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Random processes are introduced in the context of several simple physical systems, including
random walks on a lattice and polymers.

7.1 Order to Disorder

In Chapter 6 we saw several examples of how under certain conditions, the behavior of a nonlinear
deterministic system can be so complicated that it appears to be random. In this chapter we will
see some examples of how chance can generate statistically predictable outcomes. For example, we
know that if we bet often on the outcome of a game for which the probability of winning is less
than 50%, we will lose money eventually.

We first discuss an example that illustrates the tendency of systems of many particles to evolve
toward a well defined state. Imagine a closed box that is divided into two parts of equal volume
(see Figure 7.1). The left half contains a gas of N identical particles and the right half is empty.
We then make a small hole in the partition between the two halves. What happens? We know
that after some time, the average number of particles in each half of the box will be N/2, and we
say that the system has reached equilibrium.

How can we simulate this process? One way is to give each particle an initial velocity and
position and adopt a deterministic model of the motion of the particles. For example, we could
assume that each particle moves in a straight line until it hits a wall of the box or another particle
and undergoes an elastic collision. We will consider similar deterministic models in Chapter 8.
Instead, we first simulate a probabilistic model based on a random process.

The basic assumption of the probabilistic model that we will consider is that the motion of the
particles is random. For simplicity, we assume that the particles do not interact with one another
so that the probability per unit time that a particle goes through the hole in the partition is the
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Figure 7.1: A box is divided into two equal halves by a partition. After a small hole is opened in
the partition, one particle can pass through the hole per unit time.

same for all particles regardless of the number of particles in either half. We also assume that the
size of the hole is such that only one particle can pass through it in one unit of time.

The model consists of N noninteracting particles, all of which are initially on the left-hand
side. One way to move a particle is to choose a particle at random and move it to the other side.
We could use arrays to specify the position of each particle and simulate the random process by
generating at random an integer i between 0 and N − 1 and changing the arrays appropriately.
The tool we need to simulate this random process is a random number generator.

It might seem strange that we can use a deterministic computer to generate sequences of
random numbers. In Section 7.9 we discuss some of the methods for computing a set of numbers
which appear statistically random, but are in fact generated by a deterministic algorithm. These
algorithms are sometimes called pseudorandom number generators to distinguish their output from
intrinsically random physical processes such as the time between clicks in a Geiger counter near a
radioactive sample.

For the present we will be content to use the random number generator supplied with Java,
although the random number generators included with various programming languages vary greatly
in quality. In Java the method Math.random() produces a random number r that is uniformly
distributed in the interval 0 ≤ r < 1. To generate a random integer i between 0 and N − 1, we
write:

int i = (int)(N∗Math.random());

The effect of the (int) cast is to eliminate the decimal digits from a floating point number. Thus,
(int)(5.7) = 5;

The algorithm for simulating the evolution of the model can be summarized by the following
steps:

1. Use a random number generator to choose a particle at random.

2. Move this particle to the other side of the box.

3. Give the particle a random position on the new side of the box. This step is for visualization
purposes only.
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4. Increase the “time” by unity.

Note that the above definition of time is arbitrary. Class Box implements this algorithm and class
BoxApp plots the evolution of the number of particles on the left half of the box.

Listing 7.1: Class Box for the simulation of the approach to equilibrium.
/∗
∗ The org.opensourcephysics.sip.ch07 package contains classes for Chapter 7,
∗ Random Processes, of the book Simulations in Physics.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗/

package org.opensourcephysics.sip.ch07;
import java.awt.Color;
import java.awt.Graphics;
import org.opensourcephysics.display.Drawable;
import org.opensourcephysics.display.DrawingPanel;

/∗∗
∗ Box contains data for articles in a divided box
∗
∗ @author Jan Tobochnik
∗/

public class Box implements Drawable {
public double x[],y[];
public int n,nLeft,steps ;

/∗∗
∗ Initializes the box, places particles in random positions on left side .
∗/

public void initialize () {
x = new double[n]; //location of molecules
y = new double[n];
nLeft = n; // start with all molecules on the left
steps = 0;
for(int i = 0; i < n; i++) {

x[ i ] = 0.5∗Math.random(); //just needed for visualization
y[ i ] = Math.random();

}
}

/∗∗
∗ Moves one particle to the other side
∗/

public void step() {
int i = (int)(Math.random()∗n);
if (x[ i ] < 0.5) {
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nLeft−−; // move to right
x[ i ] = 0.5∗(1 + Math.random());
y[ i ] = Math.random();

}
else {

nLeft++; // move to left
x[ i ] = 0.5∗Math.random();
y[ i ] = Math.random();

}
steps++;
}

/∗∗
∗ Draws particles and divided box
∗/

public void draw (DrawingPanel myWorld, Graphics g) {
if (x == null) return;
int size = 2;
int xm = myWorld.xToPix(0.5);
g.setColor(Color.black);
g.drawLine(xm,myWorld.yToPix(0),xm,myWorld.yToPix(0.45));
g.drawLine(xm,myWorld.yToPix(0.55),xm,myWorld.yToPix(1.0));
g.setColor(Color.red);
for(int i = 0; i < n; i++) {

int xpix = myWorld.xToPix(x[i]);
int ypix = myWorld.yToPix(y[i]);
g. fillOval (xpix,ypix, size , size );

}
}

}

Listing 7.2: Target class for plotting the approach to equilibrium.
/∗
∗ The org.opensourcephysics.sip.ch07 package contains classes for Chapter 7,
∗ Random Processes, of the book Simulations in Physics.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗/

package org.opensourcephysics.sip.ch07;
import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;
import org.opensourcephysics.frames.DisplayFrame;
import org.opensourcephysics.frames.PlotFrame;
/∗∗
∗ Simulates approach to equilibrium for particles in a divided box
∗ @author Jan Tobochnik, revised 12/10/04
∗/
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public class BoxApp extends AbstractSimulation {
Box box = new Box();
PlotFrame plotFrame = new PlotFrame(”Time”, ”Number on Left”, ”Box data”);
DisplayFrame displayFrame = new DisplayFrame(”Divided Box”);
int pSteps; // number of steps between plots

/∗∗
∗ Get’s parameters and initializes model
∗/

public void initialize () {
displayFrame.clearDrawables();
displayFrame.addDrawable(box);
box.n = control . getInt(”Number of Particles”);
pSteps = control . getInt(”Number steps between plots”);
box. initialize ();
plotFrame.clearData();
displayFrame.setPreferredMinMax(0,1,0,1);

}

/∗∗
∗ Draws particles after each move, and plots data after pSteps steps
∗/

public void doStep() {
for(int i = 0; i < pSteps;i++) {

box.step();
}
plotFrame.append(0, box.steps, box.nLeft);

}

/∗∗
∗ Resets to default values
∗/

public void reset() {
control .setValue(”Number of Particles”, 100);
control .setValue(”Number steps between plots”, 10);
plotFrame.clearData();

}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main (String[] args) {
SimulationControl.createApp(new BoxApp());
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}

}

How long does it take for the system to reach equilibrium? How does this time depend on
the number of particles? After the system reaches equilibrium, what is the magnitude of the
fluctuations? How do the fluctuations depend on the number of particles? Problems 7.2 and 7.3
address such questions.

Exercise 7.1. Some simple tests

a. It is frequently quicker to write a short program to test the properties of a function than to look
it up in a manual or online. Write a short program to determine the values of 3/2, 3.0/2.0,
(int) (3.0/2.0), 2/3, and -3/2.

b. Write a short target class to determine the nature of Math.round(arg), Math.ceil(arg), and
Math.rint(arg).

c. Write a program to test whether the same sequence of random numbers appears each time the
program is run if we use the method Math.random() to generate the sequence. In Section 7.9
we will learn about ways of generating random numbers and how we can set the seed in Java
so that we can generate the same random number sequence if we wish. The ability to do the
latter is essential for testing our programs.

Problem 7.2. Approach to equilibrium

a. Run the program and describe the evolution of n, the number of particles on the left side of the
box. Choose the total number of particles N to be N = 8, 16, 64, 400, 800, and 3600. What
is your qualitative criterion for equilibrium? Does n, the number of particles on the left-hand
side, change when the system is in equilibrium?

b. The algorithm we have used is needlessly cumbersome, because our only interest is the number of
particles on each side, not their position. We used the positions only for visualization purposes.
Because each particle has the same chance to go through the hole, the probability per unit time
that a particle moves from left to right equals the number of particles on the left divided by the
total number of particles, that is, p = n/N . Modify the program so that the following algorithm
is implemented.

(i) Generate a random number r from a uniformly distributed set of random numbers in the
interval 0 ≤ r < 1.

(ii) If r ≤ p = n/N , move a particle from left to right, that is n → n−1; otherwise, n → n+1.

c. For sufficiently large N , does the time dependence of n appear to be deterministic? Based on
the shape of your plots of n(t), what is the qualitative behavior of n(t) before equilibrium is
reached?

d. Estimate the time for the system to reach equilibrium from the plots. How does this time
depend on N?



CHAPTER 7. RANDOM PROCESSES 207

Problem 7.3. Equilibrium fluctuations

a. As a rough measure of the equilibrium fluctuations, visually estimate the deviation of n(t) from
N/2 for N = 16, 64, 400, 800, and 3600? Choose a time interval that is bigger than the time
needed to reach equilibrium. How do your results for the deviation depend on N?

b. A better measure of the equilibrium fluctuations is the variance σ2
n, which is defined as

σ2
n = (n − n)2 = n2 − nn − nn + n)2 = n2 − 2n n + n2 = n2 − n2. (7.1)

The bar denotes an average taken after the system has reached equilibrium. The relative
magnitude of the fluctuations is σn/n. Modify your program so that averages are taken after
equilibrium has been reached. Run for a time that is long enough to obtain meaningful results.
Compute the variance σ2

n for the same values of N considered in part (a). How do the relative
fluctuations, σn/n, depend on N? (You might find it helpful to see how averages are computed
in Listings 7.3 and 7.4.)

From Problem 7.2 we see that n(t) decreases in time from its initial value to its equilibrium
value in an almost deterministic manner if N >> 1. It is instructive to derive the time dependence
of n(t) to show explicitly how chance can generate deterministic behavior. If there are n(t) particles
on the left side after t moves, then the change in n(t) in the time interval ∆t is given by

∆n =
[−n(t)

N
+

N − n(t)
N

]
∆t. (7.2)

(We defined the time so that the time interval ∆t = 1 in our simulations.) What is the meaning
of the two terms in (7.2)? If we treat n and t as continuous variables and take the limit ∆t → 0,
we have

∆n

∆t
→ dn

dt
= 1 − 2n(t)

N
. (7.3)

The solution of the differential equation (7.3) is

n(t) =
N

2
[1 + e−2t/N ], (7.4)

where we have used the initial condition n(t = 0) = N . Note that n(t) decays exponentially to its
equilibrium value N/2. How does this form (7.4) compare to your simulation results for various
values of N? We can define a relaxation time τ as the time it takes the difference [n(t) − N/2] to
decrease to 1/e of its initial value. How does τ depend on N? Does this prediction for τ agree
with your results from Problem 7.2?

∗Problem 7.4. The effect of a simple modification
Modify your program so that each side of the box is chosen with equal probability. One particle
is then moved from the side chosen to the other side. If the side chosen does not have a particle,
then no particle is moved during this time interval. Do you expect that the system behaves in the
same way as before? Do the simulation starting with all the particles on the left side of the box
and choose N = 800. To simplify the code, do not keep track of the particle’s positions. Compare
the behavior of n(t) with the behavior of n(t) found in Problem 7.3. How do the values of n and
σ2

n compare? Is this variation of the model realistic?
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The probabilistic method discussed on page 202 for simulating the approach to equilibrium
is an example of a Monte Carlo algorithm, that is, the random sampling of the most probable
outcomes. An alternative method is to use exact enumeration and to determine all the possibilities
at each time interval. For example, suppose that N = 8 and n(t = 0) = 8. At t = 1, the only
possibility is n = 7 and n′ = 1. Hence, P (n = 7, t = 1) = 1 and all other probabilities are zero.
At t = 2, one of the seven particles on the left can move to the right, or the one particle on the
right can move to the left. Because the first possibility can occur in seven different ways, we have
the nonzero probabilities, P (n = 6, t = 2) = 7/8 and P (n = 8, t = 2) = 1/8. Hence at t = 2, the
average number of particles on the left side of the box is

〈n(t = 2)〉 = 6P (6, 2) + 8P (8, 2) =
1
8
[6 × 7 + 8 × 1] = 6.25.

We have denoted the average by the brackets 〈. . .〉 to distinguish it from the time average that was
computed in Problem 7.3. Is this exact result consistent with what you found in Problem 7.2? In
this example N is small, and we can continue the enumeration of all the possibilities indefinitely.
However for larger N , the number of possibilities becomes very large after a few time intervals,
and we are forced to use Monte Carlo methods to sample the most probable outcomes.

So far you probably have run each simulation only once. If we are interested only in estimating
various averages after the system has reached equilibrium, we can obtain good averages by running
for a sufficiently long time. However, each time we run the program with a different sequence of
random numbers, we expect that n(t) will be somewhat different. So if we are interested in an
accurate estimate of the approach to equilibrium, we would need to run the program many times
with a different random number seed and average our results.

7.2 Random Walks

In Section 7.1 we considered the random motion of many particles in a box, but we did not
care about their trajectories – all we needed to know was the number of particles on each side.
Suppose that we want to characterize the motion of a dust particle in the atmosphere. We know
that as a given dust particle collides with the other molecules, it changes its direction frequently,
and its motion appears to be random. A simple model for the trajectory of a dust particle in
the atmosphere is based on the assumption that the particle moves in any direction with equal
probability. Such a model is an example of a random walk.

The original statement of a random walk was formulated in the context of a drunken sailor.
If a drunkard begins at a lamp post and takes N steps of equal length in random directions, how
far will the drunkard be from the lamp post? We will find that the mean square displacement of a
random walker, for example, a dust particle or a drunkard, grows linearly with time. This result
and its relation to diffusion leads to many applications that might seem to be unrelated to the
original drunken sailor problem.

We first consider an idealized example of a random walker that can move only along a line.
Suppose that the walker begins at x = 0 and that each step is of equal length a. At each time
interval the walker has a probability p of a step to the right and a probability q = 1 − p of a step
to the left. The direction of each step is independent of the preceding one. (The sailor is very
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drunk.) After N steps the displacement x of the walker from the origin is given by

xN =
N∑

i=1

si, (7.5)

where si = ±a. The displacement squared is

x2
N =

[ N∑
i=1

si

]2
. (7.6)

We can generate one walk of N steps by flipping a coin N times and increasing x by a each time
the coin is heads and decreasing x by a each time the coin is tails. In this case p = q = 1

2 .
In general, we would expect that if we average over a sufficient number of N step walks, then

the average of xN , denoted by 〈xN 〉, would be (p − q)Na. We can derive this result analytically,
by writing 〈xN 〉 =

∑N
i=1〈si〉 = N〈s〉, where we have assumed that each step is the same on the

average. We have 〈s〉 = p(a) + q(−a) = (p − q)a, and the result follows. For simplicitly, we will
frequently omit the subscript N and write 〈x〉.

To determine 〈x2
N 〉 analytically, we write (7.6) as the sum of two terms:

x2
N =

N∑
i=1

si

N∑
j=1

sj =
N∑

i=1

s2
i +

N∑
i �=j=1

sisj . (7.7)

The first sum on the right-hand side of (7.7) includes terms for which i = j; the second sum is over
i and j such that i �= j. The product sisj for i �= j equals +a2 and −a2 with equal probability,
and hence the average of the second term in (7.7) is zero. (Remember that the average of a sum is
the sum of the averages.) Because s2

i = a2 independently of the sign of si, the first term in (7.7)
equals a2N for all walks, and hence equals a2N on the average. We conclude that

〈x2
N 〉 = a2N. (p = q = 1/2) (7.8)

If the time interval for a step is ∆t rather than unity, we should replace N in (7.8) by N∆t.
For p �= 1

2 , it is convenient to consider the variance σ2
x defined as

σ2
x = 〈

[
xN − 〈xN 〉

]2〉 = 〈x2
N 〉 − 〈xN 〉2. (7.9)

It is straightforward to show that for any value of p, the N dependence of σ2
x is given by

σ2
x = 4pqa2N. (7.10)

W can gain more insight into the nature of random walks by doing a Monte Carlo simulation,
that is, by using a computer to “flip coins.” The implementation of the random walk algorithm is
simple, for example,

if (p < Math.random()) {
x++;

}
else {

x−−;
}
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Clearly we have to sample many N step walks because in general, each walk will give a
different outcome. We need to do a Monte Carlo simulation many times and average over the
results to obtain meaningful averages. Each N -step walk is called a trial. How do we know how
many trials to use? The simple answer is to average over more and more trials until the average
results don’t change within the desired accuracy. The more sophisticated answer is to do an error
analysis similar to what we do in measurements in the laboratory. Such an analysis is discussed in
Section 11.5.

The more difficult parts of a program to simulate random walks are associated with bookkeep-
ing. The walker takes a total of N steps in each trial and the net displacement x is computed. Our
convention will be to use a variable name ending in Accumulator (or Accum) to denote a variable
that accumulates the value of some variable. Below we provide classes that can be used to simulate
random walks.

Listing 7.3: Listing of Walker class.
/∗
∗ The org.opensourcephysics.sip.ch11 package contains classes for chapter 11,
∗ Random Processes, of the book Simulations in Physics.
∗ Copyright (c) 2002 H. Gould, J. Tobochnik, and W. Christian.
∗/

package org.opensourcephysics.sip.ch07;

/∗∗
∗ Random Walk simulation in 1−D
∗
∗ @author Jan Tobochnik
∗/

public class Walker {

int x [], x2 []; // accumulated data on location of walkers , index is time
int tMax; // maximum time to record data
double p; // probability of walking to the right
int position ; // walker position

/∗∗
∗ Initializes walker array
∗/

public void initialize () {
x = new int[tMax+1];
x2 = new int[tMax+1];

}

/∗∗
∗ Random walk for one walker
∗/
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public void step() {
position = 0;
for(int t = 0; t < tMax; t++) {

if (Math.random() < p)
position++;

else
position−−;

x[t+1] += position;
x2[t+1] += position∗position;

}
}

}

Listing 7.4: Target class for random walk simulation.
package org.opensourcephysics.sip.ch07;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;

/∗∗
∗ Simulates random walkers in one dimension
∗ @author Jan Tobochnik revised 12/10/04
∗/

public class WalkerApp extends AbstractSimulation {
Walker walker = new Walker();
PlotFrame plotFrame = new PlotFrame(”time”, ”<x>,<xˆ2>”, ”Averages”);
HistogramFrame distribution = new HistogramFrame(”x”, ”H(x)”, ”Histogram”);
int trials ; // number of trials

/∗∗
∗ Set column names for data table
∗/

public WalkerApp() {
plotFrame.setXYColumnNames(0, ”t”, ”<x>”);
plotFrame.setXYColumnNames(1, ”t”, ”<xˆ2>”);

}

/∗∗
∗ Get’s parameters and initializes model
∗/

public void initialize () {
walker.p = control.getDouble(”Probability of walking right”);
walker.tMax = control.getInt(”Maximum time to collect data”);
walker. initialize ();
trials = 0;

}

/∗∗
∗ Does one walker at a time
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∗/
public void doStep() {

trials ++;
walker.step ();
distribution .append(walker.position);
distribution .setMessage(”trials = ”+trials );

}

/∗∗
∗ Plots data when user stops the simulation.
∗/

public void stopRunning() {
plotFrame.clearData();
for(int t = 0; t<=walker.tMax; t++) {

plotFrame.append(0, 1.0∗t, walker.x[t ]∗1.0/ trials );
plotFrame.append(1, 1.0∗t, walker.x2[t ]∗1.0/ trials −Math.pow(walker.x[t]/trials , 2));

}
plotFrame.repaint();

}

/∗∗
∗ Resets to default values
∗/

public void reset() {
control .setValue(”Probability of walking right” , 0.5);
control .setValue(”Maximum time to collect data”, 100);

}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main(String[] args) {
SimulationControl.createApp(new WalkerApp());

}
}

Problem 7.5. Random walks in one dimension

a. In class Walker the steps are of unit length so that a = 1. Use Walker and WalkerApp to
estimate the number of trials needed to obtain σ2

x for N = 20 and p = 1/2 with an accuracy of
approximately 5%. Compare your result for σ2

x to the exact answer in (7.10). Approximately
how many trials do you need to obtain the same relative accuracy for N = 100?

b. Is 〈x〉 exactly zero in your simulations? Explain the difference between the analytical result and
the results of your simulations.

c. How do your results for 〈x〉 and σ2
x change for p �= q? Choose p = 0.7 and determine the N

dependence of 〈x〉 and σ2
x.
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d.∗ Determine σ2
x for N = 1 to N = 5 by enumerating all the possible walks. For simplicity, choose

p = 1
2 so that 〈x〉 = 0. For N = 1, there are two possible walks: one step to the right and

one step to the left. In both cases x2 = 1 and hence 〈x1
2〉 = 1. For N = 2 there are four

possible walks with the same probability: (i) two steps to the right, (ii) two steps to the left,
(iii) first step to the right and second step to the left, and (iv) first step to the left and second
step to the right. The value of x2

2 for these walks is 4, 4, 0, and 0 respectively, and hence
〈x2

2〉 = (4 + 4 + 0 + 0)/4 = 2. Write a program that enumerates all the possible walks of a
given number of steps and compute the various averages of interest exactly.

The class WalkerApp displays the distribution of values of the displacement x after N steps.
One way of determining the number of times that the variable x has a certain value would be to
define a one-dimensional array, probability, and let

probability[x] += 1;

In this case because x takes only integer values, the array index of probability is the same
as x itself. However, the above statement does not work in Java because x can be negative as
well as positive. What we need is a way of mapping the value x to a bin or index number.
The HistogramFrame class, which is part of the Open Source Physics display package, does this
mapping automatically using the Java Hashtable class. In many data structures data is accessed
by an index that indicates the location of the data in the data structure. However, hashtable data
is accessed by a key, which in our case would be the value of x. A hashing function converts the key
to an index. The append method of the HistogramFrame class takes a value, finds the index using
a hashing function, and then increments the data associated with that key. The HistogramFrame
class also draws itself.

The HistogramFrame class is very useful for taking a quick look at the distribution of values
in a data set. You don’t need to worry about how to group the data into bins or the range
of values of the data. The default bin width is unity, but the bin width can be set using the
setBinWidth method. Frequently, we wish to use the histogram data to compute other quantities
such as a probability density. You could collect the data using the Data Table menu item in
HistogramFrame and copy the data to a plotting program. Another option is to include additional
code in your program to analyze the data. You can use the following statements, which assume
that a HistogramFrame object called histogram has been created and data entered into it.

// creates array entries of data from histogram
java. util .Map.Entry[] entries = histogram.entries ();
for(int i = 0, length = entries .length ; i < length; i++) {

Integer binNumber = (Integer) entries[i ]. getKey(); // gets bin number
Double occurences = (Double) entries[i ]. getValue(); // gets number of occurences for bin number i
double value = histogram.getLeftMostBinPosition(binNumber.intValue()); // gets value of left edge of bin
value += 0.5∗histogram.getBinWidth(); // sets value to middle of bin
double number = occurences.doubleValue(); // convert from Double class to double data type
// use value and number in your analysis

}

Problem 7.6. Nature of the probability distribution
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a. Compute PN (x), the probability that the displacement of the walker from the origin is x after
N steps. What is the difference between the histogram, that is, the number of occurrences, and
the probability? Consider N = 10 and N = 40 and at least 1000 trials. Does the qualitative
form of PN (x) change as the number of trials increases? What is the approximate width of
PN (x) and the value of PN (x) at its maximum for each value of N?

b. Is PN (x) a continuous function of x? Can you fit the envelope of PN (x) to a continuous function
such as

1√
2πσ2

x

e−(x−〈x〉)2/2σ2
x). (7.11)

The form (7.11) is the standard form of the Gaussian distribution. Compare your computed
values for PN (x) to the form (7.11) using 〈x〉 and σ2

x as input.

Problem 7.7. More random walks in one dimension

a. Suppose that the probability of moving to the right is p = 0.7. Compute 〈x〉 and σ2
x for N = 4,

8, 16, and 32. What is the interpretation of 〈x〉 in this case? What is the qualitative dependence
of σ2 on N?

b. Use the exact result and estimate the number of trials needed to obtain σ2
x to 1% accuracy for

N = 8 and N = 32.

c. An interesting property of random walks is the mean number 〈DN 〉 of distinct lattice sites visited
during the course of an N step walk. Do a Monte Carlo simulation of 〈DN 〉 and determine its
N dependence.

We can equally well consider either a large number of successive walks as in Problem 7.7
or a large number of similar (noninteracting) walkers moving at the same time. In Problem 7.8
we consider the motion of many random walkers moving independently of one another on a two-
dimensional lattice.

Problem 7.8. A random walk in two dimensions

a. Consider a collection of walkers initially at the origin of a square lattice. At each unit of time,
each of the walkers moves at random with equal probability in one of the four possible directions.
Modify WalkerApp and create a drawable class, Walker2D, which contains the positions of M
walkers moving in two dimensions and draws their location. Unlike WalkerApp, this new class
should not specify the maximum number of steps. Instead the number of walkers should be
specified.

b. Run your application with the number of walkers M ≥ 200 and allow the walkers to take at
least 500 steps. If each walker represents a bee, describe the qualitative nature of the shape of
the swarm of bees. Describe the qualitative nature of the surface of the swarm as a function of
the number of steps, N . Is the surface jagged or smooth?
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c. Compute the quantities 〈xN 〉, 〈yN 〉, σ2
x, and σ2

y as a function of N . The average is over the M
walkers. Also compute the mean square displacement 〈R2

N 〉 given by

〈R2
N 〉 = 〈x2

N 〉 − 〈xN 〉2 + 〈y2
N 〉 − 〈yN 〉2 = σ2

x + σ2
y. (7.12)

What is the dependence of each quantity on N? (As before, we will frequently write 〈R2〉
instead of 〈R2

N 〉.)

d. Estimate 〈R2〉 for N = 8, 16, 32, and 64 using a large number of walkers for each value of N .
Assume that 〈R2〉 has the asymptotic N dependence:

〈R2〉 ∼ N2ν , (N >> 1) (7.13)

and estimate the exponent ν from a log-log plot of 〈R2〉 versus N . We will see in Chapter 13
that the exponent ν is related to the fractal dimension and that its value is related to how a
random walk fills space. If ν ≈ 1

2 , estimate the magnitude of the self-diffusion coefficient D
given by

〈R2〉 → 2dDN, (N >> 1) (7.14)

where d = 2 is the dimension of space.

e. Do a Monte Carlo simulation of 〈R2〉 on a triangular lattice (see Figure ??) and estimate ν.
Can you conclude that the exponent ν is independent of the symmetry of the lattice? Does D
depend on the symmetry of the lattice? If so, give a qualitative explanation for this dependence.

f.∗ Enumerate all the random walks on a square lattice for N = 4 and obtain exact results for
〈x〉, 〈y〉, and 〈R2〉. Assume that all four directions are equally probable. Verify your program
by comparing the Monte Carlo and exact enumeration results.

Problem 7.9. The fall of a rain drop
Consider a random walk that starts at a site a distance y = h above a horizontal line (see Fig-
ure 7.2). If the probability of a step down is greater than the probability of a step up, we expect
that the walker will eventually reach a site on the horizontal line. This walk is a simple model of
the fall of a rain drop in the presence of a random swirling breeze. Do a Monte Carlo simulation to
determine the mean time τ for the walker to reach any site on the line y = 0 and find the functional
dependence of τ on h. Is it possible to define a velocity in the vertical direction? Because the
walker does not always move vertically, it suffers a net displacement x in the horizontal direction.
How does σ2

x depend on h and τ? Reasonable values for the step probabilities are 0.1, 0.6, 0.15,
0.15, corresponding to up, down, right, and left, respectively.

7.3 Modified Random Walks

So far we have considered random walks on one- and two-dimensional lattices where the walker
has no “memory” of the previous step. What happens if the walkers remember the nature of their
previous steps? What happens if there are multiple random walkers, with the condition that no



CHAPTER 7. RANDOM PROCESSES 216

Figure 7.2: Examples of the random path of a raindrop to the ground. The step probabilities are
given in Problem 7.9. The walker starts at x = 0, y = h.

double occupancy is allowed? We explore these and other variations of the simple random walk
in this section. All these variations have applications to physical systems, but the applications are
more difficult to understand than the models themselves.

Problem 7.10. A persistent random walk

a. In a persistent random walk, the transition or jump probability depends on the previous step.
Consider a walk on a one-dimensional lattice, and suppose that step N−1 has been made. Then
step N is made in the same direction with probability α; a step in the opposite direction occurs
with probability 1 − α. Write a program to do a Monte Carlo simulation of the persistent
random walk in one dimension. Compute 〈x〉, σ2

x, and PN (x). Note that it is necessary to
specify both the initial position and an initial direction of the walker. What is the α = 1

2 limit
of the persistent random walk?

b. Consider the cases α = 0.25 and α = 0.75 and determine σ2
x for N = 8, 64, 256, and 512.

Assume that σ2
x ∼ N2ν for large N , and estimate the value of ν from a log-log plot of σ2

x versus
N for large N . Does ν depend on α? If ν ≈ 1

2 , determine the self-diffusion coefficient D for
α = 0.25 and 0.75 (see Problem 7.8). Give a physical argument why D(α �= 0.5) is greater
(smaller) than D(α = 0.5).

c. You might have expected that the persistent random walk yields a nonzero value for 〈xN 〉.
Verify that 〈xN 〉 = 0, and explain why this result is exact. How does the persistent random
walk differ from the biased random walk for which p �= q?

d. A persistent random walk can be considered as an example of a multistate walk in which the
state of the walk is defined by the last transition. In the above example, the walker is in
one of two states; at each step the probabilities of remaining in the same state or switching
states are α and 1 − α, respectively. One of the earliest applications of a two state random
walk was to the study of diffusion in a chromatographic column. Suppose that a molecule in a
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chromatographic column can be either in a mobile phase (constant velocity v) or in a trapped
phase (zero velocity). Instead of each step changing the position by ±1, the position at each
step changes by +v or 0. A quantity of experimental interest is the probability PN (x) that a
molecule has traveled a distance x in N steps. Choose v = 1 and α = 0.75 and compute the
qualitative behavior of PN (x).

e.∗ A molecule is said to diffuse if its mean square displacement is proportional to the number of
steps (or time). Explain why the molecule cannot diffuse in either state, but that it is still
possible to define an effective diffusion coefficient for the molecule.

The fall of a raindrop considered in Problem 7.9 is an example of a restricted random walk,
that is, a walk in the presence of a boundary. In the following problem, we discuss in a more
general context the effects of various types of restrictions or boundaries on random walks. Other
examples of a restricted random walk are given in Problems 7.23b and 7.17.

Problem 7.11. Restricted random walks

a. Consider a one-dimensional lattice with trap sites at x = 0 and x = L (L > 0). A walker begins
at site x0 (0 < x0 < L) and takes unit steps to the left and right with equal probability. When
the walker arrives at a trap, it vanishes. Do a Monte Carlo simulation and verify that the mean
number of steps τ for the particle to be trapped (the first passage time) is given by

τ = (2D)−1x0(L − x0). (7.15)

D is the self-diffusion coefficient in the absence of the traps, and the average is over all possible
walks.

b. Random walk models in the presence of traps have had an important role in condensed matter
science. For example, consider the following idealized model of energy transport in solids. The
solid is represented as a lattice with two types of sites: hosts and traps. An incident photon
is absorbed at a host site and excites the host molecule or atom. The excitation energy or
exciton is transferred at random to one of the host’s nearest neighbors and the original excited
molecule returns to its ground state. In this way the exciton wanders through the lattice until
it reaches a trap site. The exciton is then trapped and a chemical reaction occurs. A simple
version of this energy transport model is given by a one-dimensional lattice with traps placed
on a periodic sublattice. Because the traps are placed at regular intervals, we can replace the
random walk on an infinite lattice by a random walk on a circular ring. Consider a lattice of
N host or nontrapping sites and one trap site. If a walker has an equal probability of starting
from any host site and an equal probability of a step to each nearest neighbor site, what is the
N dependence of the mean survival time τ (the mean number of steps taken before a trap site
is reached)? Use the results of part (a) rather than doing another simulation.

c. Consider a one-dimensional lattice with reflecting sites at x = −L and x = L. For example, if
a walker reaches the reflecting site at x = L, it is reflected at the next step to x = L − 1. At
t = 0, the walker starts at x = 0 and steps with equal probability to nearest neighbor sites.
Write a Monte Carlo program to determine PN (x), the probability that the walker is at site
x after N steps. Compare the form of PN (x) with and without the presence of the reflecting
“walls.” Can you distinguish the two probability distributions if N is the order of L? At what
value of N can you first distinguish the two distributions?
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Problem 7.12. Synchronized random walks

a. Randomly place two walkers on a one-dimensional lattice of L sites. At each time step randomly
choose whether the walkers should move to the left or to the right. Both walkers move in the
same direction. If a walker cannot move in the chosen direction because it is at a boundary, then
this walker stays still for this time step. A trial ends when both walkers are at the same site.
This model is relevant to a method of doing crytography using neural networks (see Rutter et
al.). Write a program to determine the mean time and the variance of the time for two walkers
to reach the same site.

b. Start with L = 1, and continuing increasing L by unity until the user stops the simulation. Use
at least 1000 trials for each value of L and determine the dependence of the mean time and the
variance of the time on L.

c. Change your program so that you use biased random walkers for which p �= q. How does this
change affect your results?

Problem 7.13. Random walk on a continuum
One of the first continuum models of a random walk was proposed by Rayleigh in 1919. The model
is known as the freely jointed chain in polymer physics. In this model the length a of each step
is a random variable with probability density p(a), and the direction of each step is uniformly
random. For simplicity, we first consider a walker in two dimensions so that each step has unit
length at a random angle. Write a Monte Carlo program to compute PN (r)∆r, the probability
that the displacement of the walker is in the range r to r+∆r after N steps, where r is the distance
from the origin. Verify that the probability density PN (r) can be approximated by a Gaussian
for sufficiently large N . Is a Gaussian a good approximation for small N? Is it necessary to do
a Monte Carlo simulation to confirm that 〈R2

N 〉 ∼ N , or can you give a simple argument for this
dependence based on the form of PN (r)?

Problem 7.14. Random walks with steps of variable length

a. Consider a random walk in one dimension with jumps of all lengths allowed. The probability
density that the length of a single step is a is p(a). If the form of p(a) is given by p(a) = e−a for
a > 0, what is the form of PN (x)? As we will learn in Section 11.6, the code needed to generate
step lengths according to this probability density is given by

a = −Math.log(1 − Math.random());

Consider a walk of N steps and determine the net displacement x. Generate many such walks
and determine PN (x). Plot PN (x) versus x and confirm that the form of PN (x) is consistent
with a Gaussian distribution.

b. Assume that the probability density p(a) is given by p(a) = C/a2 for a ≥ 1. Determine the
normalization constant C using the condition C

∫ ∞
1

a−2 da = 1. Does the second moment of
p(a) exist? In this case, we will learn that the statement

a = 1.0/(1.0 − Math.random());
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generates values of a according to this form of p(a). Do a Monte Carlo simulation as in part
(a) and verify that the form of PN (x) is not a Gaussian, but is given by

PN (x) ∼ bN

x2 + b2N2
. (7.16)

What is the magnitude of the parameter b? Does the variance σ2
x of PN (x) exist? This type

of random walk for which p(a) decreases as a power law, a−1−α, is known as a Levy flight for
α ≤ 2.

Problem 7.15. The central limit theorem
Consider a continuous random variable x with probability density f(x). That is, f(x)∆x is the
probability that x has a value between x and x + ∆x. The mth moment of f(x) is defined as

〈xm〉 =
∫

xmf(x) dx. (7.17)

The mean value 〈x〉 is given by (7.17) with m = 1. The variance σx
2 of f(x) is defined as

σx
2 = 〈x2〉 − 〈x〉2. (7.18)

Consider the sum yN corresponding to the average of N values of x:

yN =
1
N

(x1 + x2 + . . . + xN ). (7.19)

We adopt the notation y = yN . Suppose that we make many measurements of y. We know that
the values of y will not be identical, but will be distributed according to a probability density p(y),
where p(y)∆y is the probability that the measured value of y is in the range y to y + ∆y. The
main quantities of interest are the mean 〈y〉, the variance σy

2 = 〈y2〉 − 〈y〉2, and p(y).

a. Suppose that f(x) is uniform in the interval [−1, 1]. Calculate 〈x〉 and σx analytically. Use a
Monte Carlo method to make a sufficient number of measurements of y to determine p(y), 〈y〉,
and σy with reasonable accuracy. For example, choose N = 1000 and make 104 measurements
of y. Verify that σy is approximately equal to σx/

√
N . Use the HistogramFrame class to plot

p(y) versus y and discuss its qualitative form. Does the form of p(y) change if the number of
measurements of y is increased? Does the form of p(y) change significantly if N is increased?

b. To test the generality of the results of part (a), consider the exponential probability density

f(x) =

{
e−x, x ≥ 0
0, x < 0.

(7.20)

Calculate 〈x〉 and σx analytically. Modify your Monte Carlo program (see Problem 7.14a) and
estimate 〈y〉, σy, and p(y). Is σy related to σx and N as in part (a)? Plot p(y), and discuss its
qualitative form and its dependence on N and on the number of measurements of y.
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Problem 7.15 illustrates the central limit theorem which states that the probability distribution
of a sum of random variables, the random variable y, is a Gaussian centered at 〈y〉 with a standard
deviation 1/

√
n times the standard deviation of f(x). The requirements are that f(x) has finite

first and second moments, that the measurements of y are statistically independent, and that N
is large. What is the relation of the central limit theorem to the calculations of the probability
distribution in the random walk models that we already have considered?

Problem 7.16. Generation of the Gaussian distribution
Consider the sum

y =
12∑

i=1

ri, (7.21)

where ri is a uniform random number in the unit interval. Make many measurements of y and show
that the probability distribution of y approximates the Gaussian distribution with mean value 6
and variance 1. What is the relation of this result to the central limit theorem? Discuss how to
use this result to generate a Gaussian distribution with arbitrary mean and variance. This way of
generating a Gaussian distribution is particularly useful when a “quick and dirty” approximation is
appropriate. The Box-Muller method of generating a set of random numbers distributed according
to a Gaussian distribution is discussed in Section 11.6.

Many of the problems we have considered have revealed the slow convergence of Monte Carlo
simulations and the difficulty of obtaining quantitative results for asymptotic quantities. We con-
clude this section with a cautionary note and consider a “simple” problem for which straightforward
Monte Carlo methods give misleading asymptotic results.

∗Problem 7.17. Random walk on lattices containing random traps

a. We have considered the mean survival time of a one-dimensional random walker in the presence
of a periodic distribution of traps (see Problem 7.11). Now suppose that the trap sites are
distributed at random on a one-dimensional lattice with density ρ = N/L. For example, if
ρ = 0.01, the probability that site is a trap site is 1%. If a walker is placed at random at any
nontrapping site, determine its mean survival time τ , that is, the mean number of steps before
a trap site is reached. Assume that the walker has an equal probability of moving to a nearest
neighbor site at each step and use periodic boundary conditions, that is, the lattice sites are
located on a ring.

This problem is more difficult than it might first appear, and there are a number of pitfalls.
The major complication is that it is necessary to perform three averages: the distribution of
traps, the origin of the walker, and the different walks for a given trap distribution and origin.
Choose reasonable values for the number of trials associated with each average and do a Monte
Carlo simulation to estimate the mean survival time τ . If τ exhibits a power law dependence
on ρ, for example, τ ≈ τ0 ρ−z, estimate the exponent z.

b. A seemingly straightforward extension of part (a) is to estimate the survival probability SN

after N steps. Choose ρ = 0.5 and do a Monte Carlo simulation of SN for N as large as
possible. (Published results are for a maximum N = 3 × 104 on lattices large enough that a
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walker doesn’t reach the boundary, and about 54 000 trials.) Assume that the asymptotic form
of SN for large N is given by

SN ∼ e−bNα

, (7.22)

where b is a constant that depends on ρ. Are your results consistent with this form? Is it
possible to make a meaningful estimate of the exponent α?

c. The object of part (b) is to convince you that it is not possible to use Monte Carlo methods
directly to obtain the correct asymptotic behavior of SN . The difficulty is that we are trying to
estimate SN in the asymptotic region where SN is very small, and the small number of trials in
this region prevent us from obtaining meaningful results. It has been proved using analytical
methods, that the asymptotic N dependence of SN has the form (7.22) with α = 1/3. Are your
Monte Carlo results consistent with this value of α?

d. A method that reduces the number of required averages is to determine exactly, for a given
distribution of trap sites, the probability that the walker is at site i after N steps. The method
is illustrated in Figure 7.3. The first line represents a given configuration of traps distributed
randomly on a one-dimensional lattice. One walker is placed at each non-trap site; trap sites
are assigned the value 0. Because each walker moves with probability 1

2 to each neighbor, the
number of walkers Wi(N + 1) on site i at step N + 1 is given by

Wi(N + 1) =
1
2
[Wi+1(N) + Wi−1(N)]. (7.23)

(Compare the relation (7.23) to the relation that you found in Problem 7.5d.) The survival
probability SN after N steps for a given configuration of traps is given exactly by

SN =
1
w0

∑
i

Wi(N), (7.24)

where w0 is the initial number of walkers and the sum is over all sites in the lattice. Explain the
relation (7.24), and write a program that computes SN using (7.23) and (7.24). Then obtain
〈SN 〉 by averaging over several configurations of traps. Choose ρ = 0.5 and determine SN for
N = 32, 64, 128, 512, and 1024. Choose periodic boundary conditions and as large a lattice as
possible. How well can you estimate the exponent α? For comparison, Havlin et al. consider a
lattice of L = 50 000 and values of N up to 107.

One reason that random walks are very useful in simulating many physical processes and
modeling many differential equations of physical interest is that their behavior is closely related to
the solutions of the diffusion equation. The one-dimensional diffusion equation can be written as

∂P (x, t)
∂t

= D
∂2P (x, t)

∂x2
, (7.25)

where D is the self-diffusion coefficient and P (x, t) dx is the probability of a particle being in
the interval between x and x + dx at time t. In a typical application P (x, t) might represent
the concentration of ink molecules diffusing in a fluid. In three dimensions the second derivative
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Figure 7.3: Example of the exact enumeration of walks on a given configuration of traps. The
filled and empty squares denote non-trap and trap sites respectively. At step N = 0, a walker
is placed at each regular site. The numbers at each site i represent the number of walkers Wi.
Periodic boundary conditions are used. The initial number of walkers in this example is w0 = 10.
The mean survival probability at step N = 1 and N = 2 is found to be 0.6 and 0.475 respectively.

∂2/∂x2 is replaced by the Laplacian ∇2. In Appendix 7B we show that the solution to the diffusion
equation with the boundary condition P (x = ±∞, t) = 0 yields

〈xN 〉 = 0 (7.26)

and

〈x2
N 〉 = 2Dt. (7.27)

If we compare the form of (7.8) with (7.27), we see that the random walk and the diffusion equation
give the same time dependence if we identify t with N∆t and 2D with �2/∆t.

The relation of discrete random walks to the diffusion equation is an example of how we
can approach many problems in two ways. The traditional way is to formulate the problem as a
partial differential equation as in (7.25) and solve the equation by various numerical methods. One
difficulty with this approach is the treatment of complicated boundary conditions. An alternative
approach is to formulate the problem as a random walk. Later we will consider random walks in
many contexts and find that it is straightforward to handle various boundary conditions (see for
example, Section 10.5 and Chapter 16).

7.4 The Poisson Distribution and Nuclear Decay

As we have seen, we often can change variable names and do a seemingly different physical problem.
Our goal in this section is to discuss the decay of unstable nuclei, but we first discuss a conceptually
easier problem related to throwing darts at random. Related physical problems are the distribution
of stars in the sky and the distribution of photons on a photographic plate.

Suppose we randomly throw N = 100 darts at a board that has been divided into M = 1000
equal size regions. (Usually our throws are not intended to be random, but here we consider random
throws.) The probability that a dart hits a given region or cell in any one throw is p = 1/M . If we
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count the number of darts in the different regions, we would find that most cells are empty, some
cells have one dart, and other cells have more than one dart. What is the probability P (n) that a
given cell has n darts?

Problem 7.18. Throwing darts
Write a program that simulates the throwing of N darts at random into M cells in a dart board.
Throwing a dart at random at the board is equivalent to choosing an integer at random between
1 and M . Determine H(n), the number of cells with n darts. Average H(n) over many trials, and
then compute the distribution

P (n) =
H(n)
M

. (7.28)

As an example, choose N = 50 and M = 500. Choose the number of trials to be sufficiently large
so that you can determine the qualitative form of P (n). What is 〈n〉?

In this case, the probability p that a dart lands in a given cell, is much less then unity. The
conditions N >> 1 and p << 1 with 〈n〉 = Np fixed and the independence of the events (the
presence of a dart in a particular cell) satisfy the requirements for a Poisson distribution, P (n).
This form of the Poisson distribution is

P (n) =
〈n〉n
n!

e−〈n〉, (7.29)

where n is the number of darts in a given cell and 〈n〉 is the mean number, 〈n〉 =
∑∞

n=0 nP (n).
The upper limit of the sum should be N , but because N >> 1, we can take the upper limit to be
∞ when it is convenient.

Problem 7.19. Darts and the Poisson distribution

a. Write a program to compute
∑

n=0 P (n),
∑

n=0 nP (n), and
∑

n=0 n2 P (n) using the form (7.29)
for P (n) and reasonable values of p and N . Verify that P (n) in (7.29) is normalized. What is
the value of σ for the Poisson distribution? Choose a value of the upper limit on the sum so
that the various sums are unaffected.

b. Modify the program that you developed in Problem 7.18 to compute 〈n〉 as well as P (n). Choose
N = 50 and M = 1000 and use your measured value of 〈n〉 as input to compare o your computed
values of P (n) to the Poisson distribution. If time permits, use larger values of N and M .

c. Choose N = 50 and M = 100 and redo part (b). Are your results consistent with a Poisson
distribution? What happens if M = N = 50?

Now that we are more familiar with the Poisson distribution, we consider the decay of ra-
dioactive nuclei. We know that a collection of radioactive nuclei will decay and there is no way to
know a priori which nucleus will decay next. If all nuclei of a particular type are identical, why do
they not all decay at the same time? The answer is based on the fundamental uncertainty inherent
in the quantum description of matter at the microscopic level. In the following, we will see that a
simple model of the decay process leads to an exponential decay law. This approach complements
the continuum approach discussed in Section 3.8.
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Because each nucleus is identical, we assume that during any time interval ∆t, each nucleus
has the same probability per unit time p of decaying. The basic algorithm is simple – choose
an unstable nucleus and generate a random number r uniformly distributed in the unit interval
0 ≤ r < 1. If r ≤ p, the unstable nucleus decays; otherwise, it does not. Each unstable nucleus is
tested during each unit time interval. Note that for a system of unstable nuclei, there are many
events that can happen during each time interval, for example, 0, 1, 2, . . . , n nuclei can decay. In
contrast, for the particles in the box problem, there is a probability of unity that a particle is moved
from one side to the other side at each time interval. Remember that once a nucleus decays, it
is no longer in the group of unstable nuclei that is tested at each time interval. Class Nuclei in
Listing 7.5 implements the nuclear decay algorithm.

Listing 7.5: The Nuclei class.
/∗
∗ The org.opensourcephysics.sip.ch11 package contains classes for Chapter 7,
∗ Random Processes, of the book Simulations in Physics.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗/

package org.opensourcephysics.sip.ch07;
/∗∗
∗ Nuclei allows unstable nuclei to decay
∗
∗ @author Jan Tobochnik
∗/

public class Nuclei {

int n []; // accumulated data on number of unstable nuclei, index is time
int tMax; // maximum time to record data
int n0; // initial number of unstable nuclei
double p; // decay probability

/∗∗
∗ Initializes unstable nuclei array
∗/

public void initialize () {
n = new int[tMax+1];

}

/∗∗
∗ Nuclei decay
∗/

public void step() {
n[0] += n0;
int nUnstable = n0;
for(int t = 0; t < tMax; t++) {

for(int i = 0; i < nUnstable; i++)
if (Math.random() < p) nUnstable−−;
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n[t+1] += nUnstable;
}

}
}

Problem 7.20. Monte Carlo simulation of nuclear decay

a. Write a target class that extends the AbstractSimulation class, simulates many trials, and
plots the average number of unstable nuclei as a function of time. Assume that the time
interval is one second. Choose n0 = 1000 (the initial number of unstable nuclei), p = 0.01, and
tmax = 100, and run for about 100 trials. Is your result for N(t), the mean number of unstable
nuclei at time t, consistent with the expected behavior, N(t) = N(0) e−λt found in Section 3.8?
What is the value of λ for this value of p?

b. There are a very large number of unstable nuclei in a typical radioactive source. We also know
that over any reasonable time interval, only a relatively small number decay. Because N >> 1
and p << 1, we expect that P (n), the probability that n nuclei decay during a specified time
interval, is a Poisson distribution. Modify your target class so that it outputs the probability
that n unstable nuclei decay during the first time interval. Choose n0 = 1000, p = 0.001,
tmax = 1, and average over 1000 traisl. What is the mean number 〈n〉 of nuclei that decay
during this interval? What is the associated variance? Plot P (n) versus n and compare your
results to the Poisson distribution (7.29) with your measured value of 〈n〉 as input. Then
consider p = 0.02.

c. Modify your target class so that it outputs the probability that n unstable nuclei decay during
two time intervals. Choose n0 = 1000, p = 0.001, and tmax = 2. Average over 1000 trials.
Compare the probability you obtain with your results from part (b). How do your results
change as the time interval becomes larger?

d. Increase p for fixed n0 = 1000 and determine P (n) for a given time interval. Estimate the values
of p and n for which the Poisson distribution is no longer applicable.

e. Modify your program so that it flashes a small circle on the screen or makes a sound (like
that of a Geiger counter) when a nucleus decays. You can have the computer make a beep by
using the method Toolkit.getDefaultToolkit().beep() in java.awt. Choose the location
of the small circle at random. Do a single run and describe the qualitative differences between
the visual or audio patterns for the situations in parts (a)–(d)? Choose n0 ≥ 5000. Such a
visualization might be somewhat misleading on a serial computer because only one nuclei can
be considered at a time. In contrast, for a real system, the nuclei can decay simultaneously. For
what circumstances would your visualization or audio pattern be close to that of a real system?
How can you improve the visualization to better approximate a real system?

7.5 Problems in Probability

Because many of the questions in this chapter can be answered by analytical methods, why bother
to simulate these processes? The main reason is that it is simpler to introduce new methods in a
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familiar context. Another reason is that if we change the nature of the random processes slightly, it
often happens that it is difficult or impossible to obtain the answers by familiar methods. Still an-
other reason is that writing a program and doing a simulation can aid your intuitive understanding
of the system, especially if the problem involves the subtle concept of probability. Probability is
an elusive concept in part because it cannot be measured at one time. To reinforce the importance
of thinking about how to solve a problem on a computer, we suggest some problems in probability
in the following. Does thinking about how to code these problems on a computer help you to find
a pencil and paper solution?

Problem 7.21. Three boxes: stick or switch?
Suppose that there are three identical boxes, each with a lid. When you leave the room, a friend
places a $10 bill in one of the boxes and closes the lid of each box. The friend knows the location of
the $10 bill, but you do not. You then reenter the room and guess which one of the boxes has the
$10 bill. As soon as you do, your friend opens the lid of a box that is empty. If you have chosen
an empty box, your friend will open the lid of the other empty box. If you have chosen the right
box, your friend will open the lid of one of the two empty boxes. You now have the opportunity
to stay with your original choice or switch to the other unopened box. Suppose that you play this
game many times and that each time you guess correctly, you keep the money. To maximize your
winnings, should you maintain your initial choice or should you switch? Which strategy is better?
Write a program to simulate this game and output the probability of winning for switching and
for not switching. It is likely that before you finish your program, the correct strategy will become
clear. To make your program more useful, consider four or five boxes.

Problem 7.22. Conditional probability
Suppose that many people in a community are tested at random for HIV. The accuracy of the
test is 87% and the incidence of the disease in the general population, independent of any test, is
1%. If a person tests positive for HIV, what is the probability that this person really has HIV?
Write a program to compute the probability. The answer can be found by using Bayes’ theorem
(cf. Bernardo and Smith). The answer is much less than 87%.

Problem 7.23. The roll of the dice

a. Write a program to compute the probability of obtaining at least one double six in twenty-four
throws of a pair of die.

b. Suppose that two gamblers each begin with $100 in capital and on each throw of a coin, one
gambler must win $1 and the other must lose $1. How long can they play on the average until
the capital of the loser is exhausted? How long can they play if they each begin with $1000?
Neither gambler is allowed to go into debt.

Problem 7.24. The Boys of Summer
Luck plays a large role in the outcome of any baseball season. The National League Central
Division standings for 2004 are given in Table 7.1. Suppose that the teams remain unchanged
and their probability of winning a particular game is given by their 2004 winning percentage. Do
a simulation to determine the probability that the Cardinals would lead the division for another
season. For simplicity, assume that the teams play only each other.
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Team Won Lost Percentage
St. Louis Cardinals 105 57 0.648
Houston Astros 92 70 0.568
Chicago Cubs 89 73 0.469
Pittsburgh Pirates 72 89 0.447
Cincinnati Reds 76 86 0.426
Milwaukee Brewers 67 94 0.416

Table 7.1: The National League Central standings for 2004.

Much of the present day motivation for the development of probability comes from science
rather than from gambling. The next problem has much to do with statistical physics even though
this application is not apparent.

Problem 7.25. Money exchange
Consider a two-dimensional plane that has been subdivided into cells, for example, a checkerboard.
There can be an indefinite number of coins stacked on each cell. For simplicity, we initially assign
one coin to each cell. The game proceeds as follows. Select two cells at random. If there is at
least one coin on the first cell, move one coin to the second cell. If the first cell is empty, then
do nothing. After many coin exchanges, how is the occupancy of the cells distributed? Are the
coins uniformly distributed as in the initial state or are many cells empty? DWrite a Monte Carlo
program to simulate this game and show the state of the cells visually. Consider a system with
at least 16 × 16 cells. Plot the histogram H(n) versus n, where H(n) is the number of cells with
n coins. Do your results change qualitatively if you consider bigger systems or begin with more
coins on each cell?

Problem 7.26. Distribution of cooking times
An industrious physics student finds a job at a local fast food restaurant to help him pay his way
through college. His task is to cook 20 hamburgers on a grill at any one time. When a hamburger
is cooked, he is supposed to replace it with an uncooked hamburger. However, our physics major
does not pay attention to whether the hamburger is cooked or not. His method is to choose
a hamburger at random and replace it by a uncooked one and not bother to check whether the
hamburger that he removes from the grill is ready or not. What is the distribution of cooking times
of the hamburgers that he removes? To simplify the problem, assume that he replaces a random
hamburger at regular intervals of thiry seconds and that there is an indefinite supply of uncooked
hamburgers. Does the qualitative nature of the distribution change if he cooks 40 hamburgers at
any one time?

7.6 Method of Least Squares

In Problem 7.20 we did a simulation of N(t), the number of unstable nuclei at time t. Given
the finite accuracy of our data, how do we know if our simulation results are consistent with the
exponential relation between N and t? The approach that we have been using is to plot the
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computed values of log N(t) as a function of t and to rely on our eye to help us draw the curve
that best fits the data points. Such a visual approach works best when the curve is a straight line,
that is, when the relation is linear. The advantages of this approach are that it is straightforward
and allows us to see what we are doing. For example, if a data point is far from the straight line,
or if there is a gap in the data, we will notice it easily. If the true analytical relation is not linear,
it is likely that we will notice that the data points do not fit a simple straight line, but instead
show curvature. If we blindly let a computer fit the data to a straight line, we might not notice
that the fit is not very good unless we already have had much experience fitting data by hand.
Finally, the visceral experience of fitting the data manually gives us some feeling for the nature of
the data that might otherwise be missed. It usually is a good idea to plot some data in this way
even though a computer can do it much faster.

Although the visual approach is simple, it does not yield precise results, and we also need to
use more systematic fitting methods. The most common method for finding the best straight line
fit to a series of measured points is called linear regression or least squares. Suppose we have n
pairs of measurements (x1, y1), (x2, y2), . . . , (xn, yn) and that the errors are entirely in the values
of y. For convenience, we assume that the uncertainties in {yi} all have the same magnitude. Our
goal is to obtain the best fit to the linear function

y = mx + b. (7.30)

The problem is to calculate the values of the parameters m and b for the best straight line through
the n data points. The difference,

di = yi − mxi − b, (7.31)

is a measure of the discrepancy in yi. It is reasonable to assume that the best pair of values of m
and b are those that minimize the quantity

χ2 =
n∑

i=1

(yi − mxi − b)2. (7.32)

Why should we minimize the sum of the squared differences between the experimental values, yi,
and the analytical values, mxi+b, and not some other function of the differences? The justification
is based on the assumption that if we did many simulations or measurements, then the values of
di would be distributed according to the Gaussian distribution (see Problems 7.5 and 7.15). Based
on this assumption, it can be shown that the values of m and b that minimize χ yield a set of
values of mxi + b that are the most probable set of measurements that we would find based on the
available information. This link to probability is the reason we have discussed least squares fits in
this chapter, even though we will not explicitly use Monte Carlo methods here to show that the
difference di is distributed according to a Gaussian distribution.

To minimize χ, we take the partial derivative of S with respect to b and m:

∂χ

∂m
= −2

n∑
i=1

xi(yi − mxi − b) = 0, (7.33a)

∂χ

∂b
= −2

n∑
i=1

(yi − mxi − b) = 0. (7.33b)
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From (7.33) we obtain two simultaneous equations:

m

n∑
i=1

x2
i + b

n∑
i=1

xi =
n∑

i=1

xiyi (7.34a)

m

n∑
i=1

xi + bn =
n∑

i=1

yi. (7.34b)

It is convenient to define the average quantities

x =
1
n

n∑
i=1

xi (7.35a)

y =
1
n

n∑
i=1

yi (7.35b)

xy =
1
n

n∑
i=1

xiyi, (7.35c)

and rewrite (7.34) as

mx2 + bx = xy, (7.36a)
mx + b = y. (7.36b)

The solution of (7.36) can be expressed as

m =
xy − x y

σ2
x

(7.37a)

b = y − m x, (7.37b)

where
σ2

x = x2 − x2. (7.37c)

Equation (7.37) determines the slope m and the intercept b of the best straight line through the n
data points. (Note that the average in the equations for the coefficients m and b are over the data
points.)

As an example, consider the data shown in Table 7.2 for a one-dimensional random walk. To
make the example more interesting, suppose that the walker takes steps of length 1 or 2 with equal
probability. The direction of the step is random and p = 1

2 . As in Section 7.2, we assume that the
mean square displacement 〈x2〉 − 〈x〉2 obeys the general relation

〈x2〉 − 〈x〉2 = aN2ν , (7.38)

with an unknown exponent ν. First we convert the nonlinear relation (7.38) to a linear relation by
taking the logarithm of both sides:

ln[〈x2〉 − 〈x〉2] = ln a + 2ν lnN. (7.39)
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Figure 7.4: Plot of 〈x2〉 − 〈x〉2 versus lnN for the data listed in Table 7.2. The straight line
y = 1.02x + 0.83 through the points is found by minimizing the sum (7.32).

Note that the original fitting problem is nonlinear, that is, 〈x2〉 − 〈x〉2 depends on Nν rather than
N . Often a problem that looks nonlinear can be turned into a linear problem by a change of
variables.

If we take the logarithm of the data in Table 7.2 and use (7.37), we find that m = 1.02 and
b = 0.83. Hence, we conclude from our limited data and the relation 2ν = m that ν ≈ 0.51, which
is consistent with the expected result ν = 1/2. The values of y = ln[〈x2〉 − 〈x〉2] and x = lnN and
the least squares fit are shown in Figure 7.4.

N 〈x2〉 − 〈x〉2
8 19.43
16 37.65
32 76.98
64 160.38

Table 7.2: Computed values of the mean square displacement 〈x2〉 − 〈x〉2 as a function of the
total number of steps N . The mean square displacement was averaged over 1000 trials. The one-
dimensional random walker takes steps of length 1 or 2 with equal probability, and the direction
of the step is random with p = 1

2 .

The least squares fitting procedure also allows us to estimate the uncertainty or the most
probable error in m and b by analyzing the measurements themselves. The result of this analysis
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is that the most probable error in m and b, σm and σb respectively, is given by

σm =
1√
n

∆
σx

(7.40a)

σb =
1√
n

(
x2

)1/2∆
σx

, (7.40b)

where

∆2 =
1

n − 2

n∑
i=1

d2
i , (7.41)

and di is given by (7.31).
Because there are n data points, we might have guessed that n rather than n − 2 would be

present in the denominator of (7.41). The reason for the factor of n − 2 is related to the fact that
to determine ∆, we first need to calculate two quantities m and b, leaving only n− 2 independent
degrees of freedom. To see that the n − 2 factor is reasonable, consider the special case of n = 2.
In this case we can find a line that passes exactly through the two data points, but we cannot
deduce anything about the reliability of the set of measurements because the fit always is exact.
If we use (7.41), we see that both the numerator and denominator would be zero, and hence ∆
is undetermined. If a factor of n rather than n − 2 appeared in (7.41), we would conclude that
∆ = 0/2 = 0, an absurd conclusion. Usually n >> 1, and the difference between n and n − 2 is
negligible.

For our example, ∆ = 0.03, σb = 0.07, and σm = 0.02. The uncertainties δm and δν are related
by 2δν = δm. Because δm = σm, we conclude that our best estimate for ν is ν = 0.51 ± 0.01.

If the values of yi have different uncertainties σi, then the data points are weighted by the
quantity wi = 1/σ2

i . In this case it is reasonable to minimize the quantity

χ2 =
n∑

i=1

wi(yi − mxi − b)2. (7.42)

The resulting expressions in (7.37) for m and b are unchanged if we generalize the definition of the
averages to be

f =
1

nw

n∑
i=1

wifi, (7.43)

where

w =
1
n

n∑
i=1

wi. (7.44)

Problem 7.27. Example of least squares fit

a. Write a program to find the least squares fit for a set of data. As a check on your program,
compute the most probable values of m and b for the data shown in Table 7.2.
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b. Modify the random walk program so that steps of length 1 and 2 are taken with equal probability.
Use at least 10 000 trials and do a least squares fit to 〈x2〉 − 〈x〉2 as done in the text. Is your
most probable estimate for ν closer to ν = 1/2?

For simple random walk problems the relation 〈x2〉−〈x〉2 = aNν holds for all N . However, in
many random walk problems a power law relation between 〈x2〉 − 〈x〉2 and N holds only asymp-
totically for large N , and hence we should use only the larger values of N to estimate the slope.
Also, because we are finding the best fit with the logarithm of the independent variable N , we
need to give equal weight to all intervals of lnN . In the above example, we used N = 8, 16, 32,
and 64, so that the values of lnN are equally spaced.

7.7 Applications to Polymers

Random walk models play an important role in polymer physics (cf. de Gennes). A polymer consists
of N repeat units (monomers) with N very large (N ∼ 103 – 105). For example, polyethylene can
be represented as · · · −CH2−CH2−CH2− · · · . The detailed structure of the polymer is important
for many practical applications. For example, if we wish to improve the fabrication of rubber, a
good understanding of the local motions of the monomers in the rubber chain is essential. However,
if we are interested in the global properties of the polymer, the details of the chain structure can
be ignored.

Let us consider a familiar example of a polymer chain in a good solvent: a noodle in warm
water. A short time after we place a noodle in warm water, the noodle becomes flexible, and it
neither collapses into a little ball or becomes fully stretched. Instead, it adopts a random structure
as shown schematically in Figure 7.5. If we do not add too many noodles, we can say that the
noodles behave as a dilute solution of polymer chains in a good solvent. The dilute nature of the
solution implies that we can ignore entanglement effects of the noodles and consider each noodle
individually. The presence of a good solvent implies that the polymers can move freely and adopt
many different configurations.

A fundamental geometrical property that characterizes a polymer in a good solvent is the
mean square end-to-end distance 〈R2

N 〉, where N is the number of monomers. (For simplicity,
we will frequently omit the subscript N in the following.) It is known that for a dilute solution
of polymer chains in a good solvent, the asymptotic dependence of 〈R2〉 is given by (7.13) with
ν ≈ 0.5874 in three dimensions. However, if we were to ignore the interactions of the monomers,
the simple random walk model would yield ν = 1

2 , independent of the dimension and symmetry of
the lattice. Because this result for ν does not agree with experiment (ν > 1/2), we know that we
are overlooking an important physical feature of polymers.

We now discuss a random walk that incorporates the global features of dilute linear polymers
in solution. We already have introduced a model of a polymer chain consisting of straight line seg-
ments of the same size joined together at random angles (see Problem 7.13). A further idealization
is to place the polymer chain on a lattice (see Figure 7.5). A more realistic model of linear polymers
accounts for its most important physical feature, that is, two monomers cannot occupy the same
spatial position. This constraint is known as the excluded volume condition, which is ignored in
a simple random walk. A well known lattice model for a linear polymer chain that incorporates
this constraint is known as the self-avoiding walk (SAW). This model consists of the set of all
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(a) (b)

Figure 7.5: (a) Schematic illustration of a linear polymer in a good solvent. (b) Example of the
corresponding self-avoiding walk on a square lattice.

N step walks starting from the origin subject to the global constraint that no lattice site can be
visited more than once in each walk; this constraint accounts for the excluded volume condition.
Self-avoiding walks have many applications in the sciences, such as the physics of magnetic mate-
rials and the study of phase transitions, and they are of interest as purely mathematical objects.
Many of the obvious questions have resisted rigorous analysis, and exact enumeration and Monte
Carlo simulation have played an important role in our current understanding. The result for ν in
two dimensions for the SAW is known to be exactly ν = 3/4; in three dimensions the exponent
ν ≈ 0.5874 in agreement with experiment. The proportionality constant in (7.13) depends on the
structure of the monomers and on the solvent. In contrast, the exponent ν is independent of these
details and depends only the spatial dimension.

We consider Monte Carlo simulations of the self-avoiding walk in two dimensions in Prob-
lems 7.28 and 7.30. Another algorithm for the self-avoiding walk is considered in Project 7.41.

Problem 7.28. The two-dimensional self-avoiding walk

a. Consider the self-avoiding walk on the square lattice. Choose an arbitrary site as the origin and
assume that the first step is “up.” The walks generated by the three other possible initial steps
only differ by a rotation of the whole lattice and do not have to be considered explicitly. The
second step can be in three possible directions because of the constraint that the walk cannot
return to the origin. To obtain unbiased results, we generate a random number to choose one
of the three directions. Successive steps are generated in the same way. Unfortunately, the
walk will not continue indefinitely. The difficulty is that to obtain unbiased results, we must
choose at random one of the three steps, even though one or more of these steps might lead to
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Figure 7.6: Examples of self-avoiding walks on the square lattice. The origin is denoted by a filled
circle. (a) A N = 3 walk. The fourth step shown is forbidden. (b) A N = 7 walk that leads to
a self-intersection at the next step; the weight of the N = 8 walk is zero. (c) Examples of the
weights of walks in the enrichment method.

a self-intersection. If the next step does lead to a self-intersection, the walk must be terminated
to keep the statistics unbiased. An example for a three step walk is shown in Figure 7.6a. The
next step leads to a self-intersection and violates the constraint. In this case we must start a
new walk at the origin.

Write a program that implements this algorithm and record the fraction f(N) of successful
attempts at constructing polymer chains with N total monomers. It is convenient to represent
the lattice as a two-dimensional array so that you can record the sites that already have been
visited. What is the qualitative dependence of f(N) on N? What is the maximum value of N
that you can reasonably consider?

b. One of the quantities of interest is the end-to-end distance, that is, the distance from the origin
to the end of the polymer. Determine the mean square end-to-end distance 〈R2

N 〉 for the various
values of N that you can reasonably consider with this sampling method.

The disadvantage of the straightforward sampling method in Problem 7.28 is that it becomes
very inefficient for long chains, that is, the fraction of successful attempts decreases exponentially
fast. To overcome this attrition, several “enrichment” techniques have been developed. We first
discuss a relatively simple procedure proposed by Rosenbluth and Rosenbluth in which each walk of
N steps is associated with a weighting function W (N). Because the first step to the north is always
possible, we have W (1) = 1. In order that all allowed configurations of a given N are counted
equally, the weights W (N) for N > 1 are determined according to the following possibilities:

1. All three possible steps violate the self-intersection constraint (see Figure 7.6b). The walk is
terminated with a weight W (N) = 0, and a new walk is generated at the origin.

2. All three steps are possible and W (N) = W (N − 1).

3. Only m steps are possible with 1 ≤ m < 3 (see Figure 7.6c). In this case W (N) =
(m/3)W (N − 1), and one of the m possible steps is chosen at random.
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The correct (unbiased) value of 〈R2
N 〉 is obtained by weighting R2

N,i, the value of R2
N found

in the ith trial, by the value of Wi(N), the weight found for the particular walk. Hence we write

〈R2
N 〉 =

∑
i Wi(N)R2

N,i∑
i Wi(N)

, (7.45)

where the sum is over all trials.

Problem 7.29. Rosenbluth and Rosenbluth enrichment method
Incorporate the Rosenbluth method into your Monte Carlo program, and calculate 〈R2

N 〉 for N =
4, 8, 16, and 32. Estimate the exponent ν from a log-log plot of 〈R2

N 〉 versus N . Can you distinguish
your estimate for ν from its random walk value ν = 1

2?

The Rosenbluth and Rosenbluth procedure is not particularly efficient because many walks
still die out, and thus we do not obtain many walkers for large N . Grassberger improved this
algorithm by increasing the population of walkers with high weights and reducing the population
of walkers with low weights. The idea is that if Wi(N) is above a certain threshold, we add a new
walker and give the new and old walker half of the original weight. If Wi(N) is below a certain
threshold, then we eliminate half of the walkers with weights below this threshold (for example,
every second walker) and double the weights of the remaining half. It is a good idea to adjust the
thresholds as the simulation runs in order to maintain a relatively constant number of walkers.

More recently Prelberg and Krawczyk made a further improvement in the Rosenbluth and
Rosenbluth enrichment method so that there is no need for the user to provide a threshold
value. After each step the average weight of the walkers, 〈Wi(N)〉 is computed and the ratio
r = Wi(N)/〈Wi(N)〉 is used to determine whether to add walkers (enrichment) or eliminate walk-
ers (pruning). If r > 1, then c = min(r, m) copies of the walker are made each with weight
Wi(N)/c. If r < 1, then remove this walker with probability 1 − r. This algorithm leads to an
approximately constant number of walkers and is related to the flat histogram method which we
will discuss in Problem 15.30.

One of the more efficient enrichment algorithms is the “reptation” method (see Wall and
Mandel). For simplicity, consider a model polymer chain in which all bond angles are ±90◦. As
an example of this model, the five independent N = 5 polymer chains are shown in Figure 7.7.
(Other chains differ only by a rotation or a reflection.) The reptation method can be stated as
follows:

1. Choose a chain at random and remove the tail link.

2. Attempt to add a link to the head of the chain. There is a maximum of two directions in
which the new head link can be added.

3. If the attempt violates the self-intersection constraint, return to the original chain and inter-
change the head and tail. Include the chain in the statistical sample.

The above steps are repeated many times to obtain an estimate of 〈R2
N 〉.

As an example of the reptation method, sconsider chain a of Figure 7.7. A new link can be
added in two directions (see Figure 7.8a), so that on the average we find, a → 1

2c+ 1
2d. In contrast,
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Figure 7.7: The five independent possible walks of N = 5 steps on a square lattice with ±90◦ bond
angles. The tail and head of each walk are denoted by a circle and arrow respectively.

a link can be added to chain b in only one direction, and we obtain b → 1
2e+ 1

2b, where the tail and
head of chain b have been interchanged (see Figure 7.8b). Confirm that c → 1

2e+ 1
2a, d → 1

2c+ 1
2d,

and e → 1
2a+ 1

2b, and that all five chains are equally probable. That is, the transformations in the
reptation method preserve the proper statistical weights of the chains without attrition. There is
just one problem: unless we begin with a double ended “cul-de-sac” configuration such as shown in
Figure 7.9, we will never obtain such a configuration using the above transformation. Hence, the
reptation method introduces a small statistical bias, and the calculated mean end-to-end distance
will be slightly larger than if all configurations were considered. However, the probability of such
trapped configurations is very small, and the bias can be neglected for most purposes.

∗Problem 7.30. The reptation method
Adopt the ±90◦ bond angle restriction and calculate by hand the exact value of 〈R2

N 〉 for N = 5.
Then write a Monte Carlo program that implements the reptation method. Generate one walk of
N = 5 and use the reptation method to generate a statistical sample of chains. As a check on your
Monte Carlo program, compute 〈R2

N 〉 for N = 5 and compare your result with the exact result.
Then extend your Monte Carlo computations of 〈R2

N 〉 to larger N . Modify the reptation model so
that the bond angle also can be 180◦. This modification leads to a maximum of three directions
for a new bond. Compare the results of the two models.

In principle, the dynamics of a polymer chain undergoing collisions with solvent molecules
can be simulated by using a molecular dynamics method. However, in practice only relatively
small chains can be simulated in this way. An alternative approach is to use a Monte Carlo model
that simplifies the effect of the random collisions of the solvent molecules with the atoms of the
chain. Most of these models (cf. Verdier and Stockmayer) consider the chain to be composed of
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Figure 7.8: The possible transformations of chains a and b. One of the two possible transformations
of chain b violates the self-intersection restriction and the head and tail are interchanged.

beads connected by bonds and restrict the motion of the beads to a lattice. For simplicity, we
assume that the bond angles can be either ±90◦ or 180◦. The idea is to begin with an allowed
configuration of N beads (N − 1 bonds). A possible starting configuration can be generated by
taking successive steps in the positive y direction and positive x directions. The dynamics of the
Verdier-Stockmayer algorithm is summarized by the following steps.

1. Select at random a bead (occupied site) on the polymer chain. If the bead is not an end
site, then the bead can move to a nearest neighbor site of another bead if this site is empty
and if the new angle between adjacent bonds is either ±90◦ or 180◦. For example, bead 4 in
Figure 7.10 can move to position 4′ while bead 3 cannot move if selected. That is, a selected
bead can move to a diagonally opposite unoccupied site only if the two bonds to which it is
attached are mutually perpendicular.

2. If the selected bead is an end site, move it to one of two (maximum) possible unoccupied sites
so that the bond to which it is connected changes its orientation by ±90◦ (see Figure 7.10).

3. If the selected bead cannot move, retain the previous configuration.

The physical quantities of interest include 〈R2
N 〉 and the mean square displacement of the

center of mass of the chain 〈r2
cm(N)〉 = 〈x2

cm(N)〉− 〈xcm(N)〉2 + 〈y2
cm(N)〉− 〈ycm(N)〉2, where xcm

and ycm are the coordinates of the center of mass. The unit of time is the number of Monte Carlo
steps per bead; in one Monte Carlo step per bead each bead has one chance on the average to
move to a different site.

Problem 7.31. The dynamics of polymers in a dilute solution

a. Consider a two-dimensional lattice and compute 〈R2〉 and 〈r2
cm〉 for various values of N . How

do these quantities depend on N? (The first published results for three dimensions were limited
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Figure 7.9: Example of a double cul-de-sac configuration for the self-avoiding walk that cannot be
obtained by the reptation method.

1

1''

2
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8

Figure 7.10: Examples of possible moves of the simple polymer dynamics model considered in
Problem 7.31. For this configuration beads 2, 3, 5, and 6 cannot move, while beads 1, 4, 7, and
8 can move to the positions shown if they are selected. Only one bead can move at a time. This
figure is adopted from the article by Verdier and Stockmayer.

to 32 Monte Carlo steps per bead for N = 8, 16, and 32 and only 8 Monte Carlo steps per bead
for N = 64.) Also compute the probability density P (R) that the end-to-end distance is R.
How does this probability compare to a Gaussian distribution?

b.∗ We know that two configurations are strongly correlated if they differ by only the position of
one bead. Hence, it would be a waste of computer time to measure the end-to-end distance
and the position of the center of mass after every single move. Ideally, we wish to compute
these quantities for configurations that are approximately statistically independent. Because
we do not know a priori the mean number of Monte Carlo steps per bead needed to obtain
configurations that are statistically independent, it is a good idea to estimate this time in
our preliminary calculations. The correlation time τ , is the time needed to obtain statistically
independent configurations. This time can be obtained by computing the equilibrium averaged
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Figure 7.11: Example of the evolution of the true self-avoiding walk with g = 1 (see Figure 7.47).
The shaded site represents the location of the walker at time t. The number of visits to each site
are given within each site and the probability of a step to a nearest neighbor site is given below it.
Note the use of periodic boundary conditions.

autocorrelation function for a chain of fixed N :

CN (t) =
〈R2

N (t′ + t)R2
N (t′)〉 − 〈R2

N 〉2
〈R4

N 〉 − 〈R2
N 〉2 . (7.46)

CN (t) is defined so that CN (t = 0) = 1 and CN (t) = 0 if the configurations are not correlated.
Because the configurations will become uncorrelated if the time t between the configurations
is sufficiently long, we expect that CN (t) → 0 for t >> 1. We expect that C(t) ∼ e−t/τ , that
is, C(t) decays exponentially with a decay or correlation time τ . Estimate τ from a plot of
lnC(t) versus t. Another way of estimating τ is from the integral

∫ ∞
0

dt C(t), where C(t) is
normalized so that C(0) = 1. (Because we determine C(t) at discrete values of t, this integral
is actually a sum.) How do your two estimates of τ compare? A more detailed discussion of
the estimation of correlation times can be found in Section 15.7.

Another type of random walk that is less constrained than the self-avoiding random walk is the
“true” self-avoiding walk (TSAW). The TSAW describes the path of a random walker that avoids
visiting a lattice site with a probability that is a function of the number of times the site has been
visited already. This constraint leads to a reduced excluded volume interaction in comparison to
the usual self-avoiding walk.

Problem 7.32. The true self-avoiding walk in one dimension
In one dimension the true self-avoiding walk corresponds to a walker who can jump to one of its
two nearest neighbors with a probability that depends on the number of times these neighbors
already have been visited. Suppose that the walker is at site i at step t. The probability that at
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time t + 1, the walker will jump to site i + 1 is given by

pi+1 =
e−gni+1

e−gni+1 + e−gni−1
, (7.47)

where ni±1 is the number of times that the walker has already visited site i ± 1. The probability
of a jump to site i − 1 is pi−1 = 1 − pi+1. The parameter g (g > 0) is a measure of the “desire”
of the path to avoid itself. The first few steps of a typical true self-avoiding walk walk are shown
in Figure 7.11. The main quantity of interest is the exponent ν. We know that g = 0 corresponds
to the usual random walk with ν = 1

2 and that the limit g → ∞ corresponds to the self-avoiding
walk. What is the value of ν for a self-avoiding walk in one dimension? Is the value of ν for any
finite value of g different than these two limiting cases?

Write a program to do a Monte Carlo simulation of the true self-avoiding walk in one di-
mension. Use an array to record the number of visits to every site. At each step calculate the
probability p of a jump to the right. Generate a random number r and compare it to p. If r ≤ p,
move the walker to the right; otherwise move the walker to the left. Compute 〈∆x2

N 〉, where x
is the distance of the walker from the origin, as a function of the number of steps N . Make a
log-log plot of 〈∆x2

N 〉 versus N and estimate ν. Can you distinguish ν from its random walk and
self-avoiding walk values? Reasonable choices of parameters are g = 0.1 and N ∼ 103. Averages
over 103 trials yield qualitative results. For comparison, published results are for N ∼ 104 and for
103 trials; extended results for g = 2 are given for N = 2× 105 and 104 trials (see Bernasconi and
Pietronero).

7.8 Diffusion Controlled Chemical Reactions

Imagine a system containing particles of a single species A. The particles diffuse, and when two
particles “collide,” a reaction occurs such that the two combine to form an inert species which is
no longer involved in the reaction. We can represent this chemical reaction as

A + A → 0. (7.48)

If we ignore the spatial distribution of the particles, we can describe the kinetics by a simple rate
equation:

dA(t)
dt

= −kA2(t), (7.49)

where A is the concentration of A particles at time t and k is the rate constant. (In the chemical
kinetics literature it is traditional to use the term concentration rather than the number density.)
For simplicity, we assume that all reactants are entered into the system at t = 0 and that no
reactants are added later (the system is closed). It is easy to show that the solution of the first-
order differential equation (7.49) is

A(t) =
1

kt + 1/A(0)
. (7.50)

Hence, A(t) ∼ t−1 in the limit of long times.
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Another interesting case is the bimolecular reaction

A + B → 0. (7.51)

If we neglect spatial fluctuations in the concentration as before (this neglect yields what is known
as a mean-field approximation), we can write the corresponding rate equation as

dA(t)
dt

=
dB(t)

dt
= −kA(t)B(t). (7.52)

We also have that

A(t) − B(t) = constant, (7.53)

because each reaction leaves the difference between the concentration of A and B particles un-
changed. For the special case of equal initial concentrations, the solution of (7.52) with (7.53) is
the same as (7.50). What is the solution for the case A(0) �= B(0)?

The above derivation of the time dependence of A for the kinetics of the one and two species
annihilation process is straightforward, but is based on the assumption that the particles are
distributed uniformly. In the following two problems, we simulate the kinetics of these processes
and test this assumption.

Problem 7.33. Diffusion controlled chemical reactions in one dimension

a. Assume that N particles do a random walk on a one-dimensional lattice of length L with periodic
boundary conditions. Every particle moves once in one unit of time. It is convenient to use the
array site[j] to records the label of the particle, if any, at site j. Because we are interested
in the long time behavior of the system when the concentration A = N/L of particles is small,
it is efficient to also maintain an array of particle positions, x[i] such that site[x(i]] = i.
For example, if particle 5 is located at site 12, then x[5] = 12 and site[12] = 5. We also
need an array, newSite, to maintain the new positions of the walkers as they are moved one
at a time. If two walkers land on the same position k, then we set newSite[k] = −1, and the
value of x[i] for these two walkers to −1. The number −1 indicates that no particle exists at
the site. After all the walkers have moved, we let site = newSite for all sites, and remove all
the reacting particles in x that have values equal to −1. This operation can be accomplished
by replacing any reacting particle in x by the last particle in the array. Begin with all sites
occupied, A(t = 0) = 1.

b. Make a log-log plot of the quantity A(t)−1−A(0)−1 versus the time t. (The initial concentration
is A(t = 0) = 1.) The times should be separated by exponential intervals so that your data is
equally spaced on a logarithmic plot. For example, you might include data with times equal to
2p, with p = 1, 2, 3, . . . Does your log-log plot yield a straight line in the limit of long times?
If so, calculate its slope. Is the mean-field approximation for A(t) valid in one dimension? You
can obtain crude results for small lattices of order L = 100 and times of order t = 102. To
obtain results to within10%, you need lattices of order L = 104 and times of order t = 213.

c. More insight into the origin of the time dependence of A(t) can be gained from the behavior of
the quantity P (r, t), the probability that the nearest neighbor distance is r at time t. The nearest
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neighbor distance of a given particle is defined as the minimum distance between it and all other
particles. The distribution of these distances changes dramatically as the reaction proceeds, and
this change can give information about the reaction mechanism. Place the particles at random
on a one-dimensional lattice and verify that the most probable nearest neighbor distance is
r = 1 (one lattice constant) for all concentrations. (This result is true in any dimension.) Then
verify that the distribution of nearest neighbor distances on a d = 1 lattice is given by

P (r, t = 0) = 2A e−2A(r−1). (random distribution) (7.54)

Is the form (7.54) properly normalized? Start with A(t = 0) = 0.1 and find P (r, t) for t = 10,
100, and 1000. Average over all particles. How does P (r, t) change as the reaction proceeds?
Does it retain the same form as the concentration decreases?

d.∗ Compute the quantity D(t), the number of distinct sites visited by an individual walker. How
does the time dependence of D(t) compare to the computed time dependence of A(t)−1 − 1?

e.∗ Write a program to simulate the A + B = 0 reaction. For simplicity, assume that multiple
occupancy of the same site is not allowed, for example, an A particle cannot jump to a site
already occupied by an A particle. The easiest procedure is to allow a walker to choose one of
its nearest neighbor sites at random, but to not move the walker if the chosen site is already
occupied by a particle of the same type. If the site is occupied by a walker of another type,
then the pair of reacting particles is annihilated. Keep separate arrays for the A and B
particles, with the value of the array denoting the label of the particle as before. An easy way
to distinguish A and B walkers is to make the array element site(k) positive if the site is
occupied by an A particle and negative if the site is occupied by a B particle. Start with equal
concentrations of A and B particles and occupy the sites at random. Some of the interesting
questions are similar to those that we posed in parts (b)–(d). Color code the particles and
observe what happens to the relative positions of the particles.

∗Problem 7.34. Reaction diffusion in two dimensions

a. Do a similar simulation as in Problem 7.33 on a two-dimensional lattice for the reaction A+A →
0. In this case it is convenient to have one array for each dimension, for example, siteX and
siteY. Set A(t = 0) = 1, and choose L = 50. Show the configuration of walkers after each
Monte Carlo step per walker. Describe the geometry of the clusters of particles as the diffusion
process proceeds. Are the particles uniformly distributed throughout the lattice for all times?
Calculate A(t) and compare your results for A(t)−1 − A(0)−1 to the t-dependence of D(t), the
number of distinct lattice sites that are visited in time t. (D(t) ∼ t/ log t for two dimensions.)
How well do the slopes compare? Do a similar simulation with A(t = 0) = 0.01. What slope do
you obtain in this case? What can you conclude about the initial density dependence? Is the
mean-field approximation valid in this case? If time permits, do a similar simulation in three
dimensions.

b. Begin with A and B type random walkers initially segregated on the left and right halves (in
the x direction) of a square lattice. The process A + B → C exhibits a reaction front where
the production of particles of type C is nonzero. Some of the quantities of interest are the time
dependence of the mean position x(t) and the width w(t) of the reaction front. The rules of this
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process are the same as in part (a) except that a particle of type C is added to a site when a
reaction occurs. A particular site can be occupied by one particle of type A or type B as well as
any number of particles of type C. If n(x, t) is the number of particles of type C at a distance
x from the initial boundary of the reactants, then x(t) and w(t) can be written as

x(t) =
∑

x x n(x, t)∑
x n(x, t)

(7.55)

w2(t) =
∑

x

[
x − x(t)

]2
n(x, t)∑

x n(x, t)
. (7.56)

Choose lattice sizes of order 100 × 100, and average over at least 10 trials. The fluctuations
in x(t) and w(t) can be reduced by averaging n(x, t) over the order of 100 time units centered
about t. More details can be found in Jiang and Ebner.

7.9 Random Number Sequences

So far we have used the random number generator supplied with Java to generate the desired
random numbers for our Monte Carlo applications. In principle, we might have generated these
numbers from a random physical process, such as the decay of radioactive nuclei or the thermal
noise from a semiconductor device. In practice, random number sequences are generated from a
physical process only for specific purposes such as a lottery. Although we could store the outcome
of a random physical process so that the random number sequence would be both truly random and
reproducible, such a method would usually be inconvenient and inefficient in part because we often
require very long sequences. There are companies that sell CDs and DVDs with many millions
of genuine random numbers. However, in practice we use a digital computer, a deterministic ma-
chine, to generate sequences of pseudorandom numbers. Although these sequences cannot be truly
random, such a distinction is unimportant if the sequence satisfies all our criteria for randomness.
It is common to refer to random number generators even though we really mean pseudorandom
number generators.

Most random number generators yield a sequence in which each number is used to find the
succeeding one according to a well defined algorithm. The most important features of a desirable
random number generator are that its sequence satisfies the known statistical tests for randomness,
which we will explore in the following problems. We also want the generator to be efficient and
machine independent. and the sequence to be reproducible.

The most widely used random number generator is based on the linear congruential method.
That is, given the seed x0, each number in the sequence is determined by the one-dimensional map

xn = (axn−1 + c) mod m, (7.57)

where a, c, and m as well as xn are integers. The notation y = z mod m means that m is subtracted
from z until 0 ≤ y < m. The map (7.57) is characterized by three parameters, the multiplier a,
the increment c, and the modulus m. Because m is the largest integer generated by (7.57), the
maximum possible period is m.

In general, the period depends on all three parameters. For example, if a = 3, c = 4, m = 32,
and x0 = 1, the sequence generated by (7.57) is 1, 7, 25, 15, 17, 23, 9, 31, 1, 7, 25, . . . and the
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period is 8 rather than the maximum possible value of m = 32. If we are careful to choose a, c, and
m such that the maximum period is obtained, then all possible integers between 0 and m−1 would
occur in the sequence. Because we usually wish to have random numbers r in the unit interval
0 ≤ r < 1 rather than random integers, random number generators usually return the ratio xn/m
which is always less than unity. As the above example illustrates, m, a, and c must be chosen
carefully to achieve optimum results. Several rules have been developed (see Knuth) to obtain the
longest period. One advantage of the linear congruential method is that it is very fast. Some of
the properties of the linear congruential method are explored in Problem 7.35.

Another popular random number generator is the generalized feedback shift register method
which uses bit manipulation. Every integer is represented as a series of 1’s and 0’s called bits. These
bits can be shuffled by using the bitwise exclusive or operator ⊕ (xor) defined by a ⊕ b = 1 if
the bits a �= b; a ⊕ b = 0 if a = b. The nth member of the sequence is given by

xn = xn−p ⊕ xn−q, (7.58)

where p > q, and p, q and xn are integers. The first p random integers must be supplied by another
random number generator. As an example of how the operator ⊕ works, suppose that n = 6, p = 5,
q = 3, x3 = 11, and x1 = 6. Then x6 = x1⊕x3 = 0110⊕1011 = 1101 = 23+22+20 = 8+4+1 = 13.
Not all values of p and q lead to good results. Some common pairs are (p, q) = (31, 3), (250, 103),
and (521, 168). In Java and C the exclusive or operation on the integers m and n is given by m̂ n.
The algorithm for carrying out the above procedure after p integers is produced is shown in the
following. Initially the index, k, can be set to 0.

1. If k < q, set j = k + q, else set j = k − p + q.

2. Set xk = xk ⊕ xj ; xk is the desired random number for this iteration. If a random number
between 0 and 1 is desired, divide xk by the maximum possible integer.

3. Increment k to (k + 1) mod p.

Because the exclusive or operator and bit manipulation is very fast, this random number
generator is very fast. However, the period may not be long enough for some applications and the
correlations between numbers might not be as good as needed. The shuffling algorithm discussed
in Problem 7.36 should be used to improve this generator.

These examples of random number generators illustrate their general nature. That is, numbers
in the sequence are used to find the succeeding ones according to a well defined algorithm.1 The
sequence is determined by the seed, the first number of the sequence or the first p members of the
sequence for the generalized feedback shift register and related generators. Usually, the maximum
possible period is related to the size of the computer word, for example, 16, 32, or 64 bits. The
choice of the constants and the proper initialization of the sequence is very important and thus
these algorithms must be implemented with care.

There is no necessary and sufficient test for the randomness of a finite sequence of numbers;
the most that can be said about any finite sequence of numbers is that it is apparently random.
Because no single statistical test is a reliable indicator, we need to consider several tests. Some of

1The quotation by John von Neumann, “Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin,” is particularly appropriate here.



CHAPTER 7. RANDOM PROCESSES 245

the best known tests are discussed in Problem 7.35. Note that many of these tests can be stated
in terms of random walks.

Problem 7.35. Statistical tests of randomness

a. Period. The most obvious requirement for a random number generator is that its period be
much greater than the number of random numbers needed in a specific calculation. One way
to visualize the period of the random number generator is to use it to generate a plot of the
displacement x of a random walker as a function of the number of steps N . When the period
of the random number is reached, the plot will begin to repeat itself. Generate such a plot
using (7.57) for the two sets of parameters a = 899, c = 0, and m = 32768, and a = 16807,
c = 0, m = 231 − 1 with x0 = 12. What are the periods of the corresponding random number
generators? Obtain similar plots using different values for the parameters a, c, and m. Why is
the seed value x0 = 0 forbidden for te choice c = 0? Do some combinations of these parameters
give longer periods than others? What is the period of the random number generator that you
have been using?

b. Uniformity, A random number sequence should contain numbers distributed in the unit interval
with equal probability. The simplest test of uniformity is to divide this interval into M equal size
subintervals or bins and place each member of the sequence into one of the bins. For example,
consider the first N = 104 numbers generated by (7.57) with a = 106, c = 1283, and m = 6075
(see Press et al.). Place each number into one of M = 100 bins. Is the number of entries in
each bin approximately equal? What happens if you increase N?

c. Chi-square test. Is the distribution of numbers in the bins of part (b) consistent with the laws
of statistics? The most common test of this consistency is the chi-square or χ2 test. Let yi be
the observed number in bin i and Ei be the expected value. The chi-square statistic is

χ2 =
M∑
i=1

(yi − Ei)2

Ei
. (7.59)

For the example in part (b) with N = 104 and M = 100, we have Ei = 100. The magnitude of
the number χ2 is a measure of the agreement between the observed and expected distributions.
In general, the individual terms in the sum (7.59) are expected to be order 1, and because there
are M terms in the sum, we expect χ2 ≤ M . As an example, we did five independent runs of
a random number generator with N = 104 and M = 100, and found χ2 ≈ 92, 124, 85, 91, and
99. These values of χ2 are consistent with this expectation. Although we usually want χ2 to
be as small as possible, we would be suspicious if χ2 ≈ 0, because such a small value suggests
that N is a multiple of the period of the generator and that each value in the sequence appears
an equal number of times.

d.∗ A more quantitative measure of our confidence that the discrepancy (yi − Ei) is distributed
according to a Gaussian distribution is given by the chi-square probability function P (x, ν)
defined as:

P (x, ν) =
1

2ν/2Γ(ν/2)

∫ x

0

t(ν−2)/2 e−t/2 dt. (7.60)
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The Gamma function Γ(z) in (7.60) is given by Γ(z) =
∫ ∞
0

tz−1 e−t dt; the familiar relation
Γ(z + 1) = z! holds if z is a positive integer. The quantity ν in (7.60) is the number of degrees
of freedom. In our case ν = M−1, because we have imposed the constraint that

∑M
i=1 Ei = N .

The function Q(x, ν) = 1 − P (x, ν) is the probability that the measured value of χ2 is greater
than x. For our example we can solve for x in the equation Q(x, ν) = q with ν = 99 for various
values of q or find the solution in a statistical table. (A quick search of the Web will yield
several sites that will compute x for particular values of ν and probability q.) For ν = 99, we
find that x ≈ 139 for q = 0.005, x ≈ 123 for q = 0.05, x ≈ 111 for q = 0.2, and x ≈ 98 for
q = 0.5. Our above results for χ2 show that χ2 > 123 for one run out of five (20%). Because
123 is the value of x at the 5% level, we expect to see χ2 ≥ 123 in only one out of twenty runs.
Hence, our confidence level is less than 95%. Instead, we can assume an approximately 80%
confidence level in our random number generator because the value of x for this confidence
level is 111. We might be able to increase our confidence level by doing more runs. Suppose
that we make twenty runs and we still find only one measurement of χ2 greater than 123. In
this case our confidence level would rise to 95%. Determine χ2 for twenty independent runs
using the values of a, c, and m given in parts (a) and (b). Estimate your level of confidence in
these random number generators.

e. Filling sites. Although a random number sequence might contain numbers that are distributed
in the unit interval with equal probability, consecutive numbers might not appear in a perfectly
uniform way, but have a tendency to be clumped or correlated in some way. One test of this
correlation is to fill a square lattice of L2 sites at random. Consider an array n(x, y) that
is initially empty, where 1 ≤ xi, yi ≤ L. A site is selected randomly by choosing its two
coordinates xi and yi from two consecutive numbers in the sequence. If the site is empty, it is
filled and n(xi, yi) = 1; otherwise it is not changed. This procedure is repeated t times, where
t is the number of Monte Carlo steps per site. Because this process is analogous to the decay
of radioactive nuclei, we expect that the fraction of empty lattice sites should decay as e−t.
Determine the fraction of unfilled sites using the random number generator that you have been
using for L = 10, 15, and 20. Are your results consistent with the expected fraction? Repeat the
same test using (7.57) with a = 65549, c = 0, and m = 231. The existence of triplet correlations
can be determined by a similar test on a simple cubic lattice by choosing the three coordinates
xi, yi, and zi from three consecutive random numbers.

f. Parking lot test. Fill sites as in part (e) and plot the sites that have been filled. Do the illed
sites look random, or are there stripes of filled sites? Try a = 65549, c = 0, and m = 231.

g. Hidden correlations. Another way of checking for correlations is to plot xi+k versus xi. If there
are any obvious patterns in the plot, then there is something wrong with the generator. Use
the generator (7.57) with a = 16807, c = 0, and m = 231 − 1. Can you detect any structure in
the plotted points for k = 1 to k = 5? Test the random number generator that you have been
using. Do you see any evidence of lattice structure, for example, equidistant parallel lines? Is
the logistic map xn+1 = 4xn(1 − xn) for r = 1 a suitable random number generator?

h. Short-term correlations. Another measure of short term correlations is the autocorrelation
function

C(k) =
〈xi+kxi〉 − 〈xi〉2
〈xixi〉 − 〈xi〉〈xi〉

, (7.61)
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where xi is the ith term in the sequence. We have used the fact that 〈xi+k〉 = 〈xi〉, that
is, the choice of the origin of the sequence is irrelevant. The quantity 〈xi+kxi〉 is found for a
particular choice of k by forming all the possible products of xi+kxi and dividing by the number
of products. If xi+k and xi are not correlated, then 〈xi+kxi〉 = 〈xi+k〉〈xi〉 and C(k) = 0. Is C(k)
identically zero for any finite sequence? Compute C(k) for a = 106, c = 1283, and m = 6075.

i. Random walk. A test based on the properties of random walks has been proposed by Vattulainen
et al. Assume that a walker begins at the origin of the x-y plane and generate a walk of N
steps. Average over nw trials or walkers and count the number of walks in each quadrant qi of
the x-y plane. Use the χ2 test (7.59) with yi → qi, M = 4, and Ei = nw/4. If χ2 > 7.815 (a 5%
probability if the random number generator is perfect), we say that the run fails. The random
number generator fails if two out of three independent runs fail. The probability of a perfect
generator failing two out of three runs would be approximately 3× 0.95× (0.05)2 ≈ 0.007. Test
several random number generators.

Problem 7.36. Improving random number generators
One way to reduce sequential correlation and to lengthen the period is to mix or shuffle the random
numbers produced by a random number generator. The procedure due to Bays and Durham is
to begin with a list of N random numbers (between 0 and 1) using a given generator rng. The
number N is arbitrary, but should be less than the period of rng. Also generate one more random
number, rextra. Then for each desired random number use the following procedure.

i. Calculate the integer k equal to the truncation of Nrextra to an integer. Use the kth random
number, rk, from your list as the desired random number.

ii. Set rextra equal to the random number, rk, chosen in step i.

iii. Generate a new random number, r and use it to replace the number chosen in step i, that is,
rk = r.

Consider a random number generator with a relatively short period and strong sequential correla-
tion and show that this shuffling scheme improves the quality of the random number sequence.

At least some of the statistical tests given in Problem 7.35 should be done whenever serious
calculations are contemplated. However, even if a random number generator passes all these tests,
there still can be problems in rare cases. Typically, these problems arise when a small number
of events have a large weight. In these cases a very small bias in the random number generator
might lead to a systematic error in the final results, and two generators, which appear equally
good as determined by various statistical tests, might give statistically different results when used
in a specific application. For this reason, it is important that the random number generator that
is used be reported along with the actual results. Confidence in the results also can be increased
by repeating the calculation with another random number generator.

Because all random number generators are based on a deterministic algorithm, it always is
possible to construct a test generator for which a particular algorithm will fail. The success of
a random number generator in passing various statistical tests is necessary and improves our
overall confidence in its statistical properties, but it is not a sufficient condition for their use in
all applications. In Project 15.36 we discuss an application of Monte Carlo methods to the Ising
model for which some commonly used random number generators give incorrect results.
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7.10 Variational Methods

Many problems in physics can be formulated in terms of a variational principle. In the following,
we consider examples of variational principles in geometrical optics and classical mechanics. We
then discuss how Monte Carlo methods can be applied to these problems. A more sophisticated
application of Monte Carlo methods to a variational problem in quantum mechanics is discussed
in Chapter 16.

Our everyday experience of light leads naturally to the concept of light rays. This description
of light propagation, called geometrical or ray optics, is applicable when the wavelength of light is
small compared to the linear dimensions of any obstacles or openings. The propagation of light
rays can be formulated in terms of Fermat’s principle of least time:

A ray of light follows the path between two points (consistent with any constraints) that
requires the least amount of time.

Fermat’s principle of least time can be adopted as the basis of geometrical optics. For example,
Fermat’s principle implies that light travels from a point A to a point B in a straight line in a
homogeneous medium. Because the speed of light is constant along any path within the medium,
the path of shortest time is the path of shortest distance, that is, a straight line from A to B.
What happens if we impose the constraint that the light must strike a mirror before reaching B?

The speed of light in a medium can be expressed in terms of c, the speed of light in a vacuum,
and the index of refraction n of the medium:

v =
c

n
. (7.62)

Suppose that a light ray in a medium with index of refraction n1 passes through a second medium
with index of refraction n2. The two media are separated by a plane surface. We now show how
we can use Fermat’s principle and a simple Monte Carlo method to find the path of the light. The
analytical solution to this problem using Fermat’s principle is found in many texts (cf. Feynman
et al.).

Our strategy, as implemented in class Fermat, is to begin with a straight path and to make
changes in the path at random. These changes are accepted only if they reduce the travel time of
the light. Some of the features of Fermat and the target class FermatApp include:

1. Light propagates from left to right through N regions. The index of refraction n[i] is uniform
in each region [i]. The index i increases from left to right. We have chosen units such that
the speed of light in vacuum equals unity.

2. Because the light propagates in a straight line in each medium, the path of the light is given by
the coordinates y[i] at each boundary.

3. The coordinates of the light source and the detector are at (0,y[0]) and (N,y[N]) respectively,
where y[0] and y[N] are fixed.

4. The path is the connection of the set of points at the boundary of each region.
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5. The path of the light is found by choosing the boundary i at random and generating a trial
value of y[i] that differs from its previous value by a random number between -dy to dy. If
the trial value of y[i] yields a shorter travel time, this value becomes the new value for y[i].

6. The path is redrawn whenever it is changed.

Listing 7.6: Fermat class.
/∗
∗ The org.opensourcephysics.sip.ch07 package contains classes for Chapter 7,
∗ Random Processes, of the book Simulations in Physics.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗/

package org.opensourcephysics.sip.ch07;

/∗∗
∗ Light ray in media with different index of refraction
∗
∗ @author Jan Tobochnik
∗ modified by H. Gould, 12/8/04, modified by J. Tobochnik, 12/9/04
∗/

public class Fermat {

double y[]; // y coordinate of light ray , index is x coordinate
double v[]; // light speed of ray for medium starting at index value
int N; // number of media
double dn; // change in index of refraction from one region to the next
double dy = 0.1; // maximum change in y position
int steps ;

/∗∗
∗ Initializes arrays
∗/

public void initialize () {
y = new double[N+1];
v = new double[N];
double indexOfRefraction = 1.0;
for(int i = 0; i<=N; i++) {

y[ i ] = i ; // initial path is a straight line
}
for(int i = 0; i<N; i++) {

v[ i ] = 1.0/indexOfRefraction;
indexOfRefraction += dn;

}
steps = 0;

}

/∗∗
∗ Random change in path
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∗/
public void step() {

int i = 1+(int) (Math.random()∗(N−1));
double yTrial = y[i]+2.0∗dy∗(Math.random()−0.5);
double previousTime = Math.sqrt(Math.pow(y[i−1]−y[i], 2)+1)/v[i−1]; // left medium
previousTime += Math.sqrt(Math.pow(y[i+1]−y[i], 2)+1)/v[i]; // right medium
double trialTime = Math.sqrt(Math.pow(y[i−1]−yTrial, 2)+1)/v[i−1]; // left medium
trialTime += Math.sqrt(Math.pow(y[i+1]−yTrial, 2)+1)/v[i]; // right medium
if (trialTime<previousTime) {

y[ i ] = yTrial ;
}
steps++;

}
}

Listing 7.7: Target class for Fermat’s principle.
/∗
∗ The org.opensourcephysics.sip.ch11 package contains classes for Chapter 7,
∗ Random Processes, of the book Simulations in Physics.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗/

package org.opensourcephysics.sip.ch07;

import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;
import org.opensourcephysics.frames.PlotFrame;

/∗∗
∗ Simulates use of Fermat’s principle to find light path that minimizes time
∗ @author Jan Tobochnik
∗ modified by H. Gould, 12/8/04, modified J. Tobochnik 12/9/04
∗/

public class FermatApp extends AbstractSimulation {

Fermat medium = new Fermat();
PlotFrame path = new PlotFrame(”x”, ”y”, ”Light path”);

/∗∗
∗ Sets path frame properties
∗/

public FermatApp() {
path.setAutoscaleX(true);
path.setAutoscaleY(true);
path.setConnected(true); // draw lines between points

}

/∗∗
∗ Gets parameters and initializes medium
∗/
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public void initialize () {
medium.dn = control.getDouble(”Change in index of refraction”);
medium.N = control.getInt(”Number of media segments”);
medium.initialize ();
path.clearData();

}

/∗∗
∗ Makes one change in path at a time
∗/

public void doStep() {
medium.step();
path.clearData();
for(int i = 0; i<=medium.N; i++) {

path.append(0, i , medium.y[i]);
}
path.setMessage(medium.steps+” steps”);

}

/∗∗
∗ Resets to default values
∗/

public void reset() {
control .setValue(”Change in index of refraction” , 0.5);
control .setValue(”Number of media segments”, 2);
path.clearData();

}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main(String[] args) {
SimulationControl.createApp(new FermatApp());

}
}

Problem 7.37. The law of refraction

a. Use Fermat and FermatApp to determine the angle of incidence θ1 and the angle of refraction
θ2 between two media with different indices of refraction. The angles θ1 and θ2 are measured
from the normal to the boundary. Set N = 2 and let the first medium be air (n1 ≈ 1) and the
second medium be glass (n2 ≈ 1.5). Describe the path of the light after a number of trial paths
are attempted. Add statements to the program to determine θ1 and θ2, the vertical position of
the intersection of the light at the boundary between the two media, and the total time for the
light to go from (0,y[0]) to (2,y[2]).

b. Modify the program so that the first medium represents glass (n1 ≈ 1.5) and the second medium
represents water (n2 ≈ 1.33). Verify that your results are consistent with n2 sin θ2 = n1 sin θ1.
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Figure 7.12: Near the horizon, the apparent (exaggerated) position of the sun is higher than the
true position of the sun. Note that the light rays from the true sun are curved due to refraction.

Problem 7.38. Inhomogeneous media

a. The earth’s atmosphere is thin at the top and dense near the earth’s surface. We can model this
inhomogeneous medium by dividing the atmosphere into equal width segments each of which is
homogeneous. To simulation this atmosphere run your program with N = 10 and dn = 0.1, and
find the path of least time. Use your results to explain why when we see the sun set, the sun
already is below the horizon (see Figure 7.12).

b.* Modify your program to find the appropriate distribution n(y) for a fiber optic cable, which we
take to be a flat, long ribbon. In this case the ith region corresponds to a cross sectional slab
through the cable. Although a real cable is three-dimensional, we consider a two-dimensional
cable for simplicity. We want the cable to have the property that if a ray of light starts from
one side of the cable and ends at the other, the slope dy/dx of the path should be near zero at
the edges so that light does not escape from the cable.

Fermat’s principle is an example of an extremum (maxima or minima) principle. An extremum
means that a small change ε in an independent variable leads to a change in a function (more
precisely, a function of functions) that is proportional to ε2 or a higher power of ε. An important
extremum principle in classical mechanics is based on the action S:

S =
∫ tfinal

t0

L dt, (7.63)

where t0 and tfinal are the initial and final times, respectively. The Lagrangian L in (7.63) is the
kinetic energy minus the potential energy. The extremum principle for the action is known as the
principle of least action. If we were to take the extremum of (7.63), we would find that the path
for which S is an extremum satisfies Newton’s second law (for conservative forces). One reason
for the importance of the principle of least action is that quantum mechanics can be formulated
in terms of an integral over the action. This way of doing quantum mechanics is called the path
integral formulation (see Section 16.10).
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To use (7.63) to find the motion of a single particle in one dimension, we fix the position at
the chosen initial and final times, x(t0) and x(tfinal), and then choose the velocities and positions
for the intermediate times t0 < t < tfinal to minimize the action. One way to implement this
procedure numerically is to convert the integral in (7.63) to a sum:

S ≈
N−1∑
i=1

L(ti) ∆t, (7.64)

where ti = t0 + i∆t. (The approximation used to obtain (7.64) is known as the rectangular
approximation and is discussed in Chapter 11.) For a single particle in one dimension, we can
write

Li ≈
m

2(∆t)2
(xi+1 − xi)2 − u(xi), (7.65)

where m is the mass of the particle and u(xi) is the potential energy of the particle at xi. The
velocity has been approximated as the difference in position divided by the change in time ∆t.

Problem 7.39. Principle of least action

a. Write a program to minimize the action S given in (7.63) for the motion of a single particle
in one dimension. Use the approximate form of the Lagrangian given in (7.65). One way to
write the program is to modify class Fermat so that the vertical coordinate for the light ray
becomes the position of the particle, and the horizontal region number i becomes the discrete
time interval of duration ∆t. The quantity to be minimized is different, but otherwise the
algorithm is similar.

b. Verify your program for the case of free fall for which the potential energy is u(x) = mgx.
Choose x(t = 0) = 2 m and x(t = 10 s) = 8 m, and begin with N = 20. Allow the maximum
change in the position to be 5 m.

c. Consider the harmonic potential u(x) = 1
2kx2. What shape do you expect the path x(t) to be?

Increase N to approximately 50 and estimate the path by minimizing the action.

It is possible to extend the principle of least action to more dimensions or particles, but it is
necessary to begin with a path close to the optimum one to obtain a good approximation to the
optimum path in a reasonable time.

In Problems 7.37–7.39 a simple Monte Carlo algorithm that always accepts paths ehich reduce
the time or action is sufficient. However, for more complicated index of refraction distributions
or potentials, it is possible that such a simple algorithm will find only a local minimum and the
global minimum will be missed. The problem of finding the global minimum is very general and
is shared by all optimization algorithms if the system has many relative minima. Optimization
is a very active area of research in many fields of science and engineeering. Ideas from physics,
biology, and computer science have led to many improved algorithms. We will discuss some of
these algorithms in Chapter 15. In most of these algorithms paths that are worse than the current
path are sometimes accepted in an attempt to climb out of a local minimum. Other algorithms
involve ways of sampling over a wider range of possible paths. Another approach is to convert
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the Monte Carlo algorithm into a deterministic algorithm. We have already mentioned that an
analytical variational calculation leads to Newton’s second law. Passerone and Parrinello discuss an
algorithm for looking for extrema in the action by maintaining the discrete structure in Eq. (7.65),
and then finding the extremum by taking the derivative with respect to each coordinate, xi and
setting the resulting equations equal to zero. This procedure leads to a set of derministic equations
that need to be solved numerically. By enforcing energy conservation and adding a few other tricks
to improve performance, they obtain a more efficient algorithm.

7.11 Projects

Almost all of the problems in this chapter can be done using more efficient programs, greater
number of trials, and larger systems. More applications of random walks and random number
sequences are discussed in subsequent chapters. Many more ideas for projects can be gained from
the references.

Project 7.40. Competition between diffusion and fragmentation
As we have discussed, random walks are useful for understanding diffusion in contexts more general
than the moves of a particle. For example, consider a particle in solution that can either grow by the
absorption of particles or shrink by the random loss of small particles. We can model this process as
a random walk where the spatial coordinate is replaced by the mass of the particle. One difference
between this situation and a standard random walk is that the random variable, the mass, must
be positive. There are other mechanisms that can change the size of the particle. For example,
the particle could split into two fragments. Recently, a model of diffusion plus fragmentation was
explored analytically, and it was found that the size distribution of the particles had a universal
form (see Ferkinghoff-Berg et al.). The results of the model were compared with experimental data
on ice crystal sizes and the length distribution of α helices in proteins. We explore this behavior
in the following.

a. Write a program to simulate diffusion plus fragmentation in one dimension. Begin with N
objects with some distribution of lengths. Let the integer Li represent the length of the ith
object. At each step all the objects change their length by ±1. If the length of an object is
equal to 0, it is removed from the system. An easy way to eliminate the ith object is to set its
length equal to the length of the last object and reduce N by unity. Next, at each step choose
only one object at random to fragment with a probability that is proportional to the length of
the object. One way to do so in given in the following code, where totalMass is the sum of the
lengths of all the objects.

// choose random location in object where fragmentation occurs
int x = (int)(Math.random()∗totalMass);
int i = 0; // label for object
int sum = length[i];
while(sum < x) { // find object to fragment

i++;
sum += length[i];

}
if (length[ i ] > 1) {
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int pieceA = 1 + (int)(Math.random()∗(length[i]−1));
int pieceB = length[i] − pieceA;
length[ i ] = pieceA;
length[numberOfObjects] = pieceB; // new object
numberOfObjects++;

}

b. The key quantity of interest is the distribution of lengths P (L), which is proportional to the mean
number of objects of length L. Include this calculation in your program and plot the distribution
periodically. Do not include the initial transient behavior in the averages. Explore a variety of
initial length distributions with about N = 5000 objects. Is the long time distribution similar
in shape for any initial distribution? Calculate the total mass (sum of the lengths) and output
this value periodically. Although this quantity will fluctuate, it should remain approximately
constant. Why?

c. Collect data for three different initial distributions and scale P (L) and L so that the three
distributions roughly fall onto the same curve. For example, you can scale P (L) so that all
three distributions have the same maximum height. Then try multiplying each L by a factor so
that the distributions overlap.

d. The analytical results suggest that the universal behavior can be obtained by scaling L by the
total mass m raised to the 1/3 power. Is this analytical prediction consistent with your results?
Test this hypothesis by adjusting the initial distributions so that they all have the same total
mass. Your results for the long time length distribution should fall on a universal curve. Why
is this universality interesting? How can this result be used to analyze different systems? Does
one need to do a new simulation for each different system?

e. What happens if the fragmentation step is done less or more often than every random walk
step. Does the scaling change?

Project 7.41. Application of the pivot algorithm to self-avoiding walks
The algorithms that we have discussed for generating self-avoiding random walks are all based
on making local deformations of the walk (polymer chain) for a given value of N , the number of
bonds. As discussed in Problem 7.31, the time τ between statistically independent configurations is
nonzero. The problem is that τ increases with N as some power, for example, τ ∼ N3. This power
law dependence of τ on N is called critical slowing down and implies that it becomes increasingly
more time consuming to generate long walks. We now discuss an example of a global algorithm
that reduces the dependence of τ on N . Another example of a global algorithm that reduces critical
slowing down is discussed in Project 15.34.

a. Consider the walk shown in Figure 7.13a. Select a site at random and one of the four possible
directions. The shorter portion of the walk is rotated (pivoted) to this new direction by treating
the walk as a rigid structure. The new walk is accepted only if the new walk is self-avoiding;
otherwise the old walk is retained. (The shorter portion of the walk is chosen to save computer
time.) Some typical moves are shown in Figure 7.13. Note that if an end point is chosen,
the previous walk is retained. Write a program to implement this algorithm and compute the
dependence of the mean square end-to-end distance 〈R2

N 〉 on N . Consider values of N in the



CHAPTER 7. RANDOM PROCESSES 256

(a) (b) (c)

(d) (e) (f)

Figure 7.13: Examples of the first several changes generated by the pivot algorithm for a self-
avoiding walk of N = 10 steps (11 sites). The open circle denotes the pivot point. This figure is
adopted from the article by MacDonald et al.

range 10 ≤ N ≤ 80. A discussion of the results and the implementation of the algorithm can
be found in MacDonald et al. and Madras and Sokal, respectively.

b. Compute the correlation time τ for different values of N using the approach discussed in Prob-
lem 7.31b.

Project 7.42. Pattern formation
In Problem 7.34 we saw that simple patterns can develop as a result of random behavior. The
phenomenon of pattern formation is of much interest in a variety of contexts ranging from the
large scale structure of the universe to the roll patterns seen in convection (for example, smoke
rings). In the following, we explore the patterns that can develop in a simple reaction diffusion
model based on the reactions, A + 2B → 3B, and B → C, where C is inert. Such a reaction is
called autocatalytic.

In Problem 7.34 we considered chemical reactions in a closed system where the reactions can
proceed to equilibrium. In contrast, open systems allow a continuous supply of fresh reactants
and a removal of products. These two processes allow steady states to be realized and oscillatory
conditions to be maintained indefinitely. In this problem we assume that A is added at a constant
rate and that both A and B are removed by the feed process. Pearson (see references) modeled
these processes by two coupled reaction diffusion equations:

∂A

∂t
= DA∇2A − AB2 + f(1 − A) (7.66a)

∂B

∂t
= DB∇2B + AB2 − (f + k)B. (7.66b)
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Figure 7.14: Evolution of the pattern starting from the initial conditions suggested in Project c.

The AB2 term represents the reaction A+2B → 3B. This term is negative in (7.66a) because the
reactant A decreases, and is positive in (7.66b) because the reactant B increases. The term +f
represents the constant addition of A, and the terms −fA and −fB represent the removal process;
the term −kB represents the reaction B → C. All the quantities in (7.66) are dimensionless. We
assume that the diffusion coefficients are DA = 2× 10−5 and DB = 10−5, and the behavior of the
system is determined by the values of the rate constant k and the feed rate f .

a. We first consider the behavior of the reaction kinetics that results when the diffusion terms in
(7.66) are neglected. It is clear from (7.66) that there is a trivial steady state solution A = 1,
B = 0. Are there other solutions, and if so, are they stable? The steady state solutions can
easily be found by solving (7.66) with ∂A/∂t = ∂B/∂t = 0. To determine the stability, we can
add a perturbation and determine whether the perturbation grows or not. However, without
the diffusion terms, it is more straightforward to solve (7.66) numerically using a simple Euler
algorithm. Choose a time step equal to unity, and let A = 0.1 and B = 0.5 at t = 0. Determine
the steady state values for 0 < f ≤ 0.3 and 0 < k ≤ 0.07 in increments of ∆f = 0.02 and
∆k = 0.005. Record the steady state values of A and B. Then repeat this exercise for the
initial values A = 0.5 and B = 0.1. You should find that for some values of f and k, only one
steady state solution can be obtained for the two initial conditions, and for other initial values
of A and B there are two steady state solutions. Try other initial conditions. If you obtain a
new solution, change the initial A or B slightly to see if your new solution is stable. On an f
versus k plot indicate where there are two solutions and where there are one. In this way you
can determine the approximate phase diagram for this process.

b. There is a small region in f -k space where one of the steady state solutions becomes unstable
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and periodic solutions occur (the mechanism is known as a Hopf bifurcation). Try f = 0.009,
k = 0.03, and set A = 0.1 and B = 0.5 at t = 0. Plot the values of A and B versus the time
t. Are they periodic? Try other values of f and k and estimate where the periodic solutions
occur.

c. Numerical solutions of the full equation with diffusion (7.66) can be found by making a finite dif-
ference approximation to the spatial derivatives as in (3.15) and using a simple Euler algorithm
for the time integration. Adopt periodic boundary conditions. Although it is straightforward to
write a program to do the numerical integration, an exploration of the dynamics of this system
requires much computer resources. However, we can find some preliminary results with a small
system and a coarse grid. Consider a 0.5 × 0.5 system with a spatial mesh of 128 × 128 grid
points on a square lattice. Choose f = 0.18, k = 0.057, and ∆t = 0.1. Let the entire system
be in the initial trivial state (A = 1, B = 0) except for a 20 × 20 grid located at the center of
the system where the sites are A = 1/2, B = 1/4 with a ±1% random noise. The effect of the
noise is to break the square symmetry. Let the system evolve for approximately 80,000 time
steps and look at the patterns that develop. Color code the grid according to the concentration
of A, with red representing A = 1 and blue representing A ≈ 0.2 and with several intermediate
colors. Very interesting patterns have been found by Pearson.

Appendix 7: Random Walks and the Diffusion Equation

To gain some insight into the relation between random walks and the diffusion equation, we first
show that the latter implies that 〈x(t)〉 is zero and 〈x2(t)〉 is proportional to t. We rewrite the
diffusion equation (7.25) here for convenience:

∂P (x, t)
∂t

= D
∂2P (x, t)

∂x2
. (7.67)

To derive the t dependence of 〈x(t)〉 and 〈x2(t)〉 from (7.67), we write the average of any function
of x as

〈f(x, t)〉 =
∫ ∞

−∞
f(x)P (x, t) dx. (7.68)

The average displacement is given by

〈x(t)〉 =
∫ ∞

−∞
xP (x, t) dx. (7.69)

To do the integral on the right hand side of (7.69), we multiply both sides of (7.67) by x and
formally integrate over x: ∫ ∞

−∞
x

∂P (x, t)
∂t

dx = D

∫ ∞

−∞
x

∂2P (x, t)
∂x2

dx. (7.70)

The left-hand side can be expressed as:∫ ∞

−∞
x

∂P (x, t)
∂t

dx =
∂

∂t

∫ ∞

−∞
xP (x, t) dx =

d

dt
〈x〉. (7.71)
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The right-hand side of (7.70) can be written in the desired form by doing an integration by parts:

D

∫ ∞

−∞
x

∂2P (x, t)
∂x2

dx = D x
∂P (x, t)

∂x

∣∣∣∣x=∞

x=−∞
− D

∫ ∞

−∞

∂P (x, t)
∂x

dx. (7.72)

The first term on the right hand side of (7.72) is zero because P (x = ±∞, t) = 0 and all the
spatial derivatives of P at x = ±∞ are zero. The second term also is zero because it integrates to
D[P (x = ∞, t) − P (x = −∞, t)]. Hence, we find that

d〈x〉
dt

= 0, (7.73)

or 〈x〉 is a constant, independent of time. Because x = 0 at t = 0, we conclude that 〈x〉 = 0 for all
t.

To calculate 〈x2(t)〉, two integrations by parts are necessary, and we find that

d

dt
〈x2(t)〉 = 2D, (7.74)

or

〈x2(t)〉 = 2Dt. (7.75)

We see that the random walk and the diffusion equation have the same time dependence. In
d-dimensional space, 2D is replaced by 2dD.

The solution of the diffusion equation shows that the time dependence of 〈x2(t)〉 is equivalent
to the long time behavior of a simple random walk on a lattice. In the following, we show directly
that the continuum limit of the one-dimensional random walk model is a diffusion equation.

If there is an equal probability of taking a step to the right or left, the random walk can be
written in terms of the simple master equation

P (i, N) =
1
2
[P (i + 1, N − 1) + P (i − 1, N − 1)], (7.76)

where P (i, N) is the probability that the walker is at site i after N steps. To obtain a differential
equation for the probability density P (x, t), we identify t = Nτ , x = ia, and P (i, N) = aP (x, t),
where τ is the time between steps and a is the lattice spacing. This association allows us to rewrite
(7.76) in the equivalent form

P (x, t) =
1
2
[P (x + a, t − τ) + P (x − a, t − τ)]. (7.77)

We rewrite (7.77) by subtracting P (x, t − τ) from both sides of (7.77) and dividing by τ :

1
τ

[
P (x, t) − P (x, t − τ)

]
=

a2

2τ

[
P (x + a, t − τ) − 2P (x, t − τ) + P (x − a, t − τ)

]
a−2. (7.78)

If we expand P (x, t− τ) and P (x± a, t− τ) in a Taylor series and take the limit a → 0 and τ → 0
with the ratio D ≡ a2/2τ finite, we obtain the diffusion equation

∂P (x, t)
∂t

= D
∂2P (x, t)

∂x2
. (7.79a)

The generalization of (7.79a) to three dimensions is
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∂P (x, y, z, t)
∂t

= D∇2P (x, y, z, t), (7.79b)

where ∇2 = ∂2/∂x2 +∂2/∂y2 +∂2/∂x2 is the Laplacian operator. Equation (7.79) is known as the
diffusion equation and is frequently used to describe the dynamics of fluid molecules.

The direct numerical solution of the prototypical parabolic partial differential equation (7.79)
is a nontrivial problem in numerical analysis (cf. Press et al. or Koonin and Meredith.) An indirect
method of solving (7.79) numerically is to use a Monte Carlo method, that is, replace the partial
differential equation (7.79) by a corresponding random walk on a lattice with discrete time steps.
Because the asymptotic behavior of the partial differential equation and the random walk model
are equivalent, this approach uses the Monte Carlo technique as a method of numerical analysis.
In contrast, if our goal is to understand a random walk lattice model directly, the Monte Carlo
technique is a simulation method. The difference between simulation and numerical analysis is
sometimes in the eyes of the beholder.

Problem 7.43. Biased random walk
Show that the form of the differential equation satisfied by P (x, t) corresponding to a random walk
with a drift, that is, a walk for p �= q, is

∂P (x, t)
∂t

= D∇2P (x, y, z, t) − v
∂P (x, t)

∂x
. (7.80)

How is v related to p and q?
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