other frame
the Poincaré map is represented by drawing a small box at the point (θ, dθ/dt) at time t = nT . If
the system has period 1, that is, if the same values of (θ, dθ/dt) are drawn at t = nT , we would see
only one box; otherwise we would see several boxes. Because the first few values of (θ, dθ/dt) show
the transient behavior, it is desirable to clear the display and draw a new Poincaré map without
changing A, θ, or dθ/dt.

Listing 6.5: PoincareApp plots a phase diagram and a Poincaré map for the damped driven
pendulum.

package org.opensourcephysics.sip.ch06;
import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;
import org.opensourcephysics.frames.PlotFrame;
import org.opensourcephysics.numerics.RK4;

public class PoincareApp extends AbstractSimulation {
final static double PI = Math.PI; // defined for brevity
PlotFrame phaseSpace = new PlotFrame(”theta”, ”ang vel”, ”Phase space plot”);
PlotFrame poincare = new PlotFrame(”theta”, ”ang vel”, ”Poincare plot”);
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int nstep = 100; // # iterations between Poincare plot
DampedDrivenPendulum pendulum = new DampedDrivenPendulum();
RK4 odeMethod = new RK4(pendulum);
public PoincareApp() {

// angular frequency of external force equals two and hence period of external force equals pi
odeMethod.setStepSize(PI/nstep); // dt = PI/nsteps
phaseSpace.setMarkerShape(0, 6); // second argument indicates a pixel
poincare.setMarkerSize (0, 2); // smaller size gives better resolution
poincare.setMarkerColor(0, java.awt.Color.RED);
phaseSpace.setMessage(”t=”+0);

}

public void reset() {
control .setValue(”theta” , 0.2);
control .setValue(”angular velocity” , 0.6);
control .setValue(”gamma”, 0.2); // damping constant
control .setValue(”A” , 0.85); // amplitude

}

public void doStep() {
double state[] = pendulum.getState();
for(int istep = 0; istep<nstep;istep++) {

odeMethod.step();
if (state[0]>PI) {

state [0] = state[0]−2.0∗PI;
} else if (state[0]<−PI) {

state [0] = state[0]+2∗PI;
}
phaseSpace.append(0, state [0], state [1]);

}
poincare.append(0, state [0], state [1]);
phaseSpace.setMessage(”t=”+decimalFormat.format(state[2]));
poincare.setMessage(”t=”+decimalFormat.format(state[2]));
if (phaseSpace.isShowing()) {

phaseSpace.render();
}
if (poincare.isShowing()) {

poincare.render();
}

}

public void initialize () {
double theta = control.getDouble(”theta”); // initial angle
double omega = control.getDouble(”angular velocity”); // initial angular velocity
pendulum.gamma = control.getDouble(”gamma”); // damping constant
pendulum.A = control.getDouble(”A”); // amplitude of external force
pendulum.initializeState(new double[]{theta, omega, 0});
clear ();

}
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public void clear() {
phaseSpace.clearData();
poincare.clearData();
phaseSpace.render();
poincare.render();

}

public static void main(String[] args) {
SimulationControl control = SimulationControl.createApp(new PoincareApp());
control .addButton(”clear”, ”Clear”);

}
}

Problem 6.17. Dynamics of a driven, damped simple pendulum

a. Use PoincareApp to simulate the driven, damped simple pendulum. In the program ω = 2 so
that the period T of the external force equals π. The program also assumes that ω0 = 1. Use
γ = 0.2 and A = 0.85 and compute the phase space trajectory. After the initial transient, how
many points do you see in the Poincaré plot? What is the period of the pendulum? Vary the
initial values of θ and dθ/dt. Is the attractor independent of the initial conditions? Remember
to ignore the initial transient behavior.

b. Modify PoincareApp so that it plots θ and dθ/dt as a function of t. Describe the qualitative
relation between the Poincaré plot, the phase space plot, and the t dependence of θ and dθ/dt.

c. The amplitude A plays the role of the control parameter for the dynamics of the system. Use
the behavior of the Poincaré plot to find the value A = Ac at which the (0, 0) attractor becomes
unstable. Start with A = 0.1 and continue increasing A until the (0, 0) attractor becomes
unstable.

d. Find the period for A = 0.1, 0.25, 0.5, 0.7, 0.75, 0.85, 0.95, 1.00, 1.02, 1.031, 1.033, 1.036, and
1.05. Note that for small A, the period of the oscillator is twice that of the external force. The
steady state period is 2π for Ac < A < 0.71, π for 0.72 < A < 0.79, and then 2π again.

e. The first period-doubling occurs for A ≈ 0.79. Find the approximate values of A for further
period-doubling and use these values of A to compute the exponent δ defined by (6.10). Compare
your result for δ with the result found for the one-dimensional logistic map. Are your results
consistent with those that you found for the logistic map? An analysis of this system can be
found in the article by McLaughlin.

f. Sometimes a trajectory does not approach a steady state even after a very long time, but a
slight perturbation causes the trajectory to move quickly onto a steady state attractor. Consider
A = 0.62 and the initial condition (θ = 0.3, dθ/dt = 0.3). Describe the behavior of the trajectory
in phase space. During the simulation, change θ by 0.1. Does the trajectory move onto a steady
state trajectory? Do similar simulations for other values of A and other initial conditions.

g. Repeat the calculations of parts (b)–(d) for γ = 0.05. What can you conclude about the effect
of damping?
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h. Replace the fourth-order Runge-Kutta algorithm by the lower-order Euler-Richardson algo-
rithm. Which algorithm gives the better trade-off between accuracy and speed?

Problem 6.18. Basin of an attractor

a. For γ = 0.2 and A > 0.79 the pendulum rotates clockwise or counterclockwise in the steady
state. Each of these two rotations is an attractor. The set of initial conditions that lead to
a particular attractor is called the basin of the attractor. Modify PoincareApp so that the
program draws the basin of the attractor with dθ/dt > 0. For example, your program might
simulate the motion for about 20 periods and then determine the sign of dθ/dt. If dθ/dt > 0 in
the steady state, then the program plots a point in phase space at the coordinates of the initial
condition. The program repeats this process for many initial conditions. Describe the basin of
attraction for A = 0.85 and increments of the initial values of θ and dθ/dt equal to π/10.

b. Repeat part (a) using increments of the initial values of θ and dθ/dt equal to π/20 or as small
as possible given your computer resources. Does the boundary of the basin of attraction appear
smooth or rough? Is the basin of the attractor a single region or is it disconnected into more
than one piece?

c. Repeat parts (a) and (b) for other values of A, including values near the onset of chaos and in
the chaotic regime. Is there a qualitative difference between the basins of periodic and chaotic
attractors? For example, can you always distinguish the boundaries of the basin?

6.9 *Hamiltonian Chaos

Hamiltonian systems are a very important class of dynamical systems. The most familiar are
mechanical systems without friction, and the most important of these is the solar system. The
linear harmonic oscillator and the simple pendulum that we considered in Chapter 3 are two simple
examples. Many other systems can be included in the Hamiltonian framework, for example, the
motion of charged particles in electric and magnetic fields, and ray optics. The Hamiltonian
dynamics of charged particles is particularly relevant to confinement issues in particle accelerators,
storage rings, and plasmas. In each case a function of all the coordinates and momenta called the
Hamiltonian is formed. For many mechanical systems this function can be identified with the total
energy. The Hamiltonian for a particle in a potential V (x, y, z) is

H =
1

2m
(px

2 + py
2 + pz

2) + V (x, y, z). (6.35)

Typically we write (6.35) using the notation

H =
∑

i

p2
i

2m
+ V ({qi}), (6.36)

where p1 ≡ px, q1 ≡ x, etc. This notation emphasizes that the pi and the qi are generalized
coordinates. For example, in some systems p can represent the angular momentum and q can
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represent an angle. For a system of N particles in three dimensions, the sum in (6.36) runs from
1 to 3N , where 3N is the number of degrees of freedom.

The methods for constructing the generalized momenta and the Hamiltonian are described
in standard classical mechanics texts. The time dependence of the generalized momenta and
coordinates is given by

ṗi ≡
dpi

dt
= −∂H

∂qi
(6.37a)

q̇i ≡
dqi

dt
=

∂H

∂pi
(6.37b)

Check that (6.37) leads to the usual form of Newton’s second law by considering the simple example
of a single particle in a potential.

As we found in Chapter 3, an important property of conservative systems is preservation
of areas in phase space. Consider a set of initial conditions of a dynamical system that form a
closed surface in phase space. For example, if phase space is two-dimensional, this surface would
be a one-dimensional loop. As time evolves, this surface in phase space will typically change its
shape. For Hamiltonian systems the volume enclosed by this surface remains constant in time. For
dissipative systems this volume will decrease, and hence dissipative systems are not described by
a Hamiltonian. One consequence of the constant phase space volume is that Hamiltonian systems
do not have phase space attractors.

In general, the motion of Hamiltonian systems is very complex. In some systems the motion is
regular, and there is a constant of the motion (a quantity that does not change with time) for each
degree of freedom. Such a system is said to be integrable. For time independent systems an obvious
constant of the motion is the total energy. The total momentum and angular momentum are other
examples. There may be others as well. If there are more degrees of freedom than constants of
the motion, then the system can be chaotic. When the number of degrees of freedom becomes
large, the possibility of chaotic behavior becomes more likely. An important example that we will
consider in Chapter 8 is a collection of interacting particles. Their chaotic motion is essential for
the system to be described by the methods of statistical mechanics.

For regular motion the change in shape of a closed surface in phase space would be rather
uninteresting. For chaotic motion, nearby trajectories must exponentially diverge from each other,
but are confined to a finite region of phase space. Hence, there will be local stretching of the
surface accompanied by repeated folding to ensure confinement. There is another class of systems
whose behavior is in between, that is, the system behaves regularly for some initial conditions, and
chaotically for others. We will study these mixed systems in this section.

Consider the Hamiltonian for a system of N particles. If the system is integrable, there are 3N
constants of the motion. It is natural to identify the generalized momenta with these constants.
The coordinates that are associated with each of these constants will vary linearly with time. If
the system is confined in phase space, then the coordinates must be periodic. If we have just one
coordinate, we can think of the motion as being a point moving on a circle in phase space. In two
dimensions the motion is a point moving in two circles at once, that is, a point moving on the
surface of a torus. In three dimensions we can imagine a generalized torus with three circles, and
so on. If the period of motion along each circle is a rational fraction of the period of all the other
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circles, then the torus is called a resonant torus, and the motion in phase space is periodic. If the
periods are not rational fractions of each other, then the torus is called nonresonant.

If we take an integrable Hamiltonian and change it slightly, what happens to these tori?
A partial answer is given by a theorem due to Kolmogorov, Arnold, and Moser (KAM), which
states that, under certain circumstances, these tori will remain. When the perturbation of the
Hamiltonian becomes large enough, these KAM tori are destroyed.

θ

periodic
impulse

Figure 6.11: Model of a kicked rotor consisting of a rigid rod with moment of inertia I. Gravity
and friction at the pivot is ignored. The motion of the rotor is given by the standard map in (6.39).

To understand the basic ideas associated with mixed systems, we consider a simple model
known as the standard map. Consider the rotor shown in Figure 6.11. The rod has a moment of
inertia I and length L and is fastened at one end to a frictionless pivot. The other end is subjected
to a vertical periodic impulsive force of strength k/L applied at time t = 0, τ, 2τ, . . . Gravity is
ignored. The motion of the rotor can be described by the angle θ and the corresponding angular
momentum pθ. The Hamiltonian for this system can be written as

H(θ, pθ, t) =
pθ

2

2I
+ k cos θ

∑
n

δ(t − nτ). (6.38)

The term δ(t − nτ) is zero everywhere except at t = nτ ; its integral over time is unity if t = nτ is
within the limits of integration. If we use (6.37) and (6.38), it is easy to show that the corresponding
equations of motion are given by

dpθ

dt
= k sin θ

∑
n

δ(t − nτ) (6.39a)

dθ

dt
=

pθ

I
. (6.39b)

From (6.39) we see that pθ is constant between kicks (remember that gravity is assumed to be
absent), but changes discontinuously at each kick. The angle θ varies linearly with t between kicks
and is continuous at each kick.

It is convenient to know the values of θ and pθ at times just after the kick. We let θn and pn

be the values of θ(t) and pθ(t) at times t = nτ + 0+, where 0+ is a infinitesimally small positive
number. If we integrate (6.39a) from t = (n + 1)τ − 0+ to t = (n + 1)τ + 0+, we obtain

pn+1 − pn = k sin θn+1. (6.40a)

(Remember that p is constant between kicks and the delta function contributes to the integral only
when t = (n + 1)τ .) From (6.39b) we have
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θn+1 − θn = (τ/I)pn. (6.40b)

If we choose units such that τ/I = 1, we obtain the standard map

θn+1 = (θn + pn) modulo 2π, (6.41a)
pn+1 = pn + k sin θn+1. (standard map) (6.41b)

We have added the requirement in (6.41a) that the value of the angle θ is restricted to be between
zero and 2π.

Before we iterate (6.41), let us check that (6.41) represents a Hamiltonian system, that is, the
area in q-p space is constant as n increases. (Here q corresponds to θ.) Suppose we start with a
rectangle of points of length dqn and dpn. After one iteration, this rectangle will be deformed into
a parallelogram of sides dqn+1 and dpn+1. From (6.41) we have

dqn+1 = dqn + dpn (6.42a)
dpn+1 = dpn + k cos qn+1 dqn+1. (6.42b)

If we substitute (6.42a) in (6.42b), we obtain

dpn+1 = (1 + k cos qn+1) dpn + k cos qn+1 dqn. (6.43)

To find the area of a parallelogram, we take the magnitude of the cross product of the vectors
dqn+1 = (dqn, dpn) and dpn+1 = (1 + k cos qndqn, k cos qndpn). The result is dqn dpn, and hence
the area in phase space has not changed. We say that the standard map is an example of an
area-preserving map .

The qualitative properties of the standard map are explored in Problem 6.19. A summary
of its properties follows. For k = 0, the rod rotates with a fixed angular velocity determined by
the momentum pn = p0 = constant. If p0 is a rational number times 2π, then the trajectory in
phase space consists of a sequence of isolated points lying on a horizontal line (resonant tori). Can
you see why? If p0 is not a rational number times 2π or if your computer does not have sufficient
precision, then after a long enough time, the trajectory will consist of a horizontal line in phase
space. As we increase k, these horizontal lines are deformed into curves that run from q = 0 to
q = 2π, and the isolated points of the resonant tori are converted into closed loops. For some
initial conditions, the trajectories will become chaotic after the map has been iterated long enough
so that the transient behavior has ended.

Problem 6.19. The standard map

a. Write a program to iterate the standard map and plot its trajectory in phase space. Design
the program so that more than one trajectory for the same value of the parameter k can be
shown at the same time (using different colors). Choose a set of initial conditions that form a
rectangle (see Problem 4.10). Does the shape of this area change with time? What happens to
the total area?

b. Begin with k = 0 and choose an initial value of p that is a rational number times 2π. What
types of trajectories do you obtain? If you obtain trajectories consisting of isolated points, do
these points appear to shift due to numerical roundoff errors? How can you tell? What happens
if p0 is an irrational number times 2π? Remember that a computer can only approximate an
irrational number.
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c. Consider k = 0.2 and explore the nature of the phase space trajectories. What structures
appear that do not appear for k = 0? Discuss the motion of the rod corresponding to some of
the typical trajectories that you find.

d. Increase k until you first find some chaotic trajectories. How can you tell that they are chaotic?
Do these chaotic trajectories fill all of phase space? If there is one trajectory that is chaotic at
a particular value of k, are all trajectories chaotic? What is the approximate value for kc above
which chaotic trajectories appear?

We now discuss a discrete map that models the rings of the planet Saturn (see Fröyland).
The assumption is that the rings of Saturn are due to perturbations produced by Mimas, one of
Saturn’s moons, which is a distance of σ = 185.7 × 103 km from Saturn. There are two important
forces acting on objects near Saturn. The force due to Saturn can be incorporated as follows. We
know that each time Mimas completes an orbit, it traverses a total angle of 2π. Hence, the angle
θ of any other moon of Saturn relative to Mimas can be expressed as

θn+1 = θn + 2π
σ3/2

rn
3/2

, (6.44)

where rn is the radius of the orbit after n revolutions. The other important force is due to Mimas
and causes the radial distance rn to change. A discrete approximation to the radial acceleration
dvr/dt is

∆vr

∆t
≈ vr(t + ∆t) − vr(t))

∆t

≈ r(t + ∆t) − r(t)
(∆t)2

− r(t) − r(t − ∆t)
(∆t)2

=
r(t + ∆t) − 2r(t) + r(t − ∆t)

(∆t)2
. (6.45)

The acceleration equals the radial force due to Mimas. If we average over a complete period, then
a reasonable approximation for the change in rn due to Mimas is

rn+1 − 2rn + rn−1 = f(rn, θn), (6.46)

where f(rn, θn) is the radial force.
In general, the form of f(rn, θn) is very complicated. We make a major simplifying assumption

and take f to be proportional to −(rn − σ)−2 and to be periodic in θn. For simplicity, we express
this periodicity in the simplest possible way, that is, as cos θn. We also want the map to be area
conserving. These considerations lead to the following two-dimensional map:

θn+1 = θn + 2π
σ3/2

rn
3/2

(6.47a)

rn+1 = 2rn − rn−1 − a
cos θn

(rn − σ)2
. (6.47b)

The constant a for Saturn’s rings is approximately 2 × 1012 km3. We can show, using a similar
technique as before, that the volume in (r, θ) space is preserved, and hence (6.47) is a Hamiltonian
map.
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The purpose of the above discussion was only to motivate and not to derive the form of the
map (6.47). In Problem 6.20 we investigate how the map (6.47) yields the qualitative structure of
Saturn’s rings. In particular, what happens to the values of rn if the period of a moon is related
to the period of Mimas by the ratio of two integers?

Problem 6.20. A simple model of the rings of Saturn

a. Write a program to implement the map (6.47). Be sure to save the last two values of r so that
the values of rn are updated correctly. The radius of Saturn is 60.4×103 km. Express all lengths
in units of 103 km. In these units a = 2000. Plot the points (rn cos θn, rn sin θn). Choose initial
values for r between the radius of Saturn and σ, the distance of Mimas from Saturn, and find
the bands of rn values where stable trajectories are found.

b. What is the effect of changing the value of a? Try a = 200 and a = 20000 and compare your
results with part (a).

c. Vary the force function. Replace cos θ by other trigonometric functions. How do your results
change? If the changes are small, does that give you some confidence that the model has
something to do with Saturn’s rings?

L

L

2L

0

m

m

θ1

θ2

Figure 6.12: The double pendulum.

A more realistic dynamical system is the double pendulum, a system that can be demonstrated
in the laboratory. This system consists of two equal point masses m, with one suspended from a
fixed support by a rigid weightless rod of length L, and the other suspended from the first by a
similar rod (see Figure 6.12). Because there is no friction, this system is clearly an example of a
Hamiltonian system. The four rectangular coordinates x1, y1, x2, and y2 of the two masses can be
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expressed in terms of two generalized coordinates θ1, θ2:

x1 = L sin θ1 (6.48a)
y1 = 2L − L cos θ1 (6.48b)
x2 = L sin θ1 + L sin θ2 (6.48c)
y2 = 2L − L cos θ1 − L cos θ2. (6.48d)

The kinetic energy is given by

K =
1
2
m(ẋ2

1 + ẋ2
2 + ẏ2

1 + ẏ2
2) =

1
2
mL2[2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)], (6.49)

and the potential energy is given by

U = mgL(3 − 2 cos θ1 − cos θ2). (6.50)

To use Hamilton’s’s equations of motion (6.37), we need to express the sum of the kinetic energy
and potential energy in terms of the generalized momenta and coordinates. In rectangular coordi-
nates we know that the momenta are equal to pi = ∂K/∂q̇i, where for example, qi = x1 and pi is
the x-component of mv1. This prescription works for generalized momenta as well, and the gen-
eralized momentum corresponding to θ1 is given by p1 = ∂K/∂θ̇1. If we calculate the appropriate
derivatives, we can show that the generalized momenta can be written as

p1 = mL2
[
2θ̇1 + θ̇2 cos(θ1 − θ2)

]
(6.51a)

p2 = mL2
[
θ̇2 + θ̇1 cos(θ1 − θ2)

]
. (6.51b)

The Hamiltonian or total energy becomes

H =
1

2mL2

p1
2 + 2p2

2 − 2p1p2 cos(q1 − q2)
1 + sin2(q1 − q2)

+ mgL(3 − 2 cos q1 − cos q2), (6.52)

where q1 = θ1 and q2 = θ2. The equations of motion can be found by using (6.52) and (6.37).
Figure 6.13 shows a Poincaré map for the double pendulum. The coordinate p1 is plotted

versus q1 for the same total energy E = 15, but for two different initial conditions. The map
includes the points in the trajectory for which q2 = 0 and p2 > 0. Note the resemblance between
Figure 6.13 and plots for the standard map above the critical value of k, that is, there is a regular
trajectory and a chaotic trajectory for the same parameters, but different initial conditions.

Problem 6.21. Double pendulum

a. Use either the fourth-order Runge-Kutta algorithm (with ∆t = 0.003) or the second-order Euler-
Richardson algorithm (with ∆t = 0.001) to simulate the double pendulum. Choose m = 1,
L = 1, and g = 9.8. The input parameter is the total energy E. The initial values of q1 and q2

can be either chosen randomly within the interval −π < qi < π or by the user. Then set the
initial p1 = 0, and solve for p2 using (6.52) with H = E. First explore the pendulum’s behavior
by plotting the generalized coordinates and momenta as a function of time in four windows.
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Figure 6.13: Poincaré plot for the double pendulum with p1 plotted versus q1 at q2 = 0 and p2 > 0.
Two sets of initial conditions, (q1, q2, p1) = (0, 0, 0) and (1.1, 0, 0) respectively, were used to create
the plot. The initial value of the coordinate p2 is found from (6.52) by requiring that E = 15.

Consider the energies E = 1, 5, 10, 15, and 40. Try a few initial conditions for each energy.
Determine visually whether the steady state behavior is regular or appears to be chaotic. Are
there some values of E for which all the trajectories appear regular? Are there values of E for
which all trajectories appear chaotic? Are there values of E for which both types of trajectories
occur?

b. Repeat your investigations of part (a), but plot the phase space diagrams p1 versus q1 and p2

versus q2. Are these plots more useful for determining the nature of the trajectories than those
drawn in part (a)?

c. Draw the Poincaré plot with p1 plotted versus q1 only when q2 = 0 and p2 > 0. Overlay
trajectories from different initial conditions, but with the same total energy on the same plot.
Duplicate the plot shown in Figure 6.13. Then produce Poincaré plots for the values of E given
in part (a), with at least five different initial conditions per plot. Describe the different types
of behavior.

d. Is there a critical value of the total energy at which some chaotic trajectories first occur?

e. Animate the double pendulum, showing the two masses moving back and forth. Describe how
the motion of the pendulum is related to the behavior of the Poincaré plot.
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Hamiltonian chaos has important applications in physical systems such as the solar system, the
motion of the galaxies, and plasmas. It also has helped us understand the foundation for statistical
mechanics. One of the most fascinating applications has been to quantum mechanics which has
its roots in the Hamiltonian formulation of classical mechanics. A current area of interest is the
quantum analogue of classical Hamiltonian chaos. The meaning of this analogue is not obvious
because well-defined trajectories do not exist in quantum mechanics. Moreover, Schrödinger’s
equation is linear and can be shown to have only periodic and quasiperiodic solutions.

6.10 Perspective

As the many books and review articles on chaos can attest, it is impossible to discuss all aspects
of chaos in a single chapter. We will revisit chaotic systems in Chapter 13 where we introduce the
concept of fractals. We will find that one of the characteristics of chaotic dynamics is that the
resulting attractors often have an intricate geometrical structure.

The most general ideas that we have discussed in this chapter are that simple systems can
exhibit complex behavior and that chaotic systems exhibit extreme sensitivity to initial conditions.
We also have learned that computers allow us to explore the behavior of dynamical systems and
visualize the numerical output. However, the simulation of a system does not automatically lead
to understanding. If you are interested in learning more about the phenomena of chaos and the
associated theory, the suggested readings at the end of the chapter are a good place to start. We
also invite you to explore chaotic phenomenon in more detail in the following projects.

6.11 Projects

The first several projects are on various aspects of the logistic map. These projects do not exhaust
the possible investigations of the properties of the logistic map.

Project 6.22. A more accurate determination of δ and α

We have seen that it is difficult to estimate δ accurately by finding the sequence of values of bk at
which the trajectory bifurcates for the kth time. A better way to estimate δ is to compute it from
the sequence sm of superstable trajectories of period 2m−1. We already have found that s1 = 1/2,
s2 ≈ 0.80902, and s3 ≈ 0.87464. The parameters s1, s2, . . . can be computed directly from the
equation

f (2m−1)(x =
1
2
) =

1
2
. (6.53)

For example, s2 satisfies the relation f (2)(x = 1/2) = 1/2. This relation, together with the
analytical form for f (2)(x) given in (6.7), yields:

8r2(1 − r) − 1 = 0. (6.54)

If we wish to solve (6.54) numerically for s2, we need to be careful not to find the irrelevant
solutions corresponding to a lower period. In this case we can factor out the solution r = 1/2 and
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m period sm

1 1 0.500 000 000
2 2 0.809 016 994
3 4 0.874 640 425
4 8 0.888 660 970
5 16 0.891 666 899
6 32 0.892 310 883
7 64 0.892 448 823
8 128 0.892 478 091

Table 6.2: Values of the control parameter sm for the superstable trajectories of period 2m−1. Nine
decimal places are shown.

solve the resultant quadratic equation analytically to find s2 = (1 +
√

5)/4. Clearly r = s1 = 1/2
solves (6.54) with period 1, because from (6.53), f (1)(x = 1

2 ) = 4r 1
2 (1 − 1

2 ) = r = 1
2 only for

r = 1/2.

1. It is straightforward to adapt the bisection method discussed in Section 6.6. Adapt the
class RecursiveFixedPointApp to find the numerical solutions of (6.53). Good starting
values for the left-most and right-most values of r are easy to obtain. The left-most value is
r = r∞ ≈ 0.8925. If we already know the sequence s1, s2, . . . , sm, then we can estimate δ by

δm =
sm−1 − sm−2

sm − sm−1
. (6.55)

We use this estimate for δm to estimate the right-most value of r:

r
(m+1)
right =

sm − sm−1

δm
. (6.56)

We choose the desired precision to be 10−16. A summary of our results is given in Table 6.2.
Verify these results and estimate δ.

2. Use your values of sm to obtain a better estimate of α.

Project 6.23. From chaos to order
The bifurcation diagram of the logistic map (see Figure 6.2) has many interesting features that
we have not explored. For example, you might have noticed that there are several smooth dark
bands in the chaotic region for r > r∞. Use BifurcateApp to generate the bifurcation diagram
for r∞ ≤ r ≤ 1. Note that the points are not uniformly distributed in each vertical line. For
example, if we start at r = 1.0 and decrease r, there is a band that narrows and eventually splits
into two parts at r ≈ 0.9196. If you look closely, you will see that the band splits into four parts
at r ≈ 0.899. In fact, if you look closely, you will see many more bands. What type of change
occurs near the splitting (merging) of these bands)? Use IterateMap to look at the time series
of xn+1 = f(xn) for r = 0.9175. You will notice that although the trajectory looks random, it
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oscillates back and forth between two bands. This behavior can be seen more clearly if you look
at the time series of xn+1 = f (2)(xn). A detailed discussion of the splitting of the bands can be
found in Peitgen et al.

Project 6.24. Calculation of the Lyapunov spectrum
In Section 6.5 we discussed the calculation of the Lyapunov exponent for the logistic map. If a
dynamical system has a multidimensional phase space, for example, the Hénon map and the Lorenz
model, there is a set of Lyapunov exponents, called the Lyapunov spectrum, that characterize the
divergence of the trajectory. As an example, consider a set of initial conditions that forms a filled
sphere in phase space for the (three-dimensional) Lorenz model. If we iterate the Lorenz equations,
then the set of phase space points will deform into another shape. If the system has a fixed point,
this shape contracts to a single point. If the system is chaotic, then, typically, the sphere will
diverge in one direction, but become smaller in the other two directions. In this case we can define
three Lyapunov exponents to measure the deformation in three mutually perpendicular directions.
These three directions generally will not correspond to the axes of the original variables. Instead,
we must use a Gram-Schmidt orthogonalization procedure.

The algorithm for finding the Lyapunov spectrum is as follows:

1. Linearize the dynamical equations. If r is the f -component vector containing the dynamical
variables, then define ∆r as the linearized difference vector. For example, the linearized
Lorenz equations are

d∆x

dt
= −σ∆x + σ∆y (6.57a)

d∆y

dt
= −x∆z − z∆x + r∆x − ∆y (6.57b)

d∆z

dt
= x∆y + y∆x − b∆z. (6.57c)

2. Define f orthonormal initial values for ∆r. For example, ∆r1(0) = (1, 0, 0), ∆r2(0) = (0, 1, 0),
and ∆r3(0) = (0, 0, 1). Because these vectors appear in a linearized equation, they do not
have to be small in magnitude.

3. Iterate the original and linearized equations of motion. One iteration yields a new vector
from the original equation of motion and f new vectors ∆rα from the linearized equations.

4. Find the orthonormal vectors ∆r′α from the ∆rα using the Gram-Schmidt procedure. That
is,

∆r′1 =
∆r1

|∆r1|
(6.58a)

∆r′2 =
∆r2 − (∆r′1 · ∆r2)∆r′1
|∆r2 − (∆r′1 · ∆r2)∆r′1|

(6.58b)

∆r′3 =
∆r3 − (∆r′1 · ∆r3)∆r′1 − (∆r′2 · ∆r3)∆r′2∣∣∆r3 − (∆r′1 · ∆r3)∆r′1 − (∆r′2 · ∆r3)∆r′2

∣∣ . (6.58c)

It is straightforward to generalize the method to higher dimensional models.
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5. Set the ∆rα(t) equal to the orthonormal vectors ∆r′α(t).

6. Accumulate the running sum, Sα as Sα → Sα + log |∆rα(t)|.

7. Repeat steps (3)–(6) and periodically output the estimate of the Lyapunov exponents λα =
(1/n)Sα, where n is the number of iterations.

To obtain estimates for the Lyapunov spectrum that represent the steady state attractor, only
include data after the transient behavior has died out.

a. Compute the Lyapunov spectrum for the Lorenz model for σ = 16, b = 4, and r = 45.92. Try
other values of the parameters and compare your results.

b. Linearize the equations for the Hénon map and find the Lyapunov spectrum for a = 1.4 and
b = 0.3 in (6.32).

Project 6.25. A spinning magnet
Consider a compass needle that is free to rotate in a periodically reversing magnetic field which is
perpendicular to the axis of the needle. The equation of motion of the needle is given by

d2φ

dt2
= −µ

I
B0 cos ωt sinφ, (6.59)

where φ is the angle of the needle with respect to a fixed axis along the field, µ is the mag-
netic moment of the needle, I its moment of inertia, and B0 and ω are the amplitude and the
angular frequency of the magnetic field, respectively. Choose an appropriate numerical method
for solving (6.59), and plot the Poincaré map at time t = 2πn/ω. Verify that if the parame-
ter λ =

√
2B0µ/I/ω2 > 1, then the motion of the needle exhibits chaotic motion. Briggs (see

references) discusses how to construct the corresponding laboratory system and other nonlinear
physical systems.
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Figure 6.14: (a) Geometry of the stadium billiard model. (b) Geometry of the Sinai billiard model.
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Project 6.26. Billiard models
Consider a two-dimensional planar geometry in which a particle moves with constant velocity along
straight line orbits until it elastically reflects off the boundary. This straight line motion occurs in
various “billiard” systems. A simple example of such a system is a particle moving with fixed speed
within a circle. For this geometry the angle between the particle’s momentum and the tangent to
the boundary at a reflection is the same for all points.

Suppose that we divide the circle into two equal parts and connect them by straight lines of
length L as shown in Figure 6.14a. This geometry is called a stadium billiard. How does the motion
of a particle in the stadium compare to the motion in the circle? In both cases we can find the
trajectory of the particle by geometrical considerations. The stadium billiard model and a similar
geometry known as the Sinai billiard model (see Figure 6.14b) have been used as model systems
for exploring the foundations of statistical mechanics. There also is much interest in relating the
behavior of a classical particle in various billiard models to the solution of Schrödinger’s equation
for the same geometries.

a. Write a program to simulate the stadium billiard model. Use the radius r of the semicircles as
the unit of length. The algorithm for determining the path of the particle is as follows:

1. Begin with an initial position (x0, y0) and momentum (px0, py0) of the particle such that
|p0| = 1.

2. Determine which of the four sides the particle will hit. The possibilities are the top and
bottom line segments and the right and left semicircles.

3. Determine the next position of the particle from the intersection of the straight line defined
by the current position and momentum, and the equation for the segment where the next
reflection occurs.

4. Determine the new momentum, (p′x, p′y), of the particle after reflection such that the angle
of incidence equals the angle of reflection. For reflection off the line segments we have
(p′x, p′y) = (px,−py). For reflection off a circle we have

p′x =
[
y2 − (x − xc)2

]
px − 2(x − xc)ypy (6.60a)

p′y = −2(x − xc)ypx +
[
(x − xc)2 − y2

]
py, (6.60b)

where (xc, 0) is the center of the circle. (Note that the momentum px rather than p′x is on
the right-hand side of (6.60b). Also remember that all lengths are scaled by the radius of
the circle.)

5. Repeat steps (2)–(4).

b. Determine if the particle dynamics is chaotic by estimating the largest Lyapunov exponent. One
way to do so is to start two particles with almost identical positions and/or momenta (varying
by say 10−5). Compute the difference ∆s of the two phase space trajectories as a function of
the number of reflections n, where ∆s is defined by

∆s =
√

|r1 − r2|2 + |p1 − p2|2. (6.61)
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Do the calculation for L = 1. The Lyapunov exponent can be found from a semilog plot of ∆s
versus n. Why does the exponential growth in ∆s stop for sufficiently large n? Repeat your
calculation for different initial conditions and average your values of ∆s before plotting. Repeat
the calculation for L = 0.1, 0.5, and 2.0 and determine if your results depend on L.

c. Another test for the existence of chaos is the reversibility of the motion. Reverse the momentum
after the particle has made n reflections, and let the drawing color equal the background color
so that the path can be erased. What limitation does roundoff error place on your results?
Repeat this simulation for L = 1 and L = 0.

d. Place a small hole of diameter d in one of the circular sections of the stadium so that the
particle can escape. Choose L = 1 and set d = 0.02. Give the particle a random position and
momentum, and record the time when the particle escapes through the hole. Repeat for at
least 104 particles and compute the fraction of particles S(n) remaining after a given number
of reflections n. The function S(n) will decay with n. Determine the functional dependence of
S on n, and calculate the characteristic decay time if S(n) decays exponentially. Repeat for
L = 0.1, 0.5, and 2.0. Is the decay time a function of L? Does S(n) decays exponentially for
the circular billiard model (L = 0) (see Bauer and Bertsch)?

e. Choose an arbitrary initial position for the particle in a stadium with L = 1, and a small hole as
in part (d). Choose at least 5000 values of the initial value px0 uniformly distributed between
0 and 1. Choose py0 so that |p| = 1. Plot the escape time versus px0, and describe the visual
pattern of the trajectories. Then choose 5000 values of px0 in a smaller interval centered about
the value of px0 for which the escape time was greatest. Plot these values of the escape time
versus px0. Do you see any evidence of self-similarity?

f. Repeat steps (a)–(e) for the Sinai billiard geometry.

Project 6.27. Mode locking and the circle map
The driven, damped pendulum can be approximated by a one-dimensional difference equation for
a range of amplitudes and frequencies of the driving force. This difference equation is known as
the circle map and is given by

θn+1 =
(
θn + Ω − K

2π
sin 2πθn

)
. (modulo 1) (6.62)

The variable θ represents an angle, and Ω represents a frequency ratio, the ratio of the natural
frequency of the pendulum to the frequency of the periodic driving force. The parameter K is
a measure of the strength of the nonlinear coupling of the pendulum to the external force. An
important quantity is the winding number which is defined as

W = lim
m→∞

1
m

m−1∑
n=0

∆θn, (6.63)

where ∆θn = Ω − (K/2π) sin 2πθn.

a. Consider the linear case, K = 0. Choose Ω = 0.4 and θ0 = 0.2 and determine W . Verify that
if Ω is a ratio of two integers, then W = Ω and the trajectory is periodic. What is the value
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of W if Ω =
√

2/2, an irrational number? Verify that W = Ω and that the trajectory comes
arbitrarily close to any particular value of θ. Does θn ever return exactly to its initial value?
This type of behavior of the trajectory is termed quasiperiodic.

b. For K > 0, we will find that W 	= Ω and “locks” into rational frequency ratios for a range of
values of K and Ω. This type of behavior is called mode locking. For K < 1, the trajectory is
either periodic or quasiperiodic. Estimate the value of W for K = 1/2 and values of Ω in the
range O < Ω ≤ 1. The widths in Ω of the various mode-locked regions where W is fixed increase
with K. Consider other values of K, and draw a diagram in the K-Ω plane (0 ≤ K, Ω ≤ 1)
so that those areas corresponding to frequency locking are shaded. These shaded regions are
called Arnold tongues.

c. For K = 1, all trajectories are frequency-locked periodic trajectories. Fix K at K = 1 and
determine the dependence of W on Ω. The plot of the W versus Ω for K = 1 is called the
Devil’s staircase.

Project 6.28. Chaotic scattering
In Chapter 5 we discussed the classical scattering of particles off a fixed target, and found that
the differential cross section for a variety of interactions is a smoothly varying function of the
scattering angle. That is, a small change in the impact parameter b leads to a small change in the
scattering angle θ. There is much current interest in cases where a small change in b leads to large
changes in θ. Such a phenomenon is called chaotic scattering, because of the sensitivity to initial
conditions that is characteristic of chaos. The study of chaotic scattering is relevant to the design
of electronic nanostructures, because many experimental structures exhibit this type of scattering.

A typical scattering model consists of a target composed of a group of fixed hard disks and
a scatterer consisting of a point particle. We trace the path of the scatterer as it bounces off the
disks, and measure θ and the time of flight as a function of the impact parameter b. If a particle
bounces inside the target region before leaving, the time of flight can be very long. There are even
some trajectories for which the particle never leaves the target region.

Because it is difficult to monitor a trajectory that bounces back and forth between the hard
disks, we instead consider a two-dimensional map that contains the key features of chaotic scat-
tering (see Yalcinkaya and Lai for further discussion). The map is given by

xn+1 = a
[
xn − 1

4
(xn + yn)2

]
, (6.64a)

and

yn+1 =
1
a

[
yn +

1
4
(xn + yn)2

]
, (6.64b)

where a is a parameter. The target region is centered at the origin. In an actual scattering
experiment, the relation between (xn+1, yn+1) and (xn, yn) would be much more complicated, but
the map (6.64) captures most of the important features of realistic chaotic scattering experiments.
The iteration number n is analogous to the number of collisions of the scattered particle off the
disks. When xn or yn is significantly different from zero, the scatterer has left the target region.

a. Write a program to iterate the map (6.64). Let a = 8.0 and y0 = −0.3. Choose 104 initial
values of x0 uniformly distributed on the interval 0 < x0 < 0.1. Determine the time T (x0),
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the number of iterations for which xn ≤ −5.0. After this time, xn rapidly moves to −∞. Plot
T (x0) versus x0. Then choose 104 initial values in a smaller interval centered about a value
of x0 for which T (x0) > 7. Plot these values of T (x0) versus x0. Do you see any evidence of
self-similarity?

b. A trajectory is said to be uncertain if a small change ε in x0 leads to a change in T (x0). We
expect that the number of uncertain trajectories, N , will depend on a power of ε, that is,
N ∼ εα. Determine N(ε) for ε = 10−p with p = 2 to 7 using the values of x0 in part (a). Then
determine the uncertainty dimension 1 − α from a log-log plot of N versus ε. Repeat these
measurements for other values of a. Does α depend on a?

c. Choose 4×104 initial conditions in the same interval as in part (a) and determine the number of
trajectories, S(n), that have not yet reached xn = −5 as a function of the number of iterations
n. Plot lnS(n) versus n and determine if the decay is exponential. It is possible to obtain
algebraic decay for values of a less than approximately 6.5.

d. Let a = 4.1 and choose 100 initial conditions uniformly distributed in the region 1.0 < x0 < 1.05
and 0.60 < y0 < 0.65. Are there any trajectories that are periodic and hence have infinite escape
times? Due to the accumulation of roundoff error, it is possible to find only finite, but very long
escape times. These periodic trajectories form closed curves, and the regions enclosed by them
are called KAM surfaces.

Project 6.29. Chemical reactions
In Project 4.17 we discussed how chemical oscillations can occur when the reactants are continu-
ously replenished. In this project we introduce a set of chemical reactions that exhibits the period
doubling route to chaos. Consider the following reactions (see Peng et al.):

P → A (6.65a)
P + C → A + C (6.65b)

A → B (6.65c)
A + 2B → 3B (6.65d)

B → C (6.65e)
C → D. (6.65f)

Each of the above reactions has an associated rate constant. The time dependence of the concen-
trations of A, B, and C is given by:

dA

dt
= k1P + k2PC − k3A − k4AB2 (6.66a)

dB

dt
= k3A + k4AB2 − k5B (6.66b)

dC

dt
= k4B − k5C. (6.66c)

We assume that P is held constant by replenishment from an external source. We also assume
the chemicals are well mixed so that there is no spatial dependence. In Section 7.8 we discuss the
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effects of spatial inhomogeneities due to molecular diffusion. Equations (6.65) can be written in a
dimensionless form as

dX

dτ
= c1 + c2Z − X − XY 2 (6.67a)

c3
dY

dτ
= X + XY 2 − Y (6.67b)

c4
dZ

dτ
= Y − Z, (6.67c)

where the ci are constants, τ = k3t, and X, Y , and Z are proportional to A, B, and C, respectively.

a. Write a program to solve the coupled differential equations in (6.67). We suggest using a
fourth-order Runge-Kutta algorithm with an adaptive step size. Plot lnY versus the time τ .

b. Set c1 = 10, c3 = 0.005, and c4 = 0.02. The constant c2 is the control parameter. Consider
c2 = 0.10 to 0.16 in steps of 0.005. What is the period of lnY for each value of c2?

c. Determine the values of c2 at which the period doublings occur for as many period doublings
as you can determine. Compute the constant δ (see (6.9)) and compare its value to the value
of δ for the logistic map.

d. Make a bifurcation diagram by taking the values of lnY from the Poincaré plot at X = Z and
plotting them versus the control parameter c2. Do you see a sequence of period doublings?

e. Use three-dimensional graphics to plot the trajectory of (6.67) with lnX, lnY , and lnZ as the
three axes.

Describe the attractors for some of the cases considered in part (a). chaos!period doubling!chemical
reactions—)

Appendix 6A: Stability of the Fixed Points of the Logistic
Map

In the following, we derive analytical expressions for the fixed points of the logistic map. The
fixed-point condition is given by

x∗ = f(x∗). (6.68)

From (6.5) this condition yields the two fixed points

x∗ = 0 and x∗ = 1 − 1
4r

. (6.69)

Because x is restricted to be positive, the only fixed point for r < 1/4 is x = 0. To determine the
stability of x∗, we let

xn = x∗ + εn, (6.70a)

and
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xn+1 = x∗ + εn+1. (6.70b)

Because |εn| � 1, we have

xn+1 = f(x∗ + εn) ≈ f(x∗) + εnf ′(x∗)
= x∗ + εnf ′(x∗). (6.71)

If we compare (6.70b) and (6.71), we obtain

εn+1/εn = f ′(x∗). (6.72)

If |f ′(x∗)| > 1, the trajectory will diverge from x∗ because |εn+1| > |εn|. The opposite is
true for |f ′(x∗)| < 1. Hence, the local stability criteria for a fixed point x∗ are

1. |f ′(x∗)| < 1, x∗ is stable;

2. |f ′(x∗)| = 1, x∗ is marginally stable;

3. |f ′(x∗)| > 1, x∗ is unstable.

If x∗ is marginally stable, the second derivative f ′′(x) must be considered, and the trajectory
approaches x∗ with deviations from x∗ inversely proportional to the square root of the number of
iterations.

For the logistic map the derivatives at the fixed points are respectively

f ′(x = 0) =
d

dx
[4rx(1 − x)]

∣∣∣∣
x=0

= 4r, (6.73)

and

f ′(x = x∗) =
d

dx
[4rx(1 − x)]

∣∣∣∣
x=1−1/4r

= 2 − 4r. (6.74)

It is straightforward to use (6.73) and (6.74) to find the range of r for which x∗ = 0 and x∗ = 1−1/4r
are stable.

If a trajectory has period two, then f (2)(x) = f(f(x)) has two fixed points. If you are
interested, you can solve for these fixed points analytically. As we found in Problem 6.2, these
two fixed points become unstable at the same value of r. We can derive this property of the fixed
points using the chain rule of differentiation:

d

dx
f (2)(x)

∣∣
x=x0

=
d

dx
f(f(x))

∣∣
x=x0

= f ′(f(x0))f ′(x)
∣∣
x=x0

. (6.75)

If we substitute x1 = f(x0), we can write

d

dx
f(f(x))

∣∣
x=x0

= f ′(x1)f ′(x0). (6.76)

In the same way, we can show that

d

dx
f (2)(x)

∣∣
x=x1

= f ′(x0)f ′(x1). (6.77)
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We see that if x0 becomes unstable, then |f (2)′(x0)| > 1 as does |f (2)′(x1)|. Hence, x1 also is
unstable at the same value of r, and we conclude that both fixed points of f (2)(x) bifurcate at the
same value of r, leading to an trajectory of period 4.

From (6.74) we see that f ′(x = x∗) = 0 when r = 1/2 and x∗ = 1/2. Such a fixed point is said
to be superstable, because as we found in Problem 6.4, convergence to the fixed point is relatively
rapid. In general, superstable trajectories occur whenever one of the fixed points is at x∗ = 1/2.

Appendix 6B: Finding the Roots of a Function

The roots of a function f(x) are the values of the variable x for which the function f(x) is zero.
Even an apparently simple equation such as

f(x) = tanx − x − c = 0. (6.78)

where c is a constant cannot be solved analytically for x.
Whatever the function and whatever the approach to root finding, the first step should be

to learn as much as possible about the function. We will plot the functions to help us guess the
approximate locations of the roots.

Newton’s (or the Newton-Raphson) method is based on replacing the function by the first
two terms of the Taylor expansion of f(x) about the root x. If our initial guess for the root is
x0, we can write f(x) ≈ f(x0) + (x − x0)f ′(x0). If we set f(x) equal to zero and solve for x, we
find x = x0 − f(x0)/f ′(x0). If we have made a good choice for x0, the resultant value of x should
be closer than x0 to the root. The general procedure is to calculate successive approximations as
follows:

xn+1 = xn − f(xn)
f ′(xn)

. (6.79)

If this series converges, it converges very quickly. However, if the initial guess is poor or if the
function has closely spaced multiple roots, the series may not converge. The successive iterations
of Newton’s method is an example of a map. Newton’s method also works with complex functions
as we will see in the following problem.

Problem 6.30. Cube roots
Consider the function f(z) = z3 − 1, where z = x + iy, and f ′(z) = z2. Map the range of
convergence of (6.79) in the region [−2 < x < 2,−2 < y < 2] in the complex plane. Color the
starting z value red, green, or blue depending on the root to which the initial guess converges. If
the trajectory does not converge, color the starting point black. For more insight add a mouse
handler to your program so that if you click on your plot, the sequence of iterations starting from
the point where you clicked will be shown.

The following problem discusses a situation that typically arises in courses on quantum me-
chanics.



CHAPTER 6. THE CHAOTIC MOTION OF DYNAMICAL SYSTEMS 196

Problem 6.31. Energy levels in a finite square well
The quantum mechanical energy levels in the one-dimensional finite square well can be found by
solving the relation:

ε tan ε =
√

ρ2 − ε2, (6.80)

where ε =
√

mEa2/2� and ρ =
√

mV0a2/2� are defined in terms of the particle mass m, the
particle energy E, the width of the well a, and the depth of the well V0. The function ε tan ε has
zeros at ε = (0, π, 2π, . . . ) and asymptotes at ε = (0, π/2, 3π/2, 5π/2 . . . ). The function

√
ρ − ε2

is a quarter circle of radius ρ. Write a program to plot these two functions with ρ = 3 and then
use Newton’s method to determine the roots of (6.80). Find the value of ρ and thus V0, such that
below this value there is only one energy level and above this value there is more than one. At
what value of ρ do three energy levels first appear?

In Section 6.6 we introduced the bisection root finding algorithm. This algorithm is imple-
mented in the Root class in the numerics package. It can be used with any function.

Listing 6.6: The bisection method is defined in the Root class in the numerics package.
public static double bisection(final Function f, double x1, double x2, final double tolerance) {

int count = 0;
int maxCount = (int) (Math.log(Math.abs(x2 − x1)/tolerance)/Math.log(2));
maxCount = Math.max(MAX ITERATIONS, maxCount) + 2;
double y1 = f.evaluate(x1), y2 = f.evaluate(x2);
if (y1 ∗ y2 > 0) { // y1 and y2 must have opposite sign

return Double.NaN; // interval does not contain a root
}
while (count < maxCount) {

double x = (x1 + x2) / 2;
double y = f.evaluate(x);
if (Math.abs(y) < tolerance) return x;
if (y ∗ y1 > 0) { // replace the end−point that has the same sign

x1 = x;
y1 = y;

}
else {

x2 = x;
y2 = y;

}
count++;

}
return Double.NaN; // did not converge in max iterations

}

There are many root-finding techniques but all can be made to fail with appropriately chosen
functions. The bisection algorithm is guaranteed to converge if you can find an interval where the
function changes sign. However, it is slow. Newton’s algorithm is very fast, but may not converge.
We design an algorithm in the following problem that combines these two approaches.
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Problem 6.32. Finding roots
Modify Newton’s algorithm to keep track of the interval between the most negative and the most
positive values of x while iterating. If the solution jumps outside this interval, interrupt Newton’s
method and use the bisection algorithm for one iteration. Test the root at the end of the iterative
process to check that the algorithm actually found a root. Test your algorithm on the function in
(6.78).
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