
Chapter 3

Simulating Particle Motion

c©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
8 March 2005

We discuss several numerical methods needed to simulate the motion of particles using Newton’s
laws and introduce interfaces, an important Java construct that makes it possible for unrelated
objects to declare that they perform the same methods.

3.1 Modified Euler algorithms

To motivate the need for a general differential equation solver we discuss why the simple Euler
algorithm is insufficient for many problems. The Euler algorithm assumes that the velocity and
acceleration do not change significantly during the time step ∆t. Thus, to achieve an acceptable
solution, the time step ∆t must be chosen to be sufficiently small. However, if we make ∆t too
small, we run into two problems. First, as we do more and more iterations, the round-off error due
to the finite precision of any floating point number will accumulate and eventually the solution
will become inaccurate. Also, the greater the number of iterations, the greater the computer time
required for the program to finish. In addition to these problems, the Euler algorithm is unstable for
many systems, which means that errors accumulate exponentially, and thus the solution becomes
inaccurate very quickly. For these reasons more accurate and stable numerical algorithms are
necessary.

To illustrate these considerations, we make a very simple change in the Euler algorithm and
replace (2.6) by

v(t + ∆t) = v(t) +
F (t)
m

∆t (3.1a)

y(t + ∆t) = y(t) + v(t + ∆t)∆t. (3.1b)

The only difference between this algorithm and the Euler algorithm that we introduced in Chapter 2
is that the computed velocity at the end of the interval instead of at the beginning is used to

46

CHAPTER 3. SIMULATING PARTICLE MOTION 47

compute the new position. As we found in Problem 2.12 and will see in more detail in Problem 3.1,
this modified Euler algorithm is significantly better for simulating oscillating systems. We refer to
this algorithm as the Euler-Cromer algorithm.

Problem 3.1. Comparing Euler algorithms

a. For the simple harmonic oscillator F = −kx(t). Write a class that extends Particle and models
a simple harmonic oscillator. The exact solution for the displacement x is

x(t) = x(0) cos(ω0t) −
v(0)
ω0

sin(ω0t), (3.2)

where ω2
0 = k/m. Show that (3.2) is the exact solution by substituting it into Newton’s second

law, md2x/dt2 = −kx.

b. For simplicity, choose units such that k = 1 and m = 1. Determine the numerical error in the
position of the simple harmonic oscillator after the particle has evolved for t = 100. First use
the original Euler algorithm. Is the Euler algorithm stable for this system? Change the final
time to 1000 and repeat.

c. Repeat part (b) using the Euler-Cromer algorithm. Does this algorithm work better? If so, in
what way?

It might occur to you that it would be better to compute the velocity at the middle of the
interval rather than at the beginning or at the end of the interval. The Euler-Richardson algorithm
is based on this idea. This algorithm is particularly useful for velocity-dependent forces, but does
as well as other simple algorithms for forces that do not depend on the velocity. The algorithm
consists of using the Euler algorithm to find the intermediate position ymid and velocity vmid at a
time tmid = t + ∆t/2. Then we compute the force, F (ymid, vmid, tmid) and the acceleration amid at
t = tmid. The new position yn+1 and velocity vn+1 at time tn+1 are found using vmid and amid.
We summarize the Euler-Richardson algorithm as:

an = F (yn, vn, tn)/m (3.3a)

vmid = vn +
1
2
an∆t, (3.3b)

ymid = yn +
1
2
vn∆t, (3.3c)

amid = F (ym, vm, t +
1
2
∆t)/m, (3.3d)

and

vn+1 = vn + amid∆t. (3.4a)
yn+1 = yn + vmid∆t. (Euler-Richardson algorithm) (3.4b)

Although we need to do twice as many computations per time step, the Euler-Richardson
algorithm is much faster than the Euler algorithm because we can make the time step larger and
still obtain better accuracy than with either the Euler or Euler-Cromer algorithms. A derivation
of the Euler-Richardson algorithm is given in Appendix 3. You are asked to implement the Euler-
Cromer and Euler-Richardson algorithms in Exercise 3.2.

CHAPTER 3. SIMULATING PARTICLE MOTION 48

Exercise 3.2. Algorithm test

a. Extend FallingParticle to a new class that implements the Euler-Richardson algorithm. All
you need to do is write a new step method.

b. Determine the error in the position when the particle hits the ground as a function of ∆t using
∆t = 0.08, 0.04, 0.02, and 0.01. How do your results compare with the Euler algorithm? How
does the error in the velocity depend on ∆t for each algorithm?

c. Repeat part (b) for the simple harmonic oscillator, computing the error at t ≈ 1000.

As we gain more experience simulating various physical systems, we will learn that no single
algorithm for solving Newton’s equations of motion numerically is superior under all conditions.
The Open Source Physics library includes classes that can be used to solve systems of coupled
first-order differential equations using different algorithms. To understand how to use this library,
we first discuss interfaces and then arrays.

3.2 Interfaces

We have seen how to combine data and methods into a class. A class definition encapsulates this
information in one place, thereby simplifying the task of the programmer who needs to modify the
class and the user who needs to understand or use the class.

Another tool for data abstraction is known as an interface. An interface specifies methods
that an object performs, but does not implement these methods. In other words, an interface is a
place holder for methods that must be written in any class that uses it. An example of an interface
is the Function interface in the numerics package:

package org.opensourcephysics.numerics;

public interface Function {
public double evaluate (double x);

}

The interface contains one method, evaluate, listed with its argument, but no body for this
method. Notice that the definition uses the keyword interface rather then the keyword class.

Because an interface is not tied to any given class, any class can implement a given interface.
For example, we can define a class that encapsulates a quadratic polynomial as follows:

public class Quadratic implements Function {
double a,b,c;

public Quadratic(double a, double b, double c) {
this.a = a;
this.b = b;
this.c = c;

}

public double evaluate (double x){

CHAPTER 3. SIMULATING PARTICLE MOTION 49

return a∗x∗x + b∗x + c;
}

}

Quadratic polynomials can now be instantiated and used as needed.

Function f = new Quadratic(1,0,2);
for(int x = 0; x < 10; x++){

System.out.println(”x = ” + x + ” f(x)” + f.evaluate(x));
}

By using the Function interface, we can write methods that use this mathematical abstraction.
For example, we can program a simple plotting algorithm as follows:

public void plotFunction(Function f, double xmin, double xmax) {
PlotFrame frame = new PlotFrame(”x”,”y”, ”Function”);
double n = 100; // number of points in plot
double x = xmin, dx = (xmax − xmin)/(n−1);
for (int i = 0; i < 100; i++) {

frame.append(0, x, f .evaluate ());
x += dx;

}
frame.show(); // display frame on screen

}

We also can compute an approximate numerical derivative based on the usual definition found
in calculus textbooks.

public double derivative(Function f, double x, double dx) {
return (f.evaluate(x+dx) − f.evaluate(x))/dx;

}

This way of approximating a derivative is not optimum, but that is not the point here. (A better
approximation is given in Problem 3.9.) The important point here is that interfaces enable us to
define the abstract concept y = f(x) and to write code that uses this abstraction.

Exercise 3.3. Function interface

a. Define a class that encapsulates the Gaussian function f(u) = ae−bu2
.

b. Write a short class that plots Gaussian functions with b = 1 and b = 4. Take a = 1 for simplicity.

c. Write a short program that plots the derivatives of the functions used in part (b) without using
the analytic expression for the derivative of a Gaussian.

Although interfaces are very useful for software developers, you will not need to define in-
terfaces to do the problems in this book. However, you will use several interfaces, including the
Function interface, that are defined in the Open Source Physics library. We describe some of the
more important interfaces in the following sections.

CHAPTER 3. SIMULATING PARTICLE MOTION 50

3.3 Drawing

An interface that we will use repeatedly is the Drawable interface:

package org.opensourcephysics.display;
import java.awt.∗;

public interface Drawable {
public void draw (DrawingPanel panel, Graphics g);

}

Notice that this interface contains only one method, draw. Objects that implement this interface
are rendered in a DrawingPanel after they are added to a Open Source Physics DisplayFrame.
As we learned in Chapter 2, a DisplayFrame is made of components including a title bar, menu,
and buttons near the corner for minimizing and closing the frame. The interior of the frame is
occupied by a DrawingPanel which is an Open Source Physics class on which graphics can be
displayed. Graphics is a Java class that contains methods for drawing basic geometrical objects
such as lines, rectangles and ovals on the panel. Any class can implement the Drawable interface.
For example, the Circle class, which we used in Chapter 2, implements Drawable. We now define
a class that draws a rectangle using the pixel-based drawing API that was originally introduced in
Java. Subsequent examples will define rectangles using world coordinates.

Listing 3.1: PixelRectangle.
package org.opensourcephysics.sip.ch03;
import java.awt.∗;
import org.opensourcephysics.display.∗;

public class PixelRectangle implements Drawable {
int left , top; // position of rectangle in pixels
int width, height ; // size of rectangle in pixels
PixelRectangle(int left , int top, int width, int height) {

this. left = left ; // location of left edge
this.top = top; // location of top edge
this.width = width;
this.height = height;

}

// The following method implements the Drawable interface.
public void draw(DrawingPanel panel, Graphics g) {

g.setColor(Color.RED); // set drawing color to red
g. fillRect (left , top, width, width); // draws rectangle

}
}

A simple way to draw is to invoke primitive methods in the Java Graphics class such as fillRect.
This method draws a filled rectangle using pixel coordinates with its origin in the top left corner
of the frame’s interior (the drawing panel).

To use PixelRectangle we instantiate an object and add it to a DisplayFrame as shown in
Listing 3.2.

CHAPTER 3. SIMULATING PARTICLE MOTION 51

Listing 3.2: Listing of DrawingApp.
package org.opensourcephysics.sip.ch03;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;

public class DrawingApp extends AbstractCalculation {
DisplayFrame frame = new DisplayFrame(”x”, ”y”, ”Graphics”);
public DrawingApp() {

frame.setPreferredMinMax(0, 10, 0, 10);
}

public void calculate() {
// gets rectangle location
int left = control . getInt(”xleft”);
int top = control.getInt(”ytop”);
// gets rectangle dimensions
int width = control.getInt(”width”);
int height = control . getInt(”height”);
Drawable rectangle = new PixelRectangle(left, top, width, height);
frame.addDrawable(rectangle);
// frame is automatically rendered after Calculate button is pressed

}

public void reset() {
frame.clearDrawables(); // removes drawables added by the user
control .setValue(”xleft” , 60); // sets default input values
control .setValue(”ytop”, 70);
control .setValue(”width”, 100);
control .setValue(”height” , 150);

}

public static void main(String[] args) { // creates a calculation control structure using this class
CalculationControl.createApp(new DrawingApp());

}
}

Note that multiple rectangles are drawn in the order that they are added to the drawing frame.
Rectangles or portion of rectangles may be hidden because they are outside the drawing panel.

Although we can use pixel-based drawing methods to produce visualizations, creating even
a simple graph in such an environment requires much tedious programming. The DrawingPanel
object passed to the draw method simplifies this task by providing a system of world coordinates
that enable us to specify location and size in physical units rather than pixels. In the World-
Rectangle class shown in the following, two methods from the DrawingPanel class are used to
convert pixels to world coordinates. In particular, note how lengths in the vertical direction are
calculated.

Listing 3.3: WorldRectangle.
package org.opensourcephysics.sip.ch03;

CHAPTER 3. SIMULATING PARTICLE MOTION 52

import java.awt.∗;
import org.opensourcephysics.display.∗;

public class WorldRectangle implements Drawable {
double left, top; // position of rectangle in world coordinates
double width, height; // size of rectangle in world units
WorldRectangle(double left, double top, double width, double height) {

this. left = left ; // location of left edge
this.top = top; // location of top edge
this.width = width;
this.height = height;

}

// The following method implements the Drawable interface.
public void draw(DrawingPanel panel, Graphics g) {

g.setColor(Color.RED); // set drawing color to red
// convert from world to pixel coordinates
int leftPixels = panel.xToPix(left);
int topPixels = panel.yToPix(top);
int widthPixels = panel.xToPix(width)−panel.xToPix(0);
int heightPixels = panel.yToPix(0)−panel.yToPix(height); // note y increases down
g. fillRect (leftPixels , topPixels , widthPixels, heightPixels); // draws rectangle

}
}

Exercise 3.4. Simple graphics

a. Run DrawingApp and test how the different inputs change the appearance of the rectangle.
Note that the pixel coordinates that are inputted from the control frame are not the same as
the world coordinates displayed on the axes.

b. Read the documentation for the Graphics class, and modify Rectangle to draw lines, filled
ovals, and strings of characters. Also, experiment with different colors. The Java documentation
is available online at <java.sun.com/reference/api/> and is a part of most development
environments.

c. Modify DrawingApp to use the WorldRectangle class and repeat part (a). Note that the axes
coordinates and your inputs are now consistent.

d. Define and test a TextMessage class to display text messages in a drawing panel using world
coordinates to position the text.

Although simple geometric shapes such as circles and rectangles often are all that is needed
to visualize many simple physical models, Java provides a rich drawing environment based on the
Java 2D Application Programming Interface (API) which can render arbitrary geometric shapes,
images, and text using composition and matrix-based transformations. We use a subset of these
features to define the DrawableShape and InteractiveShape classes in the display package of
Open Source Physics. These objects are created and added to drawings as follows:

CHAPTER 3. SIMULATING PARTICLE MOTION 53

DisplayFrame frame = new DisplayFrame(”x”,”y”,”Graphics”);
frame.setPreferredMinMax(−10,10,−10,10);
// rectangle with (left ,top) = (−3,−4) and (width,height) = (4,5) in world units
InteractiveShape rectangle = InteractiveShape.createRectangle(−3, −4, 4, 5);
rectangle .setTheta(Math.PI/4);
Color fillColor = new Color(255,128,128,128);
Color edgeColor = new Color(255,0,0,255);
rectangle .setMarkerColor(fillColor ,edgeColor);
frame.addDrawable(rectangle);

Exercise 3.5. Shapes
Examine the DrawableShape and InteractiveShape classes in the display package. How many
static “create” methods are defined in these classes? Write a short program to create and display
these shapes. Note that you can drag InteractiveShape objects after they are added to the
drawing frame.

We emphasize that interfaces allow a programmer to define a class that has almost any type
of behavior, as long as the class implements the appropriate interfaces. (A class can implement
more than one interface.) In the examples and exercises, we created rectangles using three different
classes. Each implementation of a Drawable rectangle defined a different draw method. Notice
that in the display frame’s definition of addDrawable, the argument is specified to be the interface
Drawable rather than a specific class. Thus, any class that implements Drawable can be an argu-
ment of addDrawable. Without the interface construct we would need to write many addDrawable
methods, one for each type of class.

3.4 Specifying the state of a system using arrays

Imagine writing the code for the numerical solution of the motion of two particles in two dimensions
using the Euler-Richardson algorithm. The resulting code would be quite complicated and difficult
to debug. In addition, for each problem we would need to write and debug new code. The
complications become even worse for better algorithms, most of which are algebraically more
complex. Moreover, the numerical solution of simple first-order differential equations is a well
developed part of numerical analysis, and thus there is little reason to worry about the details of
these algorithms, now that we know how they work in general.

In Section 3.5 we will introduce an interface that is part of the Open Source Physics library
for solving the differential equations associated with Newton’s equations of motion. Before we do
so we discuss a few features of arrays that we will need.

As we discussed on page 39, ordered lists of data are most easily stored in arrays. For example,
if we have an array variable named x, then we can access its first element as x[0], its second element
as x[1], etc. All elements must be of the same data type, but they can be just about anything:
primitive data types such as doubles or integers, objects, or even other arrays. The following
statements show how arrays of primitive data types are defined and instantiated:

double[] x; // x defined to be an array of doubles
double x[]; // same meaning as above

CHAPTER 3. SIMULATING PARTICLE MOTION 54

x = new double[32]; // x array created with 32 elements
double[] y = new double[32]; // y array defined and created in one step
int [] num = new int[100]; // array of 100 integers
double[][] sigma = new double[3][3]; // 3 x 3 array of doubles

We will adopt the syntax double[] x instead of double x[], although both forms are acceptable.
Note that the array index starts at zero and the largest index is one less than the number of
elements. As shown in Chapter 2, arrays can contain objects such as bouncing balls.

BouncingBall [] ball = new BouncingBall[2]; // array of two BouncingBall objects
ball [0] = new BouncingBall(0,10.0,0,5.0); // creates first ball
ball [1] = new BouncingBall(0,−13.0,0,7.0); // creates second ball

The first statement allocates an array of BouncingBall objects, each of which is initialized to null.
We must still create each object in the array using the new operator.

The numerical solution of an ordinary differential equation (frequently called an ODE) begins
by expressing the equation as several first-order differential equations. If the highest derivative in
the ODE is order n (for example, dnx/dtn), then it can be shown that the ODE can be written
equivalently as n first-order differential equations. For example, Newton’s equation of motion is a
second-order differential equation and can be written as two first-order differential equations for
the position and velocity in each spatial dimension as we did in (2.4). If we have more than one
particle, there are additional first-order differential equations for each particle. It is convenient to
have a common way of handling all these cases.

Let us assume that each differential equation is of the form:

dxi

dt
= ri(x0, xi, x2, · · ·xn−1, t), (3.5)

where xi is a dynamical variable such as a position or a velocity. The rate function ri can depend on
any of the dynamical variables including time. We will store the values of the dynamical variables
in the state array and the values of the corresponding rates in the rate array. In the following
we show some examples:

// one particle in one dimension:
state [0] //stores x
state [1] //stores v
state [2] //stores t
// one particle in two dimensions:
state [0] //stores x
state [1] //stores vx
state [2] //stores y
state [3] //stores vy
state [4] //stores t
// two particles in one dimension:
state [0] //stores x1
state [1] //stores v1
state [2] //stores x2
state [3] //stores v2
state [4] //stores t

CHAPTER 3. SIMULATING PARTICLE MOTION 55

If we adopt the convention that a velocity rate follows every position rate in the state array, we
can efficiently code various numerical algorithms (such as the Euler algorithm and its variants). To
solve problems for which the rate contains an explicit time dependence, such as a driven harmonic
oscillator (see Section 4.4), we store the time variable in the last element of the state array. Thus,
for one particle in one dimension, the time is stored in state[2]. In this way we can treat all
dynamical variables on an equal footing. We are now ready to discuss the classes and interfaces
from the Open Source Physics library for solving ordinary differential equations.

Because arrays will be arguments of some of the methods we will use, we need to understand
how Java passes variables from the class that calls a method to the method being called. Consider
the following method:

public void example(int r, int s []) {
r = 20;
s [0] = 20;

}

What do you expect the output of the following statements to be?

int x = 10;
int [] y = {10}; // array of one element initialized to y[0] = 10
example(x, y);
System.out.println(”x = ” + x + ” y[0] = ” + y[0]);

The answer is that the output will be x = 10, y[0] = 20. Java parameters are “passed-by-value,”
which means that the values are copied. The method cannot modify the value of the x variable
because method example received only a copy of its value. When an object or an array is in a
method’s parameter list, Java passes a copy of the reference to the object or the array. The method
can use the reference to read or modify the data in the array or object. For this reason the step
method of the ODE solvers, discussed in Section 3.6, does not need to explicitly return an updated
state array, but implicity changes the contents of the state array.

Exercise 3.6. Pass by value
As another example of how Java handles primitive variables differently from arrays and objects,
consider the statements

int x = 10;
int y = x;
x = 20;

What is y? Next consider

int [] x = {10}; // declare an array of one element initialized to the value 10
int [] y = x;
x[0] = 20;

What is y[0]?

CHAPTER 3. SIMULATING PARTICLE MOTION 56

3.5 The ODE interface

To introduce the ODE interface, we again consider the equations of motion for a falling particle.
We use a state array ordered as s = (y, v, t), so that the dynamical equations can be written as:

ṡ0 = s1 (3.6a)
ṡ1 = −g (3.6b)
ṡ2 = 1. (3.6c)

The ODE interface enables us to encapsulate (3.6) in a Java class. This interface contains two
methods, getState and getRate, as shown in Listing 3.4.

Listing 3.4: The ODE interface.
/∗

∗ The org.opensourcephysics.numerics package contains numerical methods

∗ for the book Simulations in Physics.

∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.

∗/

package org.opensourcephysics.numerics;

/∗∗

∗ ODE defines a system of differential equations by providing access to the rate equations.

∗

∗ @author Wolfgang Christian

∗/

public interface ODE {

/∗∗

∗ Gets the state variables .

∗

∗ The getState method is invoked by an ODESolver to obtain the initial state of the system.

CHAPTER 3. SIMULATING PARTICLE MOTION 57

∗ The ODE solver advances the solution and then copies new values into the

∗ state array at the end of the solution step.

∗

∗ @return state the state

∗/

public double[] getState();

/∗∗

∗ Gets the rate of change using the argument’s state variables .

∗

∗ This method may be invoked many times with different intermediate states

∗ as an ODESolver is carrying out the solution.

∗

∗ @param state the state array

∗ @param rate the rate array

∗/

public void getRate(double[] state, double[] rate);

}

The getState method returns the state array, (s0, s1, · · · sn). The getRate method evaluates the
derivatives using the given state array and stores the result in the rate array, (ṡ0, ṡ1, · · · ṡn).

An example of a Java class that implements the ODE interface for a falling particle is shown
in Listing 3.5.

Listing 3.5: The equations of motion for a falling particle using the ODE interface.
package org.opensourcephysics.sip.ch03;
import org.opensourcephysics.numerics.∗;

public class FallingParticleODE implements ODE {
final static double g = 9.8;
double[] state = new double[3];
public FallingParticleODE(double y, double v) {

CHAPTER 3. SIMULATING PARTICLE MOTION 58

state [0] = y;
state [1] = v;
state [2] = 0; // initial time

}

// The following two methods are required to implement the ODE interface.
public double[] getState() { // required to implement ODE interface

return state;
}

public void getRate(double[] state, double[] rate) {
rate [0] = state [1]; // rate of change of y is v
rate[1] = −g;
rate [2] = 1; // rate of change of time is 1

}
}

3.6 The ODE solver interface

As we have seen, the ODE interface forces us to express the equations of motion in a standard form.
There are many possible numerical algorithms for advancing a system of first-order ODEs from
an initial state to a final state. The Open Source Physics library contains classes that implement
many of these algorithms. Each of these classes implements the ODESolver interface, which defines
a set of methods that enables us to use these algorithms. These methods are shown in Listing 3.6.

Listing 3.6: The ODE solver interface.
/∗

∗ The org.opensourcephysics.numerics package contains numerical methods

∗ for the book Simulations in Physics.

∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.

∗/

package org.opensourcephysics.numerics;

/∗∗

∗ ODE defines a minimal differential equation solver .

∗ @author Wolfgang Christian

∗/

CHAPTER 3. SIMULATING PARTICLE MOTION 59

public interface ODESolver {

/∗∗

∗ Initializes the ODE solver.

∗

∗ ODE solvers use this method to allocate temporary arrays that may be required to carry out the solution.

∗ The number of differential equations is determined by invoking getState().length on the ODE.

∗

∗ @param stepSize

∗/

public void initialize (double stepSize);

/∗∗

∗ Steps (advances) the differential equations by the stepSize .

∗

∗ The ODESolver invokes the ODE’s getRate method to obtain the initial state of the system.

∗ The ODESolver then advances the solution and copies the new state into the

∗ state array at the end of the solution step.

∗

∗ @return the step size

∗/

public double step();

/∗∗

∗ Sets the initial step size .

CHAPTER 3. SIMULATING PARTICLE MOTION 60

∗

∗ The step size may change if the ODE solver implements an adaptive step size algorithm

∗ such as RK4/5.

∗

∗ @param stepSize

∗/

public void setStepSize(double stepSize);

/∗∗

∗ Gets the step size .

∗

∗ @return the step size

∗/

public double getStepSize();

}

A system of first-order differential equations is now solved by creating an object from the
class for a particular algorithm and repeatedly invoking the step method of that solver class.
The argument for the solver class constructor must be a class that implements the ODE interface.
The Open Source Physics library defines differential equation solvers for simple algorithms such
as Euler and EulerRichardson classes, as well as for higher order algorithms such as RK4, a
fourth-order Runge-Kutta algorithm that is discussed in Appendix 3.

As an example of the use of ODESolver, we again consider the dynamics of a falling particle.

Listing 3.7: A falling particle program that use an ODESolver.
package org.opensourcephysics.sip.ch03;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.numerics.∗;

public class FallingParticleODEApp extends AbstractCalculation { // beginning of class definition
public void calculate() {

// gets initial conditions
double y0 = control.getDouble(”Initial y”);
double v0 = control.getDouble(”Initial v”);

CHAPTER 3. SIMULATING PARTICLE MOTION 61

// creates ball with initial conditions
FallingParticleODE ball = new FallingParticleODE(y0, v0);
// creates ODE solver
ODESolver solver = new Euler(ball); // note how particular algorithm is chosen
// sets time step dt in the solver
solver . setStepSize(control .getDouble(”dt”));
while(ball.state[0]>0) {

solver .step ();
}
control . println(” final time = ”+ball.state [2]);
control . println(”y = ”+ball.state[0]+” v = ”+ball.state [1]);

}

public void reset() {
control .setValue(” Initial y” , 10); // sets default input values
control .setValue(” Initial v” , 0);
control .setValue(”dt” , 0.01);

}

public static void main(String[] args) { // creates a calculation control structure for this class
CalculationControl.createApp(new FallingParticleODEApp());

}
} // end of class definition

The Open Source Physics ODE classes are located in the numerics package, and thus we need
to import this package as done in the third statement of FallingParticleODEApp. We declare
and instantiate the variables ball and solver in the calculate method. Note that an instance
of a FallingParticleODE is the argument of the Euler constructor. The object ball can be an
argument because FallingParticleODE implements the ODE interface. The Euler class gets the
state of the system using getState and then sends this state to getRate which stores the rates
in the rate array. The state array is then modified using the rate array in the Euler algorithm.
The user doesn’t need to know the details, but you can inspect the step method of the various
classes that implement ODESolver, if you are interested in how the different algorithms are coded.

Because FallingParticleODE appears more complicated than FallingParticle, you might
ask what we have gained. One answer is that to use a different numerical algorithm, the only
change we need to make is to change the statement

ODESolver solver = new Euler(ball);

to, for example,

ODESolver solver = new EulerRichardson(ball).

Note that we have separated the physics (in this case a freely falling particle) from the implemen-
tation of the numerical method. Also, we will see that this implementation easily generalizes to
more than one dimension and more than one particle.

Exercise 3.7. ODE solvers

CHAPTER 3. SIMULATING PARTICLE MOTION 62

a. Run FallingParticleODEApp and compare your results with our previous implementation of
the Euler algorithm in FallingParticleApp. Examine the Euler class in the numerics package
and explain how it works.

b. Modify FallingParticleODE to use the EulerRichardson and the RK4 ODE solvers. Add
methods to compute the exact solution of x(t) and v(t) and compare the results for all three
algorithms. Determine the global error, which is the error in x and v after a given time interval.
How does the global error depend on the time step for each algorithm?

c. Modify FallingParticleODE to model a simple harmonic oscillator and repeat the above cal-
culations.

3.7 Effects of Drag Resistance

The analytical solution for free fall near the earth’s surface, (2.7), is well known and thus finding
a numerical solution is useful only as an introduction to numerical methods. However, it is not
difficult to think of more realistic models of motion near the earth’s surface for which the equations
of motion do not have simple analytical solutions. For example, if we take into account the variation
of the earth’s gravitational field with the distance from the center of the earth, then the force on
a particle is not constant. According to Newton’s law of gravitation, the force due to the earth on
a particle of mass m is given by

F =
GMm

(R + y)2
=

GMm

R2(1 + y/R)2
= mg

(
1 − 2

y

R
+ · · ·

)
, (3.7)

where y is measured from the earth’s surface, R is the radius of the earth, M is the mass of the
earth, G is the gravitational constant, and g = GM/R2.

Problem 3.8. Position-dependent force
Extend FallingParticleODE to simulate the fall of a particle with the position-dependent force
law (3.7). Assume that a particle is dropped from a height h with zero initial velocity and compute
its impact velocity (speed) when it hits the ground at y = 0. Determine the value of h for which
the impact velocity differs by one percent from its value with a constant acceleration g = 9.8 m/s2.
Take R = 6.37× 106 m. Make sure that the one percent error is due to the physics of the force law
and not the accuracy of your algorithm.

For particles near the earth’s surface, a more important modification of the free fall problem
is the retarding drag force due to air resistance. The direction of the drag force is opposite to the
velocity of the particle (see Figure 3.1). We first discuss the motion of a falling body. The direction
of the drag force Fd(v) is opposite to the motion and is upward as shown in Figure 3.1(b). Hence,
the total force F on the particle can be expressed as

F = −mg + Fd. (3.8)

It is necessary to determine the velocity dependence of Fd(v) empirically over a limited range
of velocities. One way to find the form of Fd(v) is to measure y as a function of t and to compute

CHAPTER 3. SIMULATING PARTICLE MOTION 63

y

(a)

mg
Fd

(b)

mg

Fd

(c)

Figure 3.1: (a) Coordinate system with y measured positive upward from the ground. (b) The
force diagram for downward motion. (c) The force diagram for upward motion.

v(t) by calculating the numerical derivative of y(t). Similarly we could use v(t) to compute a(t)
numerically. From this information it would be possible in principle to find the acceleration as
a function of v and to extract Fd(v) from (3.8). However, this procedure introduces errors (see
Problem 3.9a) because the accuracy of the derivatives will be less than the accuracy of the measured
position. An alternative is to reverse the procedure, that is, assume an explicit form for the v
dependence of Fd(v), and use it to solve for y(t). If the calculated values of y(t) are consistent with
the experimental values of y(t), then the assumed v dependence of Fd(v) is justified empirically.

The two most commonly assumed forms of the velocity dependence of Fd(v) are

F1,d(v)/m = C1v, (3.9a)

and
F2,d(v)/m = C2v

2, (3.9b)

where the parameters C1 and C2 depend on the properties of the medium and the shape of the
object. The forms (3.9) are not exact laws of physics, but instead are useful phenomenological
expressions that yield approximate results for Fd(v) over a limited range of v.

Because Fd(v) increases as v increases, there is a limiting or terminal velocity (speed) at which
the net force on a falling object is zero. This terminal speed can be found from (3.8) and (3.9) by
setting Fd = mg and is given by

v1,t =
g

C1
, (linear drag) (3.10a)

v2,t =
(g

C2

)1/2
, (quadratic drag) (3.10b)

for the linear and quadratic cases, respectively. It often is convenient to express velocities in terms
of the terminal velocity. We can use (3.9) and (3.10) to write Fd in the linear and quadratic cases
as

F1,d/m = C1v1,t

(v

v1,t

)
= mg

v

v1,t
, (3.11a)

F2,d/m = C2v2,t
2
(v

v2,t

)2 = mg
(v

v2,t

)2
. (3.11b)

CHAPTER 3. SIMULATING PARTICLE MOTION 64

Hence, we can write the net force on a falling object in the convenient forms

F1(v) = −mg
(
1 − v

v1,t

)
, (3.12a)

F2(v) = −mg
(
1 − v2

v2,t
2

)
. (3.12b)

To determine if the effects of air resistance are important during the fall of ordinary objects,
consider the fall of a pebble of mass m = 10−2 kg. To a good approximation, the drag force
is proportional to v2. For a spherical pebble of radius 0.01 m, C2 is found empirically to be
approximately 10−2 kg. From (3.10b) we find the terminal velocity to be about 30 m/s. Because
this speed would be achieved by a freely falling body in a vertical fall of approximately 50 m in a
time of about 3 s, we expect that the effects of air resistance would be appreciable for comparable
times and distances.

t(s) position (m)
−0.132 0.0

0.0 0.075
0.1 0.260
0.2 0.525
0.3 0.870
0.4 1.27
0.5 1.73
0.6 2.23
0.7 2.77
0.8 3.35

Table 3.1: Results by Greenwood, Hanna, and Milton (see references) for the vertical fall of a
styrofoam ball of mass 0.254 gm and radius 2.54 cm. Note that the initial time is negative and not
an integer multiple of 0.1.

Problem 3.9. The fall of a styrofoam ball

a. Use the empirical data for the displacement y(t) in Table 3.1 to determine the velocity v(t)
using the central difference approximation given by

v(t) ≈ y(t + ∆t) − y(t − ∆t)
2∆t

. (central difference approximation) (3.13)

Show that if we write the acceleration as a(t) ≈ [v(t + ∆t) − v(t)]/∆t and use the backward
difference approximation for the velocity,

v(t) ≈ y(t) − y(t − ∆t)
∆t

, (backward difference approximation) (3.14)

we can express the acceleration as

a(t) ≈ y(t + ∆t) − 2y(t) + y(t − ∆t)
(∆t)2

. (3.15)

CHAPTER 3. SIMULATING PARTICLE MOTION 65

Use (3.15) to determine the acceleration. Determine the terminal velocity from the data given
in Table 3.1. This determination is difficult, in part because the terminal velocity has not yet
been reached during the time interval shown in Table 3.1. Use your approximate results for
v(t) and a(t) to plot a as a function of v and, if possible, determine the nature of the velocity
dependence of a. Discuss the accuracy of your results for the acceleration.

b. Choose one of the numerical algorithms that we have discussed and write a class that encapsu-
lates this algorithm for the motion of a particle with quadratic drag resistance.

c. Choose the terminal velocity as an input parameter, and take as your first guess for the terminal
velocity the value you found in part (a). Make sure that your computed results for the displace-
ment of the particle, y(t)−y(0), do not depend on ∆t to the necessary accuracy. Compare your
plot of the computed values of y(t)− y(0) for different choices of the terminal velocity with the
empirical values of y(t) − y(0) in Table 3.1.

d. Repeat parts (b) and (c) assuming linear drag resistance. What are the qualitative differences
between the two computed forms of y(t) − y(0) for the same terminal velocity?

e. Visually determine which form of the drag force yields the best overall fit. If the fit is not
perfect, what is your criteria for which fit is better? Is it better to match your results to the
experimental data at early times or at later times? Or did you adopt another criterion? What
can you conclude about the velocity-dependence of the drag resistance on a styrofoam ball?

Problem 3.10. Effect of air resistance on the ascent and descent of a pebble

a. Verify the claim made in Section 3.7 that the effects of air resistance on a falling pebble can
be appreciable. Compute the speed at which a pebble reaches the ground if it is dropped from
rest at a height of 50 m. Compare this speed to that of a freely falling object under the same
conditions. Assume that the drag force is proportional to v2 and that the terminal velocity is
30 m/s.

b. Suppose a pebble is thrown vertically upward with an initial velocity v0. In the absence of air
resistance, we know that the maximum height reached by the pebble is v2

0/2g, its velocity upon
return to the earth equals v0, the time of ascent equals the time of descent, and the total time
in the air is 2v0/g. Before doing a simulation, give a simple qualitative explanation of how
you think these quantities will be affected by air resistance. In particular, how will the time of
ascent compare with the time of decent?

c. Do a simulation to determine if your qualitative answers are correct. Assume that the drag
force is proportional to v2. Choose the coordinate system shown in Figure 3.1 with y positive
upward. What is the net force for v > 0 and v < 0? We can characterize the magnitude of
the drag force by a terminal velocity even if the motion of the pebble is upward and even if the
pebble never attains this velocity. Choose the terminal velocity vt = 30 m/s, corresponding to
a drag coefficient of C2 ≈ 0.01089. It is a good idea to choose an initial velocity that allows
the pebble to remain in the air for a time sufficiently long so that the effect of the drag force is
appreciable. A reasonable choice is v(t = 0) = 50 m/s. You might find it convenient to express
the drag force in the form Fd ∝ −v∗Math.abs(v). One way to determine the maximum height
of the pebble is to use the statement

CHAPTER 3. SIMULATING PARTICLE MOTION 66

if (v∗vold < 0) {
control . println(”maximum height = ” + y);

}

where v = vn+1 and vold= vn. Why is this way preferable to other ways that you might
imagine using?

3.8 Decay processes

The power of mathematics when applied to physics comes in part from the fact that seemingly
unrelated problems frequently have the same mathematical formulation. Hence, if we can solve
one problem, we can solve other problems that might appear to be unrelated. For example, the
growth of bacteria, the cooling of a cup of hot water, the discharge of a capacitor in an RC circuit,
and nuclear decay all can be formulated in terms of equivalent differential equations.

Consider a large number of radioactive nuclei. Although the number of nuclei is discrete, we
often may treat this number as a continuous variable because the number of nuclei is very large.
In this case the law of radioactive decay is that the rate of decay is proportional to the number of
nuclei. Thus we can write

dN

dt
= −λN, (3.16)

where N is the number of nuclei and λ is the decay constant. Of course, we do not need to use a
computer to solve this decay equation, and the analytical solution is

N(t) = N0e
−λt, (3.17)

where N0 is the initial number of particles. The quantity λ in (3.16) or (3.17) has dimensions of
inverse time.

Because it is awkward to treat very large or very small numbers on a computer, it is convenient
to choose units so that the computed values of the variables are not too far from unity. For example,
an astronomical calculation might use a time unit of one year in contrast to the choice of a second as
the time unit for simulating the motion of a body falling near the earth’s surface (see Section 3.7).

Problem 3.11. Single nuclear species decay

a. Write a class that solves and plots the nuclear decay problem. Input the decay constant, λ,
from the control. For λ = 1 and ∆t = 0.01, compute the difference between the analytical result
and the result of the Euler algorithm for N(t)/N(0) at t = 1 and t = 2. Assume that the time
is measured in seconds.

b. A common time unit for radioactive decay is the half-life, T1/2, the time it takes for one-half
of the original nuclei to decay. Another natural time scale is the time, τ , it takes for 1/e of
the original nuclei to decay. Use your modified program to verify that T1/2 = ln 2/λ. How long
does it take for 1/e of the original nuclei to decay? How is T1/2 related to τ?

CHAPTER 3. SIMULATING PARTICLE MOTION 67

c. Determine the decay constant λ in units of s−1 for 238U → 234Th if the half-life is 4.5 × 109

years. What time step would be appropriate for the numerical solution of (3.16)? How would
these values change if the particle being modeled were a muon with a half-life of 2.2 × 10−6 s?

d. Modify your program so that the time t is expressed in terms of the half-life. That is, at t = 1
one half of the particles would have decayed and at t = 2, one quarter of the particles would
have decayed. Use your program to determine the time for 1000 atoms of 238U to decay to 20%
of their original number. What would be the corresponding time for muons?

Problem 3.12. Cooling of a cup of coffee
The nature of the energy transfer from the hot water in a cup of coffee to the surrounding air
is complicated and in general involves the mechanisms of convection, radiation, evaporation, and
conduction. However, if the temperature difference between the water and its surroundings is not
too large, the rate of change of the temperature of the water may be assumed to be proportional
to this temperature difference. We can formulate this statement more precisely in terms of a
differential equation:

dT

dt
= −r (T − Ts), (3.18)

where T is the temperature of the water, Ts is the temperature of its surroundings, and r is the
cooling constant. The value of the cooling constant r depends on the heat transfer mechanism,
the contact area with the surroundings, and the thermal properties of the water. The minus
sign in (3.18) implies that if T > Ts, the temperature of the water will decrease with time. The
relation (3.18) is sometimes known as Newton’s law of cooling, even though the relation is only
approximate, and Newton did not express the rate of cooling in this form.

a. Write a program that computes the numerical solution of (3.18). Test your program by choosing
the initial temperature T0 = 100◦C, Ts = 0◦C, r = 1, and ∆t = 0.1.

b. Model the cooling of a cup of coffee by choosing r = 0.03. What are the units of r? Plot the
temperature T as a function of the time using T0 = 87 ◦C and Ts = 17 ◦C. Make sure that your
value of ∆t is sufficiently small so that it does not affect your results. What is the appropriate
unit of time in this case?

c. Suppose that the initial temperature of a cup of coffee is 90◦C, but the coffee can be sipped
comfortably only when its temperature is ≤ 75◦C. Assume that the addition of cream cools
the coffee by 5◦C. If you are in a hurry and want to wait the shortest possible time, should
the cream be added first and the coffee be allowed to cool, or should you wait until the coffee
has cooled to 80◦C before adding the cream? Use your program to “simulate” these two cases.
Choose r = 0.03 and Ts = 17◦C. What is the appropriate unit of time in this case? Assume
that the value of r does not change appreciably when the cream is added.

Multiple nuclear decays produce systems of first-order differential equations. Problem 3.13
asks you to model such a system using the techniques similar to those that we have already used.

Problem 3.13. Multiple nuclear decays

CHAPTER 3. SIMULATING PARTICLE MOTION 68

207 208 209 210 211

mass number

82

83

84

85

86

nu
cl

ea
r

ch
ar

ge

Pb

Bi

Po Po

At

Rn

5.7 hr

30 yr

74%
15 hr

7.2 hr

0.52 s

15 hr

26%

Figure 3.2: The decay scheme of 211Rn. Note that 211Rn decays via two branches, and the final
product is the stable isotope 207Pb. All vertical transitions are by electron capture, and all diagonal
transitions are by alpha decay. The times represent half-lives.

a. 76Kr decays to 76Br via electron capture with a half-life of 14.8 h, and 76Br decays to 76Se via
electron capture and positron emission with a half-life of 16.1 h. In this case there are two half-
lives, and it is convenient to measure time in units of the smallest half-life. Write a program
to compute the time dependence of the amount of 76Kr and 76Se over an interval of one week.
Suppose that the sample initially contains 1 gm of pure 76Kr.

b. 28Mn decays via beta emission to 28Al with a half-life of 21 h, and 28Al decays by positron
emission to 28Si with a half-life of 2.31 min. If we were to use minutes as the unit of time, our
program would have to do many iterations before we would see a significant decay of the 28Mn.
What simplifying assumption can you make to speed up the computation?

c. 211Rn decays via two branches as shown in Figure 3.2. Make any necessary approximations and
compute the amount of each isotope as a function of time, assuming that the sample initially
consists of 1 µg of 211Rn.

CHAPTER 3. SIMULATING PARTICLE MOTION 69

3.9 Visualizing Three-Dimensional Motion

The world in which we live is three-dimensional (3D), and it is sometimes necessary (and fun)
to visualize phenomena in three dimensions. There are several three-dimensional visualization
packages available. Sun has developed a library called Java 3D, but this package is currently not
included in the standard Java runtime environment. The GL for Java package is another popular
3D library because it is based on the Open GL graphics language developed by Silicon Graphics
and is now widely optimized on a variety of platforms. Because these libraries must be downloaded
and installed on a client computer and may not be available for all operating systems, and because
we want a three-dimensional visualization framework designed for physics simulations, we have
developed our own three-dimensional visualization framework that relies only on the standard
Java API.1

The Easy Java Simulation (EJS) drawing framework defined in the displayejs package pro-
vides a high level of abstraction for rendering three-dimensional objects. These 3D drawable objects
implement the InteractiveElement interface which enables the programmer to control their po-
sition, size, and appearance. Interactive elements can be grouped with other interactive elements,
can change their visibility, and respond to mouse actions. Listing 3.8 shows that it is not much
more difficult to define and manipulate a three-dimensional model than a two-dimensional model.
The most significant change is that the program instantiates a EJSFrame and adds Drawable3D
objects such as balls and boxes to this frame. The InteractiveElement interface extends a num-
ber of interfaces including the Drawable and Interactive so that InteractiveElement objects
also can be rendered in 2D drawing frames and panels.

Listing 3.8: A three-dimensional bouncing ball simulation created using the EJS 3D drawing
framework.

package org.opensourcephysics.sip.ch03;
import java.awt.∗;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;
import org.opensourcephysics.displayejs.∗;

public class Ball3dApp extends AbstractSimulation {
EJSFrame frame = new EJSFrame(”3D ball”);
InteractiveElement ball = new InteractiveSphere();
double time = 0, dt = 0.1;
double vz = 0;
public Ball3dApp() {

frame.setPreferredMinMax (−5.0, 5.0, −5.0, 5.0, 0.0, 10.0);
ball .setXYZ(0, 0, 9);
ball .setSizeXYZ(1, 1, 1); //ball displayed in 3D as a planar ellipse of size (dx,dy,dz)
frame.addDrawable(ball);
InteractiveBox box = new InteractiveBox();
box.setXYZ(0, 0, 0);
box.setSizeXYZ(4, 4, 1);
box.getStyle (). setFillPattern (Color.RED);

1A framework consists of several classes and an API that does a particular task. In general, these classes are in
different packages.

CHAPTER 3. SIMULATING PARTICLE MOTION 70

// divide sides of box into smaller rectanlges no bigger than 0.5
box.setResolution(Resolution.createDivisions (0.5));
frame.addDrawable(box);

}

protected void doStep() {
time += 0.1;
double z = ball.getZ()+vz∗dt−4.9∗dt∗dt;
vz −= 9.8∗dt;
if (vz<0&&z<1) {

vz = −vz;
}
ball .setZ(z);
frame.setMessage(”t = ”+decimalFormat.format(time));

}

public static void main(String[] args) {
SimulationControl.createApp(new Ball3dApp());

}
}

The EJS 3D drawing API is similar to the 2D drawing API described in Section 3.3. The
setPreferredMinMax method, for example, now has a variant that accepts up to six double pa-
rameters. You can set the size and location of objects in 3D before or after they are added to the
frame.

Although the EJS frame is designed for three-dimensional visualizations, it also can show
two-dimensional projections. For example, we can project onto the yz-plane by invoking a single
method:

frame.convertToYZ();

Projections onto various planes are available at runtime using the EJSFrame menu. The full
capabilities of EJS are discussed in the Open Source Physics Guide. We will only require a small
subset of EJS to create the three-dimensional visualizations in this book and will introduce the
necessary objects as needed. Readers may wish to run the three demonstration programs in the
Chapter 3 package to obtain an overview of EJS drawing capabilities.

Of particular interest to baseball fans is the curve of balls in flight due to their rotation. This
force was first investigated in 1850 by G. Magnus and the curvature of the trajectories of spinning
objects is now known as the Magnus effect . It can be explained qualitatively by observing that
the speed of the ball’s surface relative to the air is different on opposite edges of the ball. If the
drag force has the form Fdrag ∼ v2, then the unbalanced force due to the difference in the velocity
on opposite sides of the ball due to its rotation is given by

Fmagnus ∼ v∆v. (3.19)

We can express the velocity difference in terms of the ball’s angular velocity and radius and write

Fmagnus ∼ vrω. (3.20)

CHAPTER 3. SIMULATING PARTICLE MOTION 71

Rotating ball

Figure 3.3: The net force on a spinning ball.

The direction of the Magnus force is perpendicular to both the velocity and the rotation
axis. For example, if we observer a ball moving to the right and rotating clockwise (that is, with
topspin), then the velocity of the ball’s surface relative to the air at the top, v +ωr, is higher than
the velocity at the bottom, v − ωr. Because the larger velocity will produce a larger force, the
Magnus effect will contribute a force in the downward direction. These considerations suggest that
the Magnus force can be expressed as a vector product:

Fmagnus = CM (ω × v). (3.21)

The proportionality constant, CM , depends on the radius of the ball, the viscosity of air, and other
factors such as the orientation of the stitching. We will assume that ball is rotating fast enough so
that it can be modeled using an average value. (If the ball is not rotating, the pitcher has thrown
a knuckleball.) The total force is given by

F/m = g − CD|v|v + CM (ω × v). (3.22)

Equation (3.22) leads to the following rate equations for the velocity components:

dvx

dt
= −CDvvx + CM (ωyvz − ωzvy) (3.23a)

dvy

dt
= −CDvvy + CM (ωzvx − ωxvz) (3.23b)

dvz

dt
= −CDvvz + CM (ωxvy − ωyvx) − g. (3.23c)

The rate for each of the three position variables is the corresponding velocity. Typical parameter
values for a 149 gram baseball are CD = 6×10−3 and CM = 4×10−4. See The Physics of Baseball
by Adair for a more complete discussion.

Problem 3.14. Baseball curves

CHAPTER 3. SIMULATING PARTICLE MOTION 72

a. Create a class that models (3.23). Assume that the initial ball is released 1.8 m above and
18 m from home plate. Set the initial angle above the horizontal and the initial speed using the
constructor.

b. Write a program that plots the vertical and horizontal deflection of the baseball as it travels
toward home plate. Set both the drag and Magnus forces to zero and test your program using
analytical results for a typical 40 m/s fast ball. What initial angle is required for the pitch to
pass over home plate at a height of 1.5 m?

c. Add the drag force using CD = 6 × 10−3. What initial angle is required for this pitch to be a
strike? Plot the vertical deflection with and without drag for comparison.

d. Add topspin to the pitch using a typical spin of 200 rad/s and CM = 4 × 10−4. By how much
does topspin change the height of the ball as it passes over the plate? What about backspin?

e. How much does a 35 m/s curve ball deflect if it is pitched with an initial spin of 200 rad/s?

Problem 3.15. Baseball trajectories in three dimensions
Add a 3D visualization of the baseball’s trajectory to Problem 3.14 using a trace object to display
the path of the ball. The following code fragment shows how a 3D trace object is created and
used.

InteractiveTrace trace = new InteractiveTrace();
frame.add(trace);
trace .addPoint(x,y,z); // adds one or more points to the trace

Coupled three-dimensional equations of motion occur in electrodynamics when a charged
particle travels through electric and magnetic fields. The equation of motion can be written in
vector form as:

mv̇ = qE + q(v × B), (3.24)

where m is the mass of the particle, q is the charge, and E and B represent the electric and
magnetic fields, respectively. For the special case of a constant magnetic field, the trajectory of a
charged particle is a spiral along the field lines with a cyclotron orbit whose period of revolution
is 2πm/qB. The addition of an electric field changes this motion dramatically.

The rate equations for the velocity components of a charged particle using units such that
m = q = 1 are

dvx

dt
= Ex + vyBz − vzBy (3.25a)

dvy

dt
= Ey + vzBx − vxBz (3.25b)

dvz

dt
= Ez + vxBy − vyBx. (3.25c)

The rate for each of the three position variables is again the corresponding velocity.

CHAPTER 3. SIMULATING PARTICLE MOTION 73

Problem 3.16. Crossed electric and magnetic fields

a. Implement a two-dimensional simulation of a charged particle moving through constant electric
and magnetic fields with the magnetic field in the ẑ direction and the electric field in the ŷ
direction. Assume that the initial velocity is in the x-y plane.

b. Why does the trajectory in part (a) remain in the x-y plane?

c. In what direction does the charge particle drift if there is an electric field in the x direction and
a magnetic field in the z direction if it starts at rest from the origin? What type of curve does
the charged particle follow?

Problem 3.17. Three-dimensional motion in fields
Create a three-dimensional simulation of the trajectory of a particle in constant electric and mag-
netic fields. Verify that a charged particle undergoes spiral motion in a constant magnetic field
and zero electric field. Predict the trajectory if an electric field is added and compare the results
of the simulation to your prediction. Consider electric fields that are parallel to and perpendicular
to the magnetic field.

Although the trajectory of a charged particle in constant electric and magnetic fields can be
solved analytically, the trajectories in the presence of dipole fields cannot. A magnetic dipole with
dipole moment p = |p|p̂ produces the following magnetic field:

B =
µ0m

4πε0r3
[3p̂ · r̂)r̂ − p̂]. (3.26)

Problem 3.18. Motion in a magnetic dipole field
Model the Earth’s Van Allen radiation belt using the following formula for the dipole field:

B = B0(
RE

R
)3[3p̂ · r̂)r̂ − p̂], (3.27)

where RE is the radius of the Earth and the magnetic field at the equator is B0 = 3.5× 10−5 tesla.
Note that a 1 MeV electron at 2 Earth radii travels in very tight spirals with a cyclotron period
that is much smaller than the travel time between the north and south poles. Better visual results
can be obtained by raising the electron energies by a factor of ∼ 1000. Use classical dynamics and
include the dependence of the mass on the particle speed.

3.10 Levels of Simulation

So far we have considered models in which the microscopic complexity of the system of interest has
been simplified considerably. Consider for example, the motion of a pebble falling through the air.
First we reduced the complexity by representing the pebble as an object with no internal structure.
Then we reduced the number of degrees of freedom even more by representing the collisions of the
pebble with the many molecules in the air by a velocity-dependent friction term. It is remarkable
that the resultant phenomenological model is a fairly accurate representation of realistic physical
systems. However, what we gain in simplicity, we lose in range of applicability.

CHAPTER 3. SIMULATING PARTICLE MOTION 74

In a more detailed model, the individual physical processes would be represented microscop-
ically. For example, we could imagine doing a simulation in which the effects of the air are
represented by a fluid of particles that collide with one another and with the falling particle. How
accurately do we need to represent the potential energy of interaction between the fluid particles?
Clearly the level of detail that is needed in a model depends on the accuracy of the corresponding
experimental data and the type of information in which we are interested. For example, we do not
need to take into account the influence of the moon on a pebble falling near the earth’s surface.
And the level of detail that we can simulate depends in part on the available computer resources.

The words simulation and modeling are frequently used interchangeably and their precise
meaning is not important here, especially because most people who work with models and who
do simulations do not use them precisely. Most practitioners would say that so far we have solved
several mathematical models numerically and have not yet done a simulation. Beginning with
the next chapter, we will be able to say that we actually are doing simulations. The difference is
that our models will represent physical systems in more detail, and we will give more attention
to what physical quantities we should measure. In other words, our simulations will become more
analogous to laboratory experiments.

Appendix 3A: Numerical Integration of Newton’s Equation
of Motion

We summarize several of the common finite difference methods for the solution of Newton’s equa-
tions of motion with continuous force functions. The number and variety of algorithms currently
in use is evidence that no single method is superior under all conditions.

To simplify the notation, we consider the motion of a particle in one dimension and write
Newton’s equations of motion in the form

dv

dt
= a(t), (3.28a)

dx

dt
= v(t), (3.28b)

where a(t) ≡ a(x(t), v(t), t). The goal of finite difference methods is to determine the values of
xn+1 and vn+1 at time tn+1 = tn + ∆t. We already have seen that ∆t must be chosen so that
the integration method generates a stable solution. If the system is conservative, ∆t must be
sufficiently small so that the total energy is conserved to the desired accuracy.

The nature of many of the integration algorithms can be understood by expanding vn+1 =
v(tn + ∆t) and xn+1 = x(tn + ∆t) in a Taylor series. We write

vn+1 = vn + an∆t + O
(
(∆t)2

)
, (3.29a)

xn+1 = xn + vn∆t +
1
2
an(∆t)2 + O

(
(∆t)3

)
. (3.29b)

The familiar Euler algorithm is equivalent to retaining the O(∆t) terms in (3.29):

vn+1 = vn + an∆t (3.30a)
xn+1 = xn + vn∆t. (Euler algorithm) (3.30b)

CHAPTER 3. SIMULATING PARTICLE MOTION 75

Because order ∆t terms are retained in (3.30), the local truncation error, the error in one time step,
is order (∆t)2. The global error, the total error over the time of interest, due to the accumulation
of errors from step to step is order ∆t. This estimate of the global error follows from the fact
that the number of steps into which the total time is divided is proportional to 1/∆t. Hence, the
order of the global error is reduced by a factor of 1/∆t relative to the local error. We say that an
algorithm is nth order if its global error is order (∆t)n. The Euler algorithm is an example of a
first-order algorithm.

The Euler algorithm is asymmetrical because it advances the solution by a time step ∆t, but
uses information about the derivative only at the beginning of the interval. We already have found
that the accuracy of the Euler algorithm is limited and that frequently its solutions are not stable.
We also found that a simple modification of (3.30) yields solutions that are stable for oscillatory
systems. For completeness, we repeat the Euler-Cromer algorithm here:

vn+1 = vn + an∆t, (3.31a)
xn+1 = xn + vn+1∆t. (Euler-Cromer algorithm) (3.31b)

An obvious way to improve the Euler algorithm is to use the mean velocity during the interval
to obtain the new position. The corresponding midpoint algorithm can be written as

vn+1 = vn + an∆t, (3.32a)

and
xn+1 = xn +

1
2
(vn+1 + vn)∆t. (midpoint algorithm) (3.32b)

Note that if we substitute (3.32a) for vn+1 into (3.32b), we obtain

xn+1 = xn + vn∆t +
1
2
an ∆t2. (3.33)

Hence, the midpoint algorithm yields second-order accuracy for the position and first-order ac-
curacy for the velocity. Although the midpoint approximation yields exact results for constant
acceleration, it usually does not yield much better results than the Euler algorithm. In fact, both
algorithms are equally poor, because the errors increase with each time step.

A higher order algorithm whose error is bounded is the half-step algorithm. In this algorithm
the average velocity during an interval is taken to be the velocity in the middle of the interval.
The half-step algorithm can be written as

vn+ 1
2

= vn− 1
2

+ an∆t, (3.34a)

xn+1 = xn + vn+ 1
2
∆t. (half-step algorithm) (3.34b)

Note that the half-step algorithm is not self-starting, that is, (3.34a) does not allow us to calculate
v 1

2
. This problem can be overcome by adopting the Euler algorithm for the first half step:

v 1
2

= v0 +
1
2
a0 ∆t. (3.34c)

Because the half-step algorithm is stable, it is a common textbook algorithm. The Euler-Richardson
algorithm can be motivated as follows. We first write x(t + ∆t) as

x1 ≈ x(t + ∆t) = x(t) + v(t)∆t +
1
2
a(t)(∆t)2. (3.35)

CHAPTER 3. SIMULATING PARTICLE MOTION 76

The notation x1 implies that x(t+∆t) is related to x(t) by one time step. We also may divide the
step ∆t into half steps and write the first half step, x(t + 1

2∆t), as

x(t +
1
2
∆t) ≈ x(t) + v(t)

∆t

2
+

1
2
a(t)

(∆t

2
)2

. (3.36)

The second half step, x2(t + ∆t), may be written as

x2(t + ∆t) ≈ x(t +
1
2
∆t) + v(t +

1
2
∆t)

∆t

2
+

1
2
a(t +

1
2
∆t)

(∆t

2
)2

. (3.37)

We substitute (3.36) into (3.37) and obtain

x2(t + ∆t) ≈ x(t) +
1
2
[
v(t) + v(t +

1
2
∆t)

]
∆t +

1
2
[
a(t) + a(t +

1
2
∆t)

](1
2
∆t

)2
. (3.38)

Now a(t + 1
2∆t) ≈ a(t) + 1

2a′(t)∆t. Hence to order (∆t)2, (3.38) becomes

x2(t + ∆t) = x(t) +
1
2
[
v(t) + v(t +

1
2
∆t)

]
∆t +

1
2
[
2a(t)

](1
2
∆t

)2
. (3.39)

We can find an approximation that is accurate to order (∆t)3 by combining (3.35) and (3.39)
so that the terms to order (∆t)2 cancel. The combination that works is 2x2 − x1, which gives the
Euler-Richardson result:

xer(t + ∆t) ≡ 2x2(t + ∆t) − x1(t + ∆t) = x(t) + v(t +
1
2
∆t)∆t + O(∆t)3. (3.40)

The same reasoning leads to an approximation for the velocity accurate to (∆t)3 giving

ver ≡ 2v2(t + ∆t) − v1(t + ∆t) = v(t) + a(t +
1
2
∆t)∆t + O(∆t)3. (3.41)

A bonus of the Euler-Richardson algorithm is that the quantities |x2 − x1| and |v2 − v1| give
an estimate for the error. We can use these estimates to change the time step so that the error is
always within some desired level of precision. We will see that the Euler-Richardson algorithm is
equivalent to the second-order Runge-Kutta algorithm (see (3.51)).

One of the most common drift-free higher order algorithms is commonly attributed to Verlet.
We write the Taylor series expansion for xn−1 in a form similar to (3.29b):

xn−1 = xn − vn∆t +
1
2
an(∆t)2. (3.42)

If we add the forward and reverse forms, (3.29b) and (3.42) respectively, we obtain

xn+1 + xn−1 = 2xn + an(∆t)2 + O
(
(∆t)4

)
(3.43)

or

xn+1 = 2xn − xn−1 + an(∆t)2. (leapfrog algorithm) (3.44a)

Similarly, the subtraction of the Taylor series for xn+1 and xn−1 yields

CHAPTER 3. SIMULATING PARTICLE MOTION 77

vn =
xn+1 − xn−1

2∆t
. (leapfrog algorithm) (3.44b)

Note that the global error associated with the leapfrog algorithm (3.44) is third-order for the
position and second-order for the velocity. However, the velocity plays no part in the integration
of the equations of motion. The leapfrog algorithm is also known as the explicit central difference
algorithm. Because this form of the leapfrog algorithm is not self-starting, another algorithm must
be used to obtain the first few terms. An additional problem is that the new velocity (3.44b)
is found by computing the difference between two quantities of the same order of magnitude.
However, such an operation results in a loss of numerical precision and may give rise to roundoff
errors.

A mathematically equivalent version of the leapfrog algorithm is given by

xn+1 = xn + vn∆t +
1
2
an(∆t)2 (3.45a)

vn+1 = vn +
1
2
(an+1 + an)∆t. (velocity Verlet algorithm) (3.45b)

We see that (3.45), known as the velocity form of the Verlet algorithm, is self-starting and minimizes
roundoff errors. Because we will not use (3.44) in the text, we will refer to (3.45) as the Verlet
algorithm.

We can derive (3.45) from (3.44) by the following considerations. We first solve (3.44b) for
xn−1 and write xn−1 = xn+1 − 2vn∆t. If we substitute this expression for xn−1 into (3.44a) and
solve for xn+1, we find the form (3.45a). Then we use (3.44b) to write vn+1 as:

vn+1 =
xn+2 − xn

2∆t
, (3.46)

and use (3.44a) to obtain xn+2 = 2xn+1 −xn +an+1(∆t)2. If we substitute this form for xn+2 into
(3.46), we obtain

vn+1 =
xn+1 − xn

∆t
+

1
2
an+1∆t. (3.47)

Finally, we use (3.45a) for xn+1 to eliminate xn+1 − xn from (3.47); after some algebra we obtain
the desired result (3.45b).

Another useful algorithm that avoids the roundoff errors of the leapfrog algorithm is due to
Beeman and Schofield. We write the Beeman algorithm in the form:

xn+1 = xn + vn∆t +
1
6
(4an − an−1)(∆t)2 (3.48a)

vn+1 = vn +
1
6
(2an+1 + 5an − an−1)∆t. (Beeman algorithm) (3.48b)

Note that (3.48) does not calculate particle trajectories more accurately than the Verlet algorithm.
Its advantage is that it generally does a better job of maintaining energy conservation. However,
the Beeman algorithm is not self-starting.

The most common finite difference method for solving ordinary differential equations is the
Runge-Kutta method. To explain the many algorithms based on this method, we consider the

CHAPTER 3. SIMULATING PARTICLE MOTION 78

solution of the first-order differential equation

dx

dt
= f(x, t). (3.49)

Runge-Kutta algorithms evaluate the rate, f(x, t), multiple times in the interval [t, t + ∆t]. For
example, the classic fourth-order Runge-Kutta algorithm, which we will discuss in the following,
evaluates f(x, t) at four times tn, tn + a1∆t, tn + a2∆t, and tn + a3∆t. Each evaluation of f(x, t)
produces a slightly different rate r1, r2, r3, and r4. The idea is to advance the solution using a
weighted average of the intermediate rates:

yn+1 = yn + (c1r1 + c2r2 + c3r3 + c4r4)∆t. (3.50)

The various Runge-Kutta algorithms correspond to different choices for the constants ai and
ci. These algorithms are classified by the number of intermediate rates {ri, i = 1, · · · , N}. The
determination of the Runge-Kutta coefficients is difficult for all but the lowest order methods,
because the coefficients must be chosen to cancel as many terms in the Taylor series expansion
of f(x, t) as possible. The first non-zero expansion coefficient determines the order of the Runge-
Kutta algorithm. Fortunately, these coefficients are tabulated in most numerical analysis books.

To illustrate how the various sets of Runge-Kutta constants arise, consider the case N = 2.
The second-order Runge-Kutta solution of (3.49) can be written using standard notation as:

xn+1 = xn + k2 + O
(
(∆t)3

)
, (3.51a)

where
k2 = f(xn +

k1

2
, tn +

∆t

2
)∆t. (3.51b)

k1 = f(xn, tn)∆t (3.51c)

Note that the weighted average uses c1 = 0 and c2 = 1. The interpretation of (3.51) is as follows.
The Euler algorithm assumes that the slope f(xn, tn) at (xn, tn) can be used to extrapolate to
the next step, that is, xn+1 = xn + f(xn, tn)∆t. A plausible way of making a a more accurate
determination of the slope is to use the Euler algorithm to extrapolate to the midpoint of the
interval and then to use the midpoint slope across the full width of the interval. Hence, the
Runge-Kutta estimate for the rate is f(x∗, tn + 1

2∆t), where x∗ = xn + 1
2f(xn, tn)∆t (see (3.51c)).

The application of the second-order Runge-Kutta algorithm to Newton’s equation of motion
(3.28) yields

k1v = an(xn, vn, tn)∆t (3.52a)
k1x = vn∆t (3.52b)

k2v = a(xn +
k1x

2
, vn +

k1v

2
, t +

∆t

2
)∆t (3.52c)

k2x = (vn +
k1v

2
)∆t, (3.52d)

and

vn+1 = vn + k2v (3.53a)
xn+1 = xn + k2x. (second-order Runge Kutta) (3.53b)

CHAPTER 3. SIMULATING PARTICLE MOTION 79

Note that the second-order Runge-Kutta algorithm in (3.52) and (3.53) is identical to the Euler-
Richardson algorithm.

Other second-order Runge-Kutta type algorithms exist. For example, if we set c1 = c2 = 1
2

we obtain the endpoint method:

yn+1 = yn +
1
2
k1 +

1
2
k2 (3.54a)

where
k1 = f(xn, tn)∆t (3.54b)
k2 = f(xn + k1, tn + ∆t)∆t. (3.54c)

And if we set c1 = 1
3 and c2 = 2

3 , we obtain Ralston’s method:

yn+1 = yn +
1
3
k1 +

2
3
k2 (3.55a)

where
k1 = f(xn, tn)∆t (3.55b)

k2 = f(xn +
3
4
k1, tn +

3
4
∆t)∆t. (3.55c)

Note that Ralston’s method does not calculate the rate at uniformly spaced subintervals of ∆t. In
general, a Runge-Kutta method adjusts the partition of ∆t as well as the constants ai and ci so
as to minimize the error.

In the fourth-order Runge-Kutta algorithm, the derivative is computed at the beginning of
the time interval, in two different ways at the middle of the interval, and again at the end of the
interval. The two estimates of the derivative at the middle of the interval are given twice the weight
of the other two estimates. The algorithm for the solution of (3.49) can be written in standard
notation as

k1 = f(xn, tn)∆t (3.56a)

k2 = f(xn +
k1

2
, tn +

∆t

2
)∆t (3.56b)

k3 = f(xn +
k2

2
, tn +

∆t

2
)∆t (3.56c)

k4 = f(xn + k3, tn + ∆t)∆t, (3.56d)

and

xn+1 = xn +
1
6
(k1 + 2k2 + 2k3 + k4). (3.57)

The application of the fourth-order Runge-Kutta algorithm to Newton’s equation of motion

CHAPTER 3. SIMULATING PARTICLE MOTION 80

(3.28) yields

k1v = a(xn, vn, tn)∆t (3.58a)
k1x = vn∆t (3.58b)

k2v = a(xn +
k1x

2
, vn +

k1v

2
, tn +

∆t

2
)∆t (3.58c)

k2x = (vn +
k1v

2
)∆t (3.58d)

k3v = a(xn +
k2x

2
, vn +

k2v

2
, tn +

∆t

2
)∆t (3.58e)

k3x = (vn +
k2v

2
)∆t (3.58f)

k4v = a(xn + k3x, vn + k3v, t + ∆t) (3.58g)
k4x = (vn + k3x)∆t, (3.58h)

and

vn+1 = vn +
1
6
(k1v + 2k2v + 2k3v + k4v) (3.59a)

xn+1 = xn +
1
6
(k1x + 2k2x + 2k3x + k4x). (fourth-order Runge-Kutta) (3.59b)

Because Runge-Kutta algorithms are self-starting, they are frequently used to obtain the first few
iterations for an algorithm that is not self-starting.

As we have discussed, one way to determine the accuracy of a solution is to calculate it twice
with two different values of the time step. One way to make this comparison is to choose time
steps ∆t and ∆t/2 and compare the solution at the desired time. If the difference is small, the
error is assumed to be small. This estimate of the error can be used to adjust the value of the time
step. If the error is too large, than the time step can be halved. And if the error is much less than
the desired value, the time step can be increased so that the program runs faster.

A better way of controlling the step size was developed by Fehlberg who showed that it
is possible to evaluate the rate in such as way as to simultaneously obtain two Runge-Kutta
approximations with different orders. For example, it is, possible to run a fourth-order and fifth-
order algorithm in tandem by evaluating five rates. We thus obtain different estimates of the true
solution using different weighed averages of these rates:

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 (3.60a)
y∗

n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4. (3.60b)

Because we can assume that the fifth-order solution is closer to the true solution than the fourth
order algorithm, the difference |y − y∗| provides a good estimate of the error of the fourth-order
method. If this estimated error is larger than the desired tolerance, then the step size is decreased.
If the error is smaller than the desired tolerance, the step size is increased. The RK45 ODE solver
in the numerics package implements this technique for choosing the optimal step size.

In applications where the accuracy of the numerical solution is important, adaptive time step
algorithms should always be used. As stated in Numerical Recipes: “Many small steps should

CHAPTER 3. SIMULATING PARTICLE MOTION 81

tiptoe through treacherous terrain, while a few great strides should speed through uninteresting
countryside. The resulting gains in efficiency are not mere tens of percents or factors of two; they
can sometimes be factors of ten, a hundred, or more.”

Adaptive step size algorithms are not well suited for tabulating functions or for simulation
because the intervals between data points are not constant. An easy way to circumvent this
problem is to use a method that takes multiple adaptive steps while checking to insure that the
last step does not overshoot the desired fixed step size. The ODEMultistepSolver implements this
technique. The solver acts like a fixed step size solver, even though the solver monitors its internal
step size so as to achieve the desired accuracy.

It also is possible to combine the results from a calculation using two different values of the
time step to yield a more accurate expression. Consider the Taylor series expansion of f(t + ∆t)
about t:

f(t + ∆t) = f(t) + f ′(t)∆t +
1
2!

f ′′(t)(∆t)2 + . . . (3.61)

Similarly, we have

f(t − ∆t) = f(t) − f ′(t)∆t +
1
2!

f ′′(t)(∆t)2 + . . . (3.62)

We subtract (3.62) from (3.61 to find the usual central difference approximation for the derivative

f ′(t) ≈ D1(∆t) =
f(t + ∆t) − f(t − ∆t)

2∆t
− (∆t)2

6
f ′′′(t). (3.63)

The truncation error is order (∆t)2. Next consider the same relation, but for a time step that is
twice as large.

f ′(t) ≈ D1(2∆t) =
f(t + 2∆t) − f(t − 2∆t)

4∆t
− 4(∆t)2

6
f ′′′(t). (3.64)

Note that the truncation error is again order (∆t)2, but is four times bigger. We can eliminate
this error to leading order by dividing (3.64) by 4 and subtracting it from (3.63):

f ′(t) − 1
4
f ′(t) =

3
4
f ′(t) ≈ D1(∆t) − 1

4
D1(2∆t),

or

f ′(t) ≈ 4D1(∆t) − D1(2∆t)
3

. (3.65)

It is easy to show that the error for f ′(t) is order (∆t)4. Recursive difference formulas for derivatives
can be obtained by canceling the truncation error at each order. This method is called Richardson
extrapolation.

Another class of algorithms are predictor-corrector algorithms. The idea is to first predict the
value of the new position:

xp = xn−1 + 2vn∆t. (predictor) (3.66)

CHAPTER 3. SIMULATING PARTICLE MOTION 82

The predicted value of the position allows us to predict the acceleration ap. Then using ap, we
obtain the corrected values of vn+1 and xn+1:

vn+1 = vn +
1
2
(ap + an)∆t (3.67a)

xn+1 = xn +
1
2
(vn+1 + vn)∆t. (corrected) (3.67b)

The corrected values of xn+1 and vn+1 are used to obtain a new predicted value of an+1, and hence
a new predicted value of vn+1 and xn+1. This process is repeated until the predicted and corrected
values of xn+1 differ by less than the desired value.

Note that the predictor-corrector algorithm is not self-starting. The predictor-corrector al-
gorithm gives more accurate positions and velocities than the leapfrog algorithm and is suitable
for very accurate calculations. However, it is computationally expensive, needs significant storage
(the forces at the last two stages, and the coordinates and velocities at the last step), and becomes
unstable for large time steps.

As we have emphasized, there is no single algorithm for solving Newton’s equations of motion
that is superior under all conditions. It is usually a good idea to start with a simple algorithm,
and then to try a higher order algorithm to see if any real improvement is obtained.

We now discuss an important class of algorithms, known as symplectic algorithms, which are
particularly suitable for doing long time simulations of Newton’s equations of motion when the
force is only a function of position. The basic idea of these algorithms derives from the Hamiltonian
theory of classical mechanics. We first give some basic results needed from this theory to understand
the importance of symplectic algorithms.

In Hamiltonian theory the generalized coordinates, qi, and momenta, pi, take the place of the
usual positions and velocities familiar from Newtonian theory. In general, the index i labels both a
particle and a component of the motion. For example, in a two particle system in two dimensions,
i would run from 1 to 4. The Hamiltonian (which for our purposes can be thought as the total
energy) is written as

H(qi, pi) = T + V, (3.68)

where T is the kinetic energy and V is the potential energy. Hamilton’s theory is most relevant
for non-dissipative systems, which we consider here. For example, for a two particle system in two
dimensions connected by a spring, H would take the form:

H =
p2
1

2m
+

p2
2

2m
+

p2
3

2m
+

p2
4

2m
+

1
2
k(q1 − q3)2 +

1
2
k(q2 − q4)2, (3.69)

where if the particles are labeled as A and B, we have p1 = px,A, p2 = py,A, p3 = px,B , p4 = py,B ,
and similarly for the qi. The equations of motion are then written as two first-order differential
equations known as Hamilton’s equations:

ṗi = −∂H

∂qi
(3.70a)

q̇i =
∂H

∂pi
, (3.70b)

CHAPTER 3. SIMULATING PARTICLE MOTION 83

which are equivalent to Newton’s second law and an equation relating the velocity to the momen-
tum. The beauty of Hamiltonian theory is that these equations are correct for other coordinate
systems such as polar coordinates, and they also describe rotating systems where the momenta
become angular momenta, and the position coordinates become angles.

Because the coordinates and momenta are treated on an equal footing, we can consider the
properties of flow in phase space where the dimension of phase space includes both the coordinates
and momenta. Thus, one particle moving in one dimension corresponds to a two-dimensional
phase space. If we imagine a collection of initial conditions in phase space forming a volume in
phase space, then one of the results of Hamiltonian theory is that this volume does not change
as the system evolves. A slightly different result, called the symplectic property, is that the sum
of the areas formed by the projection of the phase space volume onto the planes, qi, pi, for each
pair of coordinates and momenta also does not change with time. Numerical algorithms that have
this property are called symplectic algorithms. These algorithms are built from the following two
statements which are repeated M times for each time step.

p
(k+1)
i = p

(k)
i + akF

(k)
i δt (3.71a)

q
(k+1)
i = q

(k)
i + bkp

(k+1)
i δt, (3.71b)

where F
(k)
i ≡ −∂V (q(k)

i)/∂q
(k)
i . The label k runs from 0 to M − 1 and one time step is given by

∆t = Mδt. (We will see that δt is the time step of an intermediate calculation that is made during
the time step ∆t.) For simplicity, we assume that the mass is unity. Note that in the update for
qi, the already updated pi is used.

Different algorithms correspond to different values for M , ak, and bk. For example, a0 = b0 =
M = 1 corresponds to the Euler-Cromer algorithm, and M = 2, a0 = a1 = 1, b0 = 2, and b1 = 0 is
equivalent to the Verlet algorithm as we will now show. If we substitute in the appropriate values
for ak and bk into (3.71), we have

p
(1)
i = p

(0)
i + F

(0)
i δt (3.72a)

q
(1)
i = q

(0)
i + 2p

(1)
i δt (3.72b)

p
(2)
i = p

(1)
i + F

(1)
i δt (3.72c)

q
(2)
i = q

(1)
i (3.72d)

We next combine (3.72a) and (3.72c) for the momentum coordinate and (3.72b) and (3.72d) for
the position and obtain

p
(2)
i = p

(0)
i + (F (0)

i + F
(1)
i)δt (3.73a)

q
(2)
i = q

(0)
i + 2p

(1)
i δt. (3.73b)

We take δt = ∆t/2 and combine (3.73b) with (3.72a) and find

p
(2)
i = p

(0)
i +

1
2
(F (0)

i + F
(1)
i)∆t (3.74a)

q
(2)
i = q

(0)
i + p

(0)
i ∆t +

1
2
F

(0)
i (∆t)2, (3.74b)

CHAPTER 3. SIMULATING PARTICLE MOTION 84

which is identical to the Verlet algorithm, (3.45), because for unit mass the force and acceleration
are equal.

Reversing the order of the updates for the coordinates and the momenta also leads to sym-
plectic algorithms:

q
(k+1)
i = q

(k)
i + bkδtp

(k)
i , (3.75a)

p
(k+1)
i = p

(k)
i + akδtF

(k+1)
i (3.75b)

A third variation uses (3.71) and (3.75) for different values of k in one algorithm. Thus, if M = 2,
which corresponds to two intermediate calculations per time step, we could use (3.71) for the first
intermediate calculation and (3.75) for the second.

Why are these algorithms important? Because of the symplectic property, these algorithms
will simulate an exact Hamiltonian, although not the one we started with in general. However,
this Hamiltonian will be close to the one we wish to simulate if the ak and bk are properly chosen.
Second, these algorithms frequently are more accurate and stable than nonsymplectic algorithms.
Finally, for even values of M the algorithms are time-reversible invariant, which is a property of
the actual systems we are trying to simulate. Examples and comparisons for various algorithms
are given in the paper by Gray et al. in the references.

References and Suggestions for Further Reading

F. S. Acton, Numerical Methods That Work, The Mathematical Association of America (1990),
Chapter 5.

Robert. K. Adair, The Physics of Baseball, third edition, Harper Collins (2002).

Byron L. Coulter and Carl G. Adler, “Can a body pass a body falling through the air?,” Am. J.
Phys. 47, 841 (1979). The authors discuss the limiting conditions for which the drag force is
linear or quadratic in the velocity.

Alan Cromer, “Stable solutions using the Euler approximation,” Am. J. Phys. 49, 455 (1981).
The author shows that a minor modification of the usual Euler approximation yields stable
solutions for oscillatory systems including planetary motion and the harmonic oscillator (see
Chapter 4).

Paul L. DeVries, A First Course in Computational Physics, John Wiley & Sons (1994).

A. P. French, Newtonian Mechanics, W. W. Norton & Company (1971). Chapter 7 has an excellent
discussion of air resistance and a detailed analysis of motion in the presence of drag resistance.

Ian R. Gatland, “Numerical integration of Newton’s equations including velocity-dependent forces,”
Am J. Phys. 62, 259 (1994). The author discusses the Euler-Richardson algorithm.

Stephen K. Gray, Donald W. Noid, and Bobby G. Sumpter, “Symplectic integrators for large
scale molecular dynamics simulations: A comparison of several explicit methods,” J. Chem.
Phys. 101 (5), 4062–4072 (1994).

CHAPTER 3. SIMULATING PARTICLE MOTION 85

Margaret Greenwood, Charles Hanna, and John Milton, “Air resistance acting on a sphere: nu-
merical analysis, strobe photographs, and videotapes,” Phys. Teacher 24, 153 (1986). More
experimental data and theoretical analysis are given for the fall of ping-pong and styrofoam
balls. Also see Mark Peastrel, Rosemary Lynch, and Angelo Armenti, “Terminal velocity of
a shuttlecock in vertical fall,” Am. J. Phys. 48, 511 (1980).

K. S. Krane, “The falling raindrop: variations on a theme of Newton,” Am. J. Phys. 49, 113
(1981). The author discusses the problem of mass accretion by a drop falling through a cloud
of droplets.

George C. McGuire, “Using computer algebra to investigate the motion of an electric charge in
magnetic and electric dipole fields,” Am. J. Phys. 71 (8), 809–812 (2003).

Rabindra Mehta, “Aerodynamics of sports balls,” in Ann. Rev. Fluid Mech. 17, 151 (1985).

Neville de Mestre, The Mathematics of Projectiles in Sport, Cambridge University Press (1990).
The emphasis of this text is on solving many problems in projectile motion, for example,
baseball, basketball, and golf, in the context of mathematical modeling. Many references to
the relevant literature are given.

Tao Pang, Computational Physics, Cambridge University Press (1997).

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numeri-
cal Recipes, second edition, Cambridge University Press (1992). Chapter 16 discusses the
integration of ordinary differential equations.

Emilio Segré, Nuclei and Particles, second edition, W. A. Benjamin (1977). Chapter 5 discusses
decay cascades. The decay schemes described briefly in Problem 3.13 are taken from C. M.
Lederer, J. M. Hollander, and I. Perlman, Table of Isotopes, sixth edition, John Wiley &
Sons (1967).

