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We emphasize that the methods we have discussed can be applied to a wide variety of natural
phenomena.

19.1 The Unity of Physics

Although we have discussed many topics and applications, we have covered only a small fraction
of the possible computer simulations and models of natural phenomena. However, we know that
the same physical principles can be applied to many kinds of phenomena. We express this point
of view as the same algorithms give the same results. For example, the Monte Carlo methods
that we applied to the simulation of classical liquids and to the analysis of quantum mechanical
wave functions also were applied to the transport of neutrons and problems in chemical kinetics.
Similar Monte Carlo methods are being used to analyze problems in quark confinement. Indeed,
the increasing role of the computer in research is strengthening the interconnections of the various
subfields of physics and the relation of physics to other disciplines.

The computer also has helped us think of natural phenomena in new ways that complement
traditional methods. For example, consider a predator-prey model of the dynamics of minnows
and sharks. Assume that the birth rate of the minnows is independent of the number of sharks,
and that each shark kills a number of minnows proportional to their number. If we assume that
F (t), the number of minnows at time t, changes continuously, we can write

dF (t)
dt

= [b1 − d1S(t)]F (t), (19.1)

where S(t) is the number of sharks at time t, and b1 and d1 are constants independent of F and S.
To obtain an equation for the rate of change of the sharks, we assume that the number of offspring
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produced by each shark is proportional to the number of minnows eaten by the shark. If we also
assume that the death rate of the sharks is constant, we can write

dS(t)
dt

= [b2F (t) − d2]S(t). (19.2)

Equations (19.1) and (19.2) are known as the Lotka-Volterra equations. They can be analyzed by
standard methods and solved numerically using simple algorithms. Why is the dynamical behavior
of (19.1) and (19.2) cyclic?

In the predator-prey model the numbers of predator and prey are assumed to change con-
tinuously and their spatial distribution is ignored. We now summarize an alternative model that
can be most simply expressed as a computer algorithm. The model is a two-dimensional cellular
automaton known as Wa-Tor.

1. For a desired concentration of minnows and sharks, minnows and sharks are placed at random
on the sites of a lattice. The minnows and sharks are assigned random ages.

2. At time step tn, consider each minnow sequentially. Determine the number of nearest neigh-
bor sites that are unoccupied at time tn−1 and move the minnow at random to one of the
unoccupied sites. If all the nearest neighbor sites are occupied, the minnow does not move.

3. If a minnow has survived for a multiple of fbreed iterations, the minnow has a single off-
spring. The new minnow is placed at the previous position of the parent minnow.

4. At time step tn, consider each shark sequentially. If all the nearest neighbor sites of the shark
at time tn−1 are unoccupied, move the shark at random to one of the four unoccupied sites.
If one or more of the adjacent sites is occupied by a minnow, the shark moves at random to
one of the occupied sites and eats the minnow.

5. If a shark moves nstarve times without eating, the shark dies. If a shark survives for a
multiple of sbreed iterations, the shark has a single offspring. The new shark is placed at
the previous position of the parent shark.

What is the dynamical behavior of Wa-Tor? Do Wa-Tor and the Lotka-Volterra equations ex-
hibit similar behavior? Is the Wa-Tor model realistic? What are the advantages and disadvantages
of each approach? See the references for suggestions for the numerical values of the parameters.

19.2 Percolation and Galaxies

In addition to allowing us to investigate complex nonlinear problems and more realistic systems, the
computer has reinforced one of the contemporary themes in physics, the unifying role of collective
behavior. Systems composed of many individual constituents can exhibit common properties under
certain conditions, even though there might be differences in the nature of the constituents and in
their mutual interaction. The behavior of a system near a critical point is probably the best example
of collective behavior in a familiar context. In the following, we discuss examples of collective
behavior in the context of epidemiology and the structure of spiral galaxies. Our discussion follows
closely the articles by Schulman and Seiden.
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Consider an imaginary disease called percolitis. The disease conveys no immunity, and its
incubation period and duration are both one day. The disease is so benign that its sufferers are
able to come into contact with every member of the community so that every person comes into
contact with every other person every day. At t = 0 one person contracts the disease from a
source outside the community. Let N be the total population, t the time measured in days, p the
transmission probability, and n(t) the expected number of diseased individuals at time t. Convince
yourself that for N = 1000 and p = 0.0005, the chance that there will be anyone suffering from the
disease seven days later is vanishingly small. On the other hand, suppose that p = 0.002. Then
n(t = 1) = 2, n(t = 2) ≈ 4, and the odds are very high that after some time there will be an
average number of approximately 800 victims. Do a simulation for various values of N and p and
estimate the critical probability pc such that for p < pc the average number of victims is zero, and
for p ≥ pc the average number of victims is nonzero. Note that no assumptions were made as to
which individuals will become infected.

As its name suggests, the percolitis model has much in common with percolation. What are
some of the connections? The model is sufficiently simple that an analytical solution is possible.
What modifications of the model might make it more realistic for thinking about the spread of
epidemics? Would you have imagined some of these modifications without thinking about how to
put the problem on a computer? Do these modifications change the qualitative behavior of the
model? Are analytical solutions possible in general?

The internal structure of a galaxy has traditionally been studied using Newtonian dynamics.
This point of view is very useful, but can be complemented by thinking about the large scale
structure of a galaxy using ideas from statistical mechanics. Because we can only briefly summarize
this alternative point of view here, we encourage you to explore the properties of the percolation-
based model of Schulman and Seiden by running GalaxyApp, a simple version of their model. The
basic assumption of the model is that even though a region of the galaxy might have the necessary
ingredients for star formation, nothing happens if it is left alone. However, if a shock wave from a
supernova passes through the gas, there is a good chance that a star will be formed. The supernova
is itself the result of an earlier nearby star formation. The theory of self-propagating star formation
is based on the importance of this mechanism. We can think of a given region of the galaxy as
being like a percolitis-susceptible individual—without a source there is no percolitis. Rather than
determining which regions have the necessary conditions for star formation, we summarize all the
uncertainty and variability in a single parameter p, the probability that a supernova explosion in
one region gives rise to star formation in a neighboring region.

The other important observation we need to make about spiral galaxies is that galaxies do not
rotate rigidly (with a constant angular velocity), but to a good approximation each region rotates
with the same tangential velocity. The properties of random self-propagating star formation and
constant tangential velocity are incorporated into GalaxyApp in Listing 19.1 as follows. Imagine
dividing a galaxy into concentric rings, which are divided into cells of equal size (see Fig. 19.1).
Initially, a small number of cells are activated. Each cell corresponds to a region of space that is the
size of a giant molecular cloud and moves with the same tangential velocity v. The angular velocity
is given by ω = v/r, where r is the distance of the ring from the center of the galaxy. At each time
step, the active cells activate neighboring cells with probability p, and then become inactive. Then
the rings are rotated, and the process is repeated again in the next time step. At each time step,
cells that have been active within the last 15 time steps are plotted with filled boxes, with the size
of each box inversely proportional to the time since the cell become active. More details of the
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Figure 19.1: The nature of the polar grid used in Program galaxy. Each cell has the same area
and has on the average six nearest neighbors. The filled circle denotes an active region of star
formation. At the next time step it can induce star formation in cells containing open circles. Note
that as time passes, the neighbors in adjacent rings change because of differential rotation.

simulation are shown in Fig. 19.1 and in Listing 19.1. A typical galaxy generated by GalaxyApp is
shown in Fig. 19.2.

Listing 19.1: Galaxy simulation program.
package org.opensourcephysics.sip.ch19;

import org.opensourcephysics.controls.∗;

import org.opensourcephysics.frames.∗;

import org.opensourcephysics.display.∗;

import java.awt.∗;

public class GalaxyApp extends AbstractSimulation implements Drawable {

DisplayFrame frame = new DisplayFrame(”Galaxy”);

final static double twoPi = 2.0∗Math.PI;
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Figure 19.2: A typical structure generated by GalaxyApp. The parameters are the number of rings
nring = 50, the initial number of active cells nactive = 200, circular velocity v = 1 (200 km/s),
the probability of induced star formation p = 0.18, and the time step dt = 10 (107 years). The
structure shown is at t = 200 with 358 active star clusters. The diameter of the circle representing
a star cluster is proportional to the remaining lifetime of the cluster.

final static double twoPiOver6 = twoPi/6;

double p, v, dt, t ;

int numberOfRings, numberOfActiveCells, numberOfCells;

int [] starLifeTime, cellR , cellA , activeCellLabel ;

public GalaxyApp() {

frame.addDrawable(this);

}
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public void initialize () {

t = 0;

numberOfRings = control.getInt(”Number of rings”);

numberOfActiveCells = control.getInt(”Initial number of active cells ”);

p = control.getDouble(”star formation probability”);

v = control.getDouble(”cell velocity”);

dt = control.getDouble(”time step”);

frame.setPreferredMinMax(−numberOfRings−1.0, numberOfRings+1.0, −numberOfRings−1.0, numberOfRings+1.0);

numberOfCells = 3∗numberOfRings∗(numberOfRings+1);

cellR = new int[numberOfCells];

cellA = new int[numberOfCells];

int cellLabel = 0;

// initial values of r and a for each cell label

for(int r = 1;r<=numberOfRings;r++) {

for(int a = 0;a<r∗6;a++) {

cellR[ cellLabel ] = r ;

cellA[ cellLabel ] = a;

cellLabel++;

}

}

starLifeTime = new int[numberOfCells];

activeCellLabel = new int[numberOfCells];

initializeGalaxy ();

}
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public void initializeGalaxy() {

int i = 0;

while(i<numberOfActiveCells) {

int label = (int) (Math.random()∗numberOfCells);

if (starLifeTime[label]!=15) {

starLifeTime[label ] = 15; // activate region for 15 time steps

activeCellLabel [ i ] = label ;

i++;

}

}

}

public void formNewStars() {

// copy list of active cells into another array

int [] currentActiveCellLabel = (int []) activeCellLabel .clone ();

int currentNumberOfActiveCells = numberOfActiveCells;

numberOfActiveCells = 0;

for(int i = 0;i<currentNumberOfActiveCells;++i) {

int cellLabel = currentActiveCellLabel[i ];

int r = cellR[ cellLabel ];

int a = cellA[ cellLabel ];

// activate neighhboring cells in same ring

createStars(r , pbc(a+1, r));

createStars(r , pbc(a−1, r));
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//activate cells in next larger ring

if (r<numberOfRings−1) {

int ap = aForOtherRadius(a, r, r+1);

createStars(r+1, pbc(ap, r+1));

createStars(r+1, pbc(ap+1, r+1));

}

//activate cells in next smaller ring

if (r>1) {

int am = aForOtherRadius(a, r, r−1);

createStars(r−1, pbc(am, r−1));

createStars(r−1, pbc(am+1, r−1));

}

}

}

public int pbc(int a, int r) {

return(a+6∗r)%(6∗r);

}

public int aForOtherRadius(int a, int r, int rOther) {

// angle corresponding to a at time t

double angle = twoPiOver6∗a/r+((v∗t)/r);

angle −= twoPi∗(int) (angle/twoPi);

// change in angle for cell at other r

double angleChange = ((v∗t)/rOther);
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angleChange −= twoPi∗(int) (angleChange/twoPi);

// return value of a for cell at other r

return(int) ((rOther/twoPiOver6)∗(angle−angleChange));

}

public void createStars(int r, int a) {

int label = a+3∗r∗(r−1);

if ((Math.random()<p)&&(starLifeTime[label]!=15)) {

activeCellLabel [numberOfActiveCells] = label;

numberOfActiveCells++;

starLifeTime[label ] = 15;

}

}

public void doStep() {

t += dt;

formNewStars();

frame.setMessage(”t = ”+decimalFormat.format(t)+” #active = ”+numberOfActiveCells);

}

public void reset() {

control .setValue(”Number of rings”, 50);

control .setValue(” Initial number of active cells ” , 200);

control .setValue(”star formation probability” , 0.18);

control .setValue(” cell velocity” , 1.0);
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control .setValue(”time step” , 10.0);

}

public void draw(DrawingPanel panel, Graphics g) {

for(int label = 0;label<numberOfCells;label++) {

if (starLifeTime[label]>0) {

int r = cellR[ label ];

int a = cellA[ label ];

double angle = twoPiOver6∗a/r+(v∗t)/r; //angle for cell at time t

double x = r∗Math.cos(angle);

double y = r∗Math.sin(angle);

double ds = starLifeTime[label]/15.0;

int leftPixels = panel.xToPix(x);

int topPixels = panel.yToPix(y);

int widthPixels = panel.xToPix(ds)−panel.xToPix(0);

int heightPixels = panel.yToPix(0)−panel.yToPix(ds);

g. fillOval ( leftPixels , topPixels , widthPixels, heightPixels );

starLifeTime[label]−−; // decrease star cluster lifetime

}

}

}

public static void main(String[] args) {

SimulationControl.createApp(new GalaxyApp());

}
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}

Of course our brief discussion of galaxies is not meant to convince you that the mechanism
proposed by Schulman and Seiden is correct. Rather our purpose is to show how an alternative
point of view can suggest new approaches in different fields. As emphasized by the authors,
the dramatic images produced by computer simulations of the galaxy model show unanticipated
features that can be the impetus for the development of a deeper theoretical understanding.

19.3 Numbers, Pretty Pictures, and Insight

The power of physics comes in part from its ability to give numerical agreement between theory and
experiment. However, numerical agreement has little significance, unless the process of obtaining
that agreement leads to insight into the phenomena of interest. For example, it is possible to design
elaborate epicycle models of planetary motion which yield numerical results that are consistent with
observations. Nevertheless, we prefer the Copernican approach, not for its impressive numerical
success, but because it provided insight and lead to further advances by Kepler and Newton.

Computer simulations raise similar questions. The numbers produced by simulations which
are consistent with experimental observations, and the pictures that are suggestive of physical
phenomena are not sufficient to establish the value of a simulation. As an example, let us briefly
consider a simulation of river networks. You might have seen aerial photographs of the Earth’s
topography and noticed the fractal-like drainage patterns formed by many rivers. A variety of
random walk models can be used to generate patterns that look remarkably like river networks
and even share some of their statistical properties. In these models the path of a walker represents
a river, and the branching and intersections of rivers are modeled by the intersection of the paths
of many walkers. However, such models have limited utility because they provide little insight
into why the rivers actually have the properties they do. They do not directly incorporate the
important physical processes of erosion and sedimentation.

Leheny proposed a model that produces realistic looking patterns of river networks whose
statistical properties are consistent with observations of real networks. Unlike the random walk
models, the dynamics of this lattice model reflect actual physical processes. The model consists of
first creating a terrain for the network, and then defining the network on the terrain. The model
can be summarized as follows:

1. The initial terrain is assumed to have a constant slope m. Each site of the lattice is given an
initial height, h(x, y) = my.

2. Precipitation is placed on a random site of the (square) lattice.

3. Water flows from this site to a nearest neighbor site with a probability proportional to eE∆h,
where ∆h is the difference in height between the site and a neighbor, and E is a parameter.
If ∆h < 0, then the probability is equal to zero, and the flow will not return to the site
previously visited if there is a nonzero probability of flowing to another site.

4. Step (3) is repeated until the water flows to the bottom of the lattice, y = 0.
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5. Each lattice point that has been visited by the flowing water has its height reduced by a
constant amount D. This process represents erosion.

6. Any site at which the height difference ∆h with a neighbor exceeds a critical amount M is
reduced in height by an amount ∆h/S, where S is another parameter in the model. This
process represents mud slides.

7. Steps (2)–(6) are repeated until you wish to analyze the resulting network. The river network
is defined as follows. Every site in the lattice receives one unit of precipitation. Then water
flows from a site to the nearest neighbor with the smallest height. Then the water flows to
the neighbor of this new site with the smallest height. This flow continues until the flow
reaches the bottom of the lattice. This process is repeated for each site, and the number of
times that a site receives water is recorded. The river network is defined as the set of all sites
that received at least R units of water, where R is another parameter of the model.

The adjustable parameters of the model can be related to measurable quantities, and the
different steps of the algorithm correspond to real dynamical processes. Hence, we can gain insight
into how the results change as we vary the parameters. It would be interesting to program the
above model and see what happens. You also would probably understand the algorithm better by
converting the algorithm into a working program.

19.4 What are Computers Doing to Physics?

There is probably no need to convince you that computers are changing the way we think about
the physical world. The question, “How can I formulate this problem for a computer?” has lead
to new insights into old problems and is allowing us to consider new ones. The problems of galaxy
formation and the evolution of river networks are just two of the many examples from the current
research literature.

What will be the effect of computers in physics education? The most common use of computers
has been to assist students to understand topics that have been in the curriculum for many years.
So far the computer has not qualitatively changed the way we learn nor the topics we study. Will
computer simulation and numerical analysis make analytical methods less important? Has this
happened already? Should calculus retain its traditional importance in the curriculum? Do we
understand a natural phenomenon when we are able to construct a computer model that allows us
to make predictions which agree with experiment? Is it necessary to obtain at least some analytical
results? What do you think should be the role of computers in education? Now that you have
reached the end of this text, we expect that you already have started asking your own questions.

Computers and the visual images produced by computer models can be very seductive. How-
ever, we need to remember that the goal of science is to understand Nature. Theory and experiment
have been the traditional routes to this end, and computation is now a third and complementary
route. Although we have stressed the importance of computation in this text, it is important also
to stress its complementary role. We must not let the rapid advances of computer technology and
the easy availability of information overshadow our ultimate goal of gaining more knowledge and
a deeper understanding of natural phenomena.
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Choosing a model depends not just on how realistic you want your simulation to be, but
also what kinds of quantities you wish to understand. Cieplak et al. considered two river network
models to understand their scaling properties and compare with observational data. One model
is based on the invasion percolation model. A lattice is set up with each bond uniformly assigned
a random number. The bonds are occupied starting from the bond with the smallest random
number, until all bonds have a path to the bottom row of the lattice which models the outlet of
the river network where all the water eventually flows. Loops are eliminated as the network is
created and the properties of the resulting network are measured. A second model they use follows
the Eden model. Here all the bonds have equal probability of being occupied as long as no loops
are created. The bonds are occupied at random until all bonds have a path to the outlet. Despite
the very different mechanisms in the two models, their properties are similar.

References and Suggestions for Further Reading

It would be impossible to list even a small subset of references to areas of physics and related
disciplines that we have not discussed. Also the development of algorithms and applications in
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the various electronic archives available on the Internet. We encourage readers of this text and
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preface), where we hope that many developments will be listed and discussed.
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