
Chapter 17

Visualization and Rigid Body
Dynamics

c©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
2 April 2005

We study affine transformations in order to visualize objects in three dimensions. We then solve
Euler’s equation of motion for rigid body dynamics using the quaternion representation of rotations.

17.1 Two-Dimensional Transformations

Physicists frequently use transformations to convert from one system of coordinates to another.
A very common transformation is an affine transformation, which has the ability to rotate, scale,
stretch, skew, and translate an object. Such a transformation maps straight lines to straight lines.
They often are represented using matrices and are manipulated using the tools of linear algebra
such as matrix multiplication and matrix inversion. The Java 2D API defines a set of classes
designed to create high-quality graphics using image composition, image processing, anti-aliasing,
and text layout. Because linear algebra and affine transformations are used extensively in this
API, we begin our study of two- and three-dimensional visualization techniques by studying this
framework.

It is straightforward to rotate a point (x, y) about the origin by an angle θ or scale the distance
from the origin by (sx, sy) using matrices:[

x′
y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(17.1)

[
x′
y′

]
=

[
sx 0
0 sy

] [
x
y

]
. (17.2)

772

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 773

Unfortunately, the translation of the point (x, y) by (dx, dy) is treated as an addition and not as a
multiplication and must be written differently:[

x′
y′

]
=

[
dx

dy

]
+

[
x
y

]
. (17.3)

This inconsistency is easily overcome if points are expressed in terms of homogeneous coordinates
by adding a third coordinate w. Homogeneous coordinates are used extensively in computer
graphics to treat all transformations in a consistent way. Instead of representing a point by a
pair of numbers (x, y), each point is represented by a triple (x, y, w). Because two homogeneous
coordinates represent the same point if one is a multiple of the other, we usually homogenize the
point by dividing by w and write the coordinates in the form (x, y, 1). (The w coordinate can be
used to add perspective (see Foley et al.).) By using homogeneous coordinates, an arbitrary affine
transformation can be written as:x′

y′
1

 =

m00 m01 m02

m10 m11 m12

0 0 1

x
y
1

 . (17.4)

A translation, for example, can be expressed as:x′
y′
1

 =

1 0 dx

0 1 dy

0 0 1

x
y
1

 . (17.5)

Exercise 17.1. Homogeneous coordinates
How are the rotation and scaling transformations expressed in matrix notation using homogeneous
coordinates? Write the transformation matrices for a 30◦ clockwise rotation and for a scaling along
the x-axis by a factor of two. Do these matrices commute?

Exercise 17.1 shows that a coordinate transformation can be broken into parts using a block
matrix format. [

A dT

0 1

]
. (17.6)

We will use boldface for row vectors such as 0 and d and calligraphic letters to represent matrices.
The translation vector d is transposed in order to convert it to a column vector. The upper left-hand
sub-matrix A produces rotation and scaling while the vector d = [dx, dy] produces translation.

Homogeneous coordinates have another advantage in that they can be used to distinguish
between points and vectors. Unlike points, vectors should remain invariant under translation. To
transform vectors using the same transformation matrices that we use to transform points, we set
w to zero, thereby removing the effect of the last column. Note that the difference between two
homogeneous points produces a w equal to zero. The elimination of the effect of translation makes
sense because the difference between two points is a displacement vector, and vectors are defined
in terms of their components, not their location.

The AffineTransform class in the java.awt.geom package defines two-dimensional affine
transformations. Instances of this class are constructed as:

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 774

AffineTransform at = new AffineTransform(double m00, double m10,double m01, double m11,
double m02, double m12);

Methods in this class encapsulate most of the matrix arithmetic that is required for two-dimensional
visualization. For example, there are methods to calculate a transformation’s inverse and to
combine transformations using the rules of matrix multiplication. There also are static methods
for constructing pure rotations, scalings, and translations that require only one or two parameters.

double theta = Math.PI/6;
AffineTransform at = AffineTransform.getRotateInstance(theta);

A method such as getRotateInstance is known as a convenience method because it simplifies a
complicated API.

The AffineTransform class can transform geometric objects, images, and even text. The
following code fragment shows how this class is used to rotate a point and a rectangle.

Point2D.Double pt = Point2D.Double(2.0,3.0);
pt = AffineTransform.getRotateInstance(Math.PI/3).transform(pt,null);
Shape shape = new Rectangle2D.Double(50,50,100,150);
shape = AffineTransform.getRotateInstance(Math.PI/3).createTransformedShape(shape);

The Affine2DApp class in Listing 17.1 allows us to visualize affine transformations by applying
them to a rectangle.

Listing 17.1: The Affine2DApp class demonstrates how to apply an affine transformation to a
two-dimensional shape.

package org.opensourcephysics.sip.ch17;
import java.awt.∗;
import java.awt.geom.∗;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;

public class Affine2DApp extends AbstractCalculation {
DisplayFrame frame = new DisplayFrame(”Affine Transformation”);
RectShape rect = new RectShape();
public void calculate() {

double[][] matrix = new double[3][]; // allocate 3 rows but not the row elements
// set the first row of the matrix
matrix[0] = (double[]) control.getObject(”row 0”); // returned array becomes the first row
// set the second row
matrix[1] = (double[]) control.getObject(”row 1”); // returned array becomes the second row
// set the third row
matrix[2] = (double[]) control.getObject(”row 2”); // returned array becomes the third row
rect .transform(matrix);

}

public void reset() {
control .clearMessages();
control .setValue(”row 0”, new double[]{1, 0, 0});

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 775

control .setValue(”row 1”, new double[]{0, 1, 0});
control .setValue(”row 2”, new double[]{0, 0, 1});
rect = new RectShape();
frame.clearDrawables();
frame.addDrawable(rect);
calculate ();

}

public static void main(String[] args) {
CalculationControl.createApp(new Affine2DApp());

}

class RectShape implements Drawable { // inner class
Shape shape = new Rectangle2D.Double(50, 50, 100, 100);
public void draw(DrawingPanel panel, Graphics g) {

Graphics2D g2 = ((Graphics2D) g);
g2.setPaint(Color.BLUE);
g2. fill (shape);
g2.setPaint(Color.RED);
g2.draw(shape);

}

public void transform(double[][] mat) {
shape = (new AffineTransform(mat[0][0], mat[1][0], mat [0][1], mat [1][1], mat [0][2], mat [1][2])). createTransformedS

}
}

}

Exercise 17.2. Two-dimensional affine transformations

a. Run Affine2DApp and describe the effect of the affine transformation:1 0.2 0
0 1 0
0 0 1

 . (17.7)

b. Enter an affine transformation for a 30◦ clockwise rotation. About what point does the rectangle
rotate? Why?

c. Add a convenience method named translate to the RectShape class that takes two parameters
(dx, dy). Add a custom button to invoke this method. Test the translate method.

d. Add a convenience method named rotate to the RectShape class that takes a θ parameter.
Test this method.

e. You can rotate an object about its center by first translating the object to the center of rotation,
performing the rotation, and then translating the object back to its original position. Implement
a method that performs a rotation about the center of the rectangle by invoking a sequence of
translate and rotate methods.

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 776

f. Affine transformations have the interesting property that transformed parallel lines remain
parallel. Demonstrate that this property is plausible by transforming a rectangle using random
values for the transformation matrix.

To facilitate the creation of simple geometric shapes using a drawing panel’s world coordinates,
the Open Source Physics library defines the DrawableShape and InteractiveShape classes in the
drawing package. These classes define convenience methods to create common drawable shapes
whose (x, y) location is the geometric center. The following code fragment shows how they are
used.

// frame is any container that accepts drawables
// a circle of radius 3 centered at the origin
DrawableShape circle = InteractiveShape.createCircle (0,0,3);
frame.addDrawable(circle);
// a rectangle of width 2 and height 1 centered at (3,4)
InteractiveShape rect = InteractiveShape.createRectangle (3,4,2,1);
rect .transform(new AffineTransform(2,1,0,1,0,0));
frame.addDrawable(rect);

Because DrawableShape and InteractiveShape classes are written using the Java 2D API, the
objects that they define are fundamentally different from the objects that use the awt API such
as the Circle class.

// a circle with a 10 pixel radius centered at the origin
Drawable circle = new Circle(0,0,10);
frame.addDrawable(circle);

The Open Source Physics shape classes can be manipulated using a wide variety of linear algebra-
based tools.

Exercise 17.3. Open Source Physics shape classes
Modify the Affine2DApp program so that it instantiates and transforms a rectangular DrawableShape.
Test your program by repeating Exercise 17.2.

17.2 Three-Dimensional Transformations

There are a number of APIs available for three-dimensional visualizations using Java. Although
Sun has developed the Java 3D package, this package is currently not included in the standard Java
runtime environment. The gl4java and jogl libraries are also popular because they are based
on the Open GL language. Because 3D graphics libraries might need to be installed on a client
computer and are in a state of active environment and because we want a three-dimensional visual-
ization framework designed for physics simulations, we have developed our own three-dimensional
visualization framework that relies only on the standard Java API. This section describes the
mathematics that forms the basis of all three-dimensional libraries.

The simplest rotation is a rotation around one of the coordinate axes with the center of rotation
at the origin. This transformation can be written using a 3 × 3 matrix acting on the coordinates

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 777

(x, y, z). For example, a rotation about the z axis can be written as:x′
y′
z′

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

x
y
z

 = Rz

x
y
z

 . (17.8)

The extension of homogeneous coordinates to three dimensions is straightforward. We add
a w-coordinate to the spatial coordinates in order to create a homogenous point (x, y, z, 1). This
point is transformed as:

x′
y′
z′
1

 =

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

0 0 0 1

x
y
z
1

 =
[
Rz dT

0 1

]
x
y
z
1

 . (17.9)

Although rotations about one of the coordinate axes are easy to derive and can be combined
using the rules of linear algebra to produce an arbitrary orientation, the general case of rotation
about the origin by an angle θ around an arbitrary axis r̂ can be constructed directly. The strategy
is to decompose the vector v into components that are parallel and perpendicular to the direction
r̂. The parallel part v‖ does not change while the perpendicular part v⊥ is a two-dimensional
rotation in a plane perpendicular to r̂. The parallel part is the projection of r̂ onto v,

v‖ = (v · r̂)r̂, (17.10)

and the perpendicular part is what remains of r̂ after we subtract the parallel part:

v⊥ = v − (v · r̂)r̂. (17.11)

To calculate the rotation of v⊥, we need two perpendicular basis vectors in the plane of rotation.
If we use v⊥ as the first basis vector, then we can take the cross product with r̂ to produce a vector
w that is guaranteed to be perpendicular to v⊥ and r̂:

w = r̂ × v⊥ = r̂ × v. (17.12)

The rotation of v⊥ is now calculated in terms of this new basis.

R(v⊥) = cos θ v⊥ + sin θ w. (17.13)

The final result is the sum of this rotated vector and the parallel part that does not change:

R(v) = R(v⊥) + v‖ (17.14a)
= cos θ v⊥ + sin θ w + v‖ (17.14b)
= cos θ [v − (v · r̂)r̂] + sin θ (r̂ × v) + (v · r̂)r̂ (17.14c)
= [1 − cos θ](v · r̂)r̂ + sin θ (r̂ × v) + cos θ v. (17.14d)

Equation (17.14d) is known as the Rodrigues formula and provides a way of constructing
rotation matrices in terms of the direction of rotation r̂ = (rx, ry, rz), the cosine of the rotation

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 778

angle c = cos θ, and the sine of the rotation angle s = sin θ. If we expand the vector products in
(17.14d), we obtain the matrix:

R =

 trxrx + c trxry − srz trxrz + sry

trxry + srz tryry + c tryrz − srx

trxrz − sry tryrz + srx trzrz + c

 , (17.15)

where t = 1 − cos θ. Homogeneous coordinates are transformed using[
R 0T

0 1

]
, (17.16)

where the R submatrix is given in (17.15). The Rotation3D class constructor (see Listing 17.2)
computes the rotation matrix. The direct method uses this matrix to transform a point. Note
that the point passed into this method as an argument is copied into a temporary vector and that
the point’s coordinates are then changed. You will define an inverse method that reverses this
operation in Exercise 17.5.

Listing 17.2: The Rotation3D class implements three-dimensional rotations using a matrix repre-
sentation.

package org.opensourcephysics.sip.ch17;
public class Rotation3D {

private double[][] mat = new double[4][4]; // the transformation matrix
public Rotation3D(double theta, double[] axis) {

double norm = Math.sqrt(axis[0]∗axis[0]+axis[1]∗axis[1]+axis[2]∗axis [2]);
double x = axis[0]/norm, y = axis[1]/norm, z = axis[2]/norm;
double c = Math.cos(theta), s = Math.sin(theta);
double t = 1−c;
// matrix elements not listed are zero
mat[0][0] = t∗x∗x+c;
mat[0][1] = t∗x∗y−s∗z;
mat[0][2] = t∗x∗y+s∗y;
mat[1][0] = t∗x∗y+s∗z;
mat[1][1] = t∗y∗y+c;
mat[1][2] = t∗y∗z−s∗x;
mat[2][0] = t∗x∗z−s∗y;
mat[2][1] = t∗y∗z+s∗x;
mat[2][2] = t∗z∗z+c;
mat [3][3] = 1;

}

public void direct(double[] point) {
int n = point.length;
double[] pt = new double[n];
System.arraycopy(point, 0, pt , 0, n);
for(int i = 0;i<n;i++) {

point[i] = 0;
for(int j = 0;j<n;j++) {

point[i] += mat[i][j]∗pt[j];

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 779

}
}

}
}

Exercise 17.4. Rodrigues formula
Show that a rotation about the z-axis is consistent with (17.14d) and (17.15). That is, define the
direction of rotation to be r̂ = (0, 0, 1) and show that both formulas give the same result and that
this result is consistent with a two-dimensional rotation in the xy plane. Write a short program
to test the Rotation3D class.

Exercise 17.5. Inverse
Consult a linear algebra book for formulas to calculate the inverse of a 3 × 3 matrix and define
an inverse method that multiplies a given point by the inverse of the rotation matrix. Although
it is slow and prone to round-off errors, Cramer’s rule works for a simple rotation matrix. It
should not, however, be used for serious computations. Write a short program to test the inverse
method. Show that the original vector is recovered if the inverse and direct methods are applied
in succession.

A projection transforms an object in a coordinate system of dimension d into another object
in a coordinate system less than d. The simplest projection is an orthographic parallel projection,
which maps an object onto a plane perpendicular to a coordinate axis. For example, if we choose
to project along the z-axis, the point (x, y, z) is mapped to the point (x, y) by dropping the third
coordinate. A line is projected by projecting the end points and then connecting the projected
values. A sphere with radius R is displayed by projecting the center and drawing a circle with the
sphere’s radius. Listing 17.3 uses these simple projections to visualize the structure of the methane
CH4 molecule.

Listing 17.3: The Methane class implements a visualization of the methane molecule CH4.
package org.opensourcephysics.sip.ch17;
import java.awt.∗;
import org.opensourcephysics.display.∗;

public class Methane implements Drawable {
static final double cos30 = Math.cos(Math.PI/6); //cosine of 30 degrees
static final double sin30 = Math.sin(Math.PI/6); //sine of 30 degrees
static final double h = Math.sqrt(1.0−4.0∗cos30∗cos30/9.0); // trapezoid height
double[][] atoms = new double[5][];
Circle circle = new Circle();
public Methane() {

// atom locations in 3D homogeneous coordinates
atoms[0] = new double[]{0, 0, 0, 1}; // C atom at origin
atoms[1] = new double[]{0, 0, 0.75∗h, 1}; // H atom on z axis
atoms[2] = new double[]{2.0∗cos30/3.0, 0, −0.25∗h, 1}; // H atom
atoms[3] = new double[]{−cos30/3.0, sin30, −0.25∗h, 1}; // H atom
atoms[4] = new double[]{−cos30/3.0, −sin30, −0.25∗h, 1}; // H atom

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 780

}

void transform(Rotation3D t) {
for(int i = 0, n = atoms.length;i<n;i++) {

t . direct (atoms[i]);
}

}

public void draw(DrawingPanel panel, Graphics g) {
g.setColor(Color.black);
int x0 = panel.xToPix(0);
int y0 = panel.yToPix(0);
for(int i = 0, n = atoms.length;i<n;i++) {

int xpix = panel.xToPix(atoms[i][0]);
int ypix = panel.yToPix(atoms[i][1]);
g.drawLine(x0, y0, xpix, ypix);

}
for(int i = 0, n = atoms.length;i<n;i++) {

circle .setXY(atoms[i][0], atoms[i][1]);
circle .draw(panel, g);

}
}

}

The carbon and hydrogen atom coordinates are given in the Methane constructor. These
coordinates are stored in a multidimensional array so that we can loop over the atoms in the draw
method. The carbon atom (the center of symmetry) is placed at the origin and a hydrogen atom
is placed above it along the z axis. The three remaining hydrogen atoms are placed so as to form
a tetrahedron with a H-H separation equal to unity. This orientation can be changed using the
transform method to rotate the coordinates. Note that the draw method draws lines from the
origin to each hydrogen atom’s coordinates and then draws circles at these coordinates.

Exercise 17.6. Methane
Determine the angle between two hydrogen bonds using the data in the Methane class.

The MethaneApp program uses the Rotation3D and Methane classes by rotating the methane
molecule about the origin in response to mouse actions. The handleMouseAction method stores
the current mouse position when the mouse is pressed. A Rotation3D object is created when the
mouse is dragged and the drag distance determines the angle of rotation. If the mouse is dragged
vertically, the molecule is rotated about the y axis, and if the mouse is dragged horizontally, the
molecule is rotated about the z axis. The direct transform is then applied to every atom in the
methane molecule.

Listing 17.4: The MethaneApp class instantiates a Methane object and rotates this object using
mouse actions.

package org.opensourcephysics.sip.ch17;
import java.awt.event.MouseEvent;
import javax.swing.JFrame;

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 781

import org.opensourcephysics.frames.∗;
import org.opensourcephysics.display.InteractiveMouseHandler;
import org.opensourcephysics.display.InteractivePanel;

public class MethaneApp implements InteractiveMouseHandler {
DisplayFrame frame = new DisplayFrame(”Methane”);
Methane methane = new Methane();
double mousex = 0, mousey = 0;
public MethaneApp() {

frame.addDrawable(methane);
frame.setPreferredMinMax(−1, 1, −1, 1);
frame.setInteractiveMouseHandler(this);
frame. setVisible (true);
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

}

public void handleMouseAction(InteractivePanel panel, MouseEvent evt) {
switch(panel.getMouseAction()) {
case InteractivePanel.MOUSE DRAGGED :

double dx = panel.getMouseX()−mousex;
double dy = panel.getMouseY()−mousey;
Rotation3D rotation = new Rotation3D(Math.sqrt(dx∗dx+dy∗dy), new double[]{dy,

0,
dx});

methane.transform(rotation);
mousex += dx;
mousey += dy;
panel.repaint ();
break;

case InteractivePanel.MOUSE PRESSED :
mousex = panel.getMouseX();
mousey = panel.getMouseY();
break;

}
}

public static void main(String[] args) {
new MethaneApp();

}
}

Exercise 17.7. Methane rotation
Modify the methane program by replacing the direct transformation with the inverse transfor-
mation. Run and compare this program to the original program. How did this change affect the
mouse actions? Why?

Exercise 17.8. Hidden surface removal
Modify the Methane class so that the carbon atom is drawn as a green circle and run the MethaneApp
program. Note that the carbon atom is hidden by hydrogen atoms with negative z values due to

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 782

the incorrect drawing order. Recode the Methane class so that the drawing order is determined by
the atom’s z coordinate. Ordering along the line of sight often is used in graphics programs for
hidden line and hidden surface removal.

17.3 Display EJS

The displayejs package contains a three-dimensional drawing framework that makes it easy to
create simple visualizations. In the spirit of object oriented programming, we will not study the
EJS implementation in detail, and will describe only its key concepts. The BoxEJS class creates
a simple three-dimensional visualization. Run the program and drag the mouse within the panel.
We need not concern ourselves with details such as hidden line removal, perspective, or rotation.
EJS hides these and many other details from the user.

Listing 17.5: The BoxEJSApp class creates a box within an EJS drawing panel.
package org.opensourcephysics.sip.ch17;
import java.awt.∗;
import javax.swing.∗;
import org.opensourcephysics.frames.∗;
import org.opensourcephysics.displayejs.∗;

public class BoxEJSApp {
public static void main(String[] args) {

// create a drawing frame and a drawing panel
EJSFrame frame = new EJSFrame(”EJS Demo”);
frame.setPreferredMinMax(−10, 10, −10, 10, −10, 10);
frame.setDecorationType(DrawingPanel3D.DECORATION AXES);
InteractiveElement block = new InteractiveBox();
block.setXYZ(0, 0, 0);
block.setSizeXYZ(6, 6, 3);
block.getStyle (). setFillPattern (Color.RED);
block.setResolution(Resolution.createDivisions (1.0)); // divide the block in subblocks
frame.addDrawable(block);
frame. setVisible (true);
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

}
}

The EJSFrame class behaves very much like its two-dimensional counterpart DisplayFrame.
Some methods, such as setPreferredMinMax have been extended by adding parameters for the
third dimension. New methods such as setDisplayMode and setDecorationType enable the
programmer to control the three-dimensional viewing perspective and axis types, respectively.
Three-dimensional interactive elements, such as InteractiveBox, InteractiveCylinder, and
InteractiveCircle, have position, size, and style properties that can be set. Just as in the
two-dimensional case, these objects are added to a display panel. The program must repaint this
panel if either the panel’s or the drawable object’s properties change.

Drawable objects in the displayejs package implement the InteractiveElement interface.
The BoxEJSApp program demonstrates that this interface provides an API for objects that have a

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 783

position and size and accept Style and Resolution objects to control their visual representation.
Interactive elements also can generate interaction events and can have one or more interaction
targets. Interaction events are action events that are generated within an object when the object
is accessed using a mouse. Interaction targets receive and process these events. Listing 17.6 creates
a particle and an arrow and responds to interaction events when these objects are moved. You can
move an interactive element by dragging it with the mouse. You may generate interaction events
at an arbitrary location within the three-dimensional viewing space, but you must first press the
<alt> (option on Mac OS X) key to disable the viewing space rotation. First pressing the <shift>
key enables you to zoom in and out.

Listing 17.6: The InteractionEJSApp class demonstrates how to respond to interaction events.
package org.opensourcephysics.sip.ch17;
import javax.swing.∗;
import org.opensourcephysics.displayejs.∗;
import org.opensourcephysics.frames.∗;

public class InteractionEJSApp implements InteractionListener {
InteractionEJSApp() {

EJSFrame frame = new EJSFrame(”EJS Interactions”);
frame.setPreferredMinMax(−0.25, 0.25, −0.25, 0.25, −0.25, 0.25);
frame.addListener(this); // send interactions FROM the panel to this app
InteractiveParticle particle = new InteractiveParticle();
particle .setEnabled(true); // enables interactions such as dragging
particle .addListener(this); // sends interactions FROM the particle to this app
frame.addDrawable(particle); // adds the particle to the panel
InteractiveArrow arrow = new InteractiveArrow();
arrow.setEnabled(true); // enables interactions such as dragging
arrow.addListener(this); // sends interactions FROM the arrow to this app
frame.addDrawable(arrow); // adds the arrow to the panel
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
frame. setVisible (true);

}

public void interactionPerformed(InteractionEvent evt) {
if (evt .getID()!=InteractionEvent.MOUSE PRESSED) {

return;
}
if (evt .getSource() instanceof InteractiveParticle) {

System.out.println(”A particle has been hit”);
} else if (evt .getSource() instanceof InteractiveArrow) {

if (evt .getTarget().getClass()==InteractionTargetElementSize.class) {
System.out.println(”An arrow’s head has been hit”);

} else {
System.out.println(”An arrow’s tail has been hit”);

}
}

}

static public void main(String args[]) {

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 784

new InteractionEJSApp();
}

}

Interactive elements can be grouped together and manipulated as a single object by creating
geometric shapes such as spheres, boxes, and arrows and adding them to a GroupDrawable. The
easiest way to do this is to subclass GroupDrawable and instantiate the shapes in the constructor.
Listing 17.7 shows an example.

Listing 17.7: The BarbellEJS creates a compound object by instantiating simpler shapes and
adding them to a GroupDrawable.

package org.opensourcephysics.sip.ch17;
import org.opensourcephysics.displayejs.∗;

public class BarbellEJS extends GroupDrawable {
public BarbellEJS() {

InteractiveCylinderSimple bar = new InteractiveCylinderSimple();
bar.setXYZ(0, 0, 5);
bar.setSizeXYZ(0, 0, 10);
bar.setRadius(0.2);
add(bar);
InteractiveElement sphere = new InteractiveSphere();
sphere.setXYZ(0, 0, −5);
sphere.setSizeXYZ(4, 4, 4);
add(sphere);
sphere = new InteractiveSphere();
sphere.setXYZ(0, 0, 5);
sphere.setSizeXYZ(4, 4, 4);
add(sphere);

}
}

Exercise 17.9. Group drawable
Write a small test program that instantiates and displays a Barbell. Describe the change in
rendering while dragging within the view. Why does the EJS author change the rendering?

The code package for this chapter includes an EJS version of the methane molecule. It is not
listed here because of its length. As in the previous example, an EJS GroupDrawable is used to
define a Methane class. This model is instantiated and added to a EJSFrame in the MethaneEJSApp
class.

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 785

17.4 Dynamics

The dynamical behavior of a rigid body is determined by

dP
dt

= F (17.17a)

dL
dt

= N, (17.17b)

where the rate of change of the total linear momentum P and total angular momentum L about
a point O is determined by the total force F on the body and the total torque N about O. These
momenta are expressed in terms of the translational V and rotational velocity ω by

P = MV (17.18a)
L = Iω, (17.18b)

where M is the mass and I is the moment of inertia tensor. For an unconstrained body, the point
O is usually taken to be the center of mass. For a constrained body, such as a spinning top, the
point O is usually taken to be the point of support.

Although the translational and rotational equations of motion appear similar, the fact that the
inertia tensor is not always constant with respect to axes fixed in space complicates the analysis.
To use a constant inertia tensor, we must describe the motion using a non-inertial reference frame
that is fixed in the body. Because we are free to orient the axes within the body, we choose axes in
which the moment of inertia tensor is diagonal. These axes are referred to as the body’s principal
axes and are easy to determine for symmetrical objects. The diagonal elements of the moment of
inertia tensor are calculated using the volume integrals

I1 =
∫

V

ρ(y2 + z2) dV (17.19a)

I2 =
∫

V

ρ(z2 + x2) dV (17.19b)

I3 =
∫

V

ρ(x2 + y2) dV, (17.19c)

where ρ is the mass density. The off-diagonal elements are zero.
Given that the general relation between the derivative in the space frame to the derivative in

the body frame is (dL
dt

)
space

=
(dL

dt

)
body

+ ω × L, (17.20)

it is easy to show that the rotational equation of motion in the body frame can be written as:

dL
dt

+ ω × (Iω) = N. (17.21)

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 786

Equation (17.21) is Euler’s equation for the motion of a rigid body. It may be written in component
form as

I1ω̇1 + (I3 − I2)ω3ω2 = N1 (17.22a)
I2ω̇2 + (I1 − I3)ω1ω3 = N2 (17.22b)
I3ω̇3 + (I2 − I1)ω2ω1 = N3. (17.22c)

A complete description of a rigid body in space requires three angular orientation variables
as well as three angular velocity variables. The orientation often is given in terms of the Euler
angles ψ, θ, and φ. These angles specify the orientation as a series of three independent rotations
about pre-chosen axes and must be applied in exactly the order given because the rotation matrices
do not commute. To use these angles as differential equation state variables, we must be able to
calculate their rate as a function of the body-frame angular velocity in (17.22). The expression for
the angular velocity in the body frame in terms of the Euler angles is (see Goldstein)ω1

ω2

ω3

 =

sin θ sinψ cos ψ 0
sin θ cos ψ − sinψ 0

cos θ 0 1

φ̇

θ̇

ψ̇

 . (17.23)

Unfortunately, the matrix in (17.23) is singular when sin θ = 0. Because we must invert the above
matrix to solve for the rate of the Euler angles, the differential equations become unstable whenever
θ approaches 0 or π. A better approach for numerical computation is to abandon Euler angles and
to use quaternions.

17.5 Quaternion Arithmetic

The rotation of an arbitrary two-dimensional vector A = axx̂ + ay ŷ by an angle θ can be reformu-
lated using complex numbers as

a′ = aeiθ = eiθ/2aeiθ/2, (17.24)

where the vector A is expressed as a complex number a = ax + iay. The real and imaginary com-
ponents corresponding to the vector components. This idea can be extended to three dimensions
using quaternions. A quaternion can be represented in terms of real and hyper-complex numbers
i, j, and k as

q̂ = q0 + iq1 + jq2 + kq3 = (q0, q1, q2, q3), (17.25)

where the hyper-complex numbers obey Hamilton’s rules

i2 = j2 = k2 = ijk = −1. (17.26)

Like imaginary numbers, the quaternion conjugate is defined as

q̂∗ = q0 − iq1 − jq2 − kq3 = (q0,−q1,−q2,−q3). (17.27)

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 787

Unlike imaginary numbers, quaternion multiplication does not commute and obeys the rules:

ij = k, jk = i, ki = j, ji = −k, kj = −1, ik = −j. (17.28)

Although it would be a mistake to identify hyper-complex numbers with unit vectors in three-
dimensional space (just as it would be a mistake to identify the imaginary number i with the y
direction in a two-dimensional space), it is convenient to think of a quaternion as the sum of a
scalar q0 and a vector q

q̂ = q0 + q = (q0,q). (17.29)

The quaternion is said to be pure if the scalar part is zero.
By using the above definitions, the product of two quaternions p̂ and q̂ can be shown to be

p̂q̂ = (q0,q)(p0,p) = q0p0 − q · p + q0p + p0q + p × q. (17.30)

Note that except for the additional cross product term, quaternion multiplication is similar to com-
plex multiplication, (a0, a1)(b0, b1) = (a0b0−a1b1, a1b0 + b1a0). The norm (length) of a quaternion
is defined to be |q̂q̂∗| = q0q0 + q1q1 + q2q2 + q3q3.

Exercise 17.10. Quaternion multiplication
Show that Hamilton’s rules for hyper-complex numbers in (17.26) lead to (17.30).

Euler has shown that the most general change of a rigid body with one point fixed is a rotation
about a fixed axis. Quaternions provide an elegant representation of both the rotation angle and
the axis orientation. It can be shown (see Shoemake) that a rotation through an angle θ about an
axis with direction cosines (u1, u2, u3) can be represented as a unit quaternion with components

q̂ = cos
θ

2
+ (iu1 + ju2 + ku3) sin

θ

2
. (17.31)

To stress the analogy with the complex exponential eiθ = cos θ + i sin θ, some textbooks go so far
as to represent this rotation through θ about the axes u using exponential notation q̂ = euθ/2.

Given a unit quaternion q̂ that represents a rotation, how do we apply this rotation to an
arbitrary vector A? If we define a pure quaternion â = (0, ax, ay, az), it can be shown that

â′ = q̂âq̂∗, (17.32)

where the resulting quaternion â′ = (0, a′
x, a′

y, a′
z) contains the components of the rotated vector

A′ (see Rapaport). Note the similarity to (17.24) if the quaternion is represented using exponential
notation.

Exercise 17.11. Quaternion rotation

a. Use the properties of the direction cosines to show that (17.31) defines a quaternion of unit
length.

b. Show that the length of the vector A does not change when using (17.32).

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 788

Bodies can be oriented using any representation of a rotation including quaternions, Euler an-
gles, and rotation matrices. Because the quaternion representation does not involve trigonometric
functions, it is very efficient for computing rigid body dynamics, and we prefer this representation.
To make it easy to create other representations, EJS defines a Transformation interface. This in-
terface is defined in the EJS display package and and a concrete implementation based on rotation
matrices is described in Appendix A. A quaternion implementation is similar and is available in
EJS. Listing 17.8 shows how the quaternion implementation is used to rotate a BoxWithArrows.
Because BoxWithArrows is similar to Listing 17.7 it is not shown here.

Listing 17.8: A class that tests the quaternion representation of rotations.
package org.opensourcephysics.sip.ch17;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.displayejs.∗;
import org.opensourcephysics.displayejs.utils .∗;
import org.opensourcephysics.frames.∗;

public class QuaternionApp extends AbstractCalculation {
EJSFrame frame = new EJSFrame(”Quaternion Rotations”);
QuaternionRotation transformation = new QuaternionRotation(1, 0, 0, 0);
BoxWithArrows box = new BoxWithArrows();
public QuaternionApp() {

frame.setDecorationType(DrawingPanel3D.DECORATION AXES);
frame.setPreferredMinMax(−6, 6, −6, 6, −6, 6);
box.setTransformation(transformation);
frame.addDrawable(box);
frame. setVisible (true);

}

public void calculate() {
double q0 = control.getDouble(”q0”);
double q1 = control.getDouble(”q1”);
double q2 = control.getDouble(”q2”);
double q3 = control.getDouble(”q3”);
transformation.setCoordinates(q0, q1, q2, q3);
box.setTransformation(transformation);

}

public void reset() {
control .clearMessages();
control .setValue(”q0”, 1);
control .setValue(”q1” , 0); // initial orientation is along x axis
control .setValue(”q2”, 0);
control .setValue(”q3”, 0);
calculate ();

}

public static void main(String[] args) {
CalculationControl.createApp(new QuaternionApp());

}

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 789

}

Exercise 17.12. Quaternion representation of rotations

a. Compile and run the QuaternionApp target class. Find and then test a quaternion that orients
the long side of the box at 45◦ in the xy plane. Repeat for the zy plane.

b. Use a quaternion to orient the long axis of the box along an axis in the (1, 2, 1) direction.

c. What happens if the quaternion does not have unit norm?

17.6 Quaternion equations of motion

Because we often will transform torque and other vectors to and from the rotating object’s body
frame, we require the transformation matrix from the space frame to the body frame using
quaternions. The derivation is straightforward. We represent a rotation using a unit quater-
nion (q0, q1, q2, q3), carry out (17.32) using (17.30), and express the result in matrix form. The
resulting rotation matrix is

R = 2

 1
2 − q2

2 − q2
3 q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3
1
2 − q2

1 − q2
3 q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1
1
2 − q2

1 − q2
2

 . (17.33)

This matrix is equal to the rotation matrix derived from the Rodrigues formula (17.14d).
The angular velocity in the body frame can be written as ˙̂q(t) = 1

2 ω̂(t)q̂(t), where ω̂ is a pure
quaternion (0, ω1, ω2, ω3). The derivation is as follows. The time dependence of a vector r can be
expressed as a transformation of its initial value r0 as

r̂(t) = q̂(t)r̂0q̂
∗(t). (17.34)

If we differentiate r̂(t) with respect to time, we have

˙̂r = ˙̂qr̂0q̂
∗ + q̂r̂0

˙̂q
∗
, (17.35)

where we have dropped the explicit time dependence of q̂. We then substitute r̂0 = q̂∗r̂q̂ and obtain

˙̂r = ˙̂qq̂∗r̂ + r̂q̂ ˙̂q
∗

= ˙̂qq̂∗r̂ − r̂ ˙̂qq̂∗, (17.36)

where we have used the fact q̂q̂∗ = 1. The only part of the r̂ and ˙̂qq̂∗ product that does not
commute is the vector cross product. The scalar part commutes and is zero. If we denote the pure
(vector) part of the quaternion ˙̂qq̂∗ by u, we find

ṙ = u × r − r × u = 2u × r. (17.37)

Because ṙ = ω × r for rotational motion, we obtain

ω = 2u. (17.38)

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 790

This result can be expressed using components by expressing u as
q̇0

q̇1

q̇2

q̇3

 =
1
2
QT

ω1

ω2

ω3

0

 , (17.39)

or
ω1

ω2

ω3

0

 = 2Q

q̇0

q̇1

q̇2

q̇3

 , (17.40)

where

Q =

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

q0 q1 q2 q3

 . (17.41)

Note that because Q is orthogonal, QTQ = 1.
Finally, Euler’s equation of motion (17.22) must be expressed using quaternion acceleration.

If we start with

d

dt
q̂∗ ˙̂q = ˙̂q

∗ ˙̂q + q̂∗¨̂q, (17.42)

multiply by q̂ and rearrange the terms, we obtain

¨̂q = q̂(
d

dt
q̂∗ ˙̂q − ˙̂q

∗ ˙̂q). (17.43)

Equation (17.43) can be written in matrix form as
q̈0

q̈1

q̈2

q̈3

 =
1
2
QT

ω̇1

ω̇2

ω̇3

−2Σq̇2
m

 . (17.44)

The dynamical behavior of a rigid body can now be expressed in terms of a quaternion state
vector (q0, q̇0, q1, q̇1, q2, q̇2, q3, q̇3, t). The following steps summarize the algorithm for computing
the rate for this state:

i. Use the state vector to compute the angular velocity (ω1, ω2, ω3) in the body frame using
(17.40);

ii. Project the external torques onto the body frame and compute ω̇ using Euler’s equation
(17.22);

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 791

iii. Compute the quaternion acceleration using (17.44).

The quaternion acceleration is the rate for the quaternion velocity in a differential equation solver.
This recipe is implemented in the RigidBody class shown in Listing 17.9.

Listing 17.9: The RigidBody class solves Euler’s equation of motion for a rotating rigid body using
quaternions.

package org.opensourcephysics.sip.ch17;
import org.opensourcephysics.displayejs.utils .∗;
import org.opensourcephysics.numerics.∗;

public class RigidBody implements ODE {
QuaternionRotation rotation;
double[] state = new double[9];
ODESolver solver;
double[] orientation = new double[3];
double[] omegaBody = new double[3]; // body frame omega
double[] omegaSpace = new double[3]; // space frame omega
double[] angularMomentumBody = new double[3]; // body frame angular momentum
double[] angularMomentumSpace = new double[3]; // space frame angular momentum
double I1 = 1, I2 = 4, I3 = 4; // principal moments of inertia
double a1 = 0, a2 = 0, a3 = 0; // angular acceleration in the body frame
double t1 = 0, t2 = 0, t3 = 0; // torque in the body frame
public RigidBody(double[] q) {

state [0] = q [0];
state [2] = q [1];
state [4] = q [2];
state [6] = q [3];
rotation = new QuaternionRotation(q[0], q[1], q [2], q [3]);
solver = new RK45MultiStep(this);

}

QuaternionRotation getQuaternionRotation() {
rotation .setCoordinates(state [0], state [2], state [4], state [6]);
return rotation;

}

void setBodyOmegaFromSpaceOmega(double[] omega) {
RigidBodyUtil.spaceToBody(state, omega);
setBodyFrameOmega(omega);

}

void setBodyFrameOmega(double[] omega) {
// use components for clarity
double q0 = state[0], q1 = state [2], q2 = state [4], q3 = state [6];
double wx = omega[0];
double wy = omega[1];
double wz = omega[2];
state[1] = 0.5∗(−q1∗wx−q2∗wy−q3∗wz); // dq0/dt

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 792

state [3] = 0.5∗(q0∗wx−q3∗wy+q2∗wz); // dq1/dt
state [5] = 0.5∗(q3∗wx+q0∗wy−q1∗wz); // dq2/dt
state[7] = 0.5∗(−q2∗wx+q1∗wy+q0∗wz); // dq3/dt
updateVectors();

}

void setInertia(double[] inertia) {
I1 = inertia [0];
I2 = inertia [1];
I3 = inertia [2];
updateVectors();

}

void setOrientation(double[] q) {
state [0] = q [0];
state [2] = q [1];
state [4] = q [2];
state [6] = q [3];
RigidBodyUtil.normalize(state);
rotation .setCoordinates(state [0], state [2], state [4], state [6]);

}

public double[] getSpaceFrameOmega() {
System.arraycopy(omegaBody, 0, omegaSpace, 0, 3);
RigidBodyUtil.bodyToSpace(state, omegaSpace);
return omegaSpace;

}

double[] getZOrientation() {
orientation [0] = 0;
orientation [1] = 0;
orientation [2] = 1;
RigidBodyUtil.bodyToSpace(state, orientation);
return orientation;

}

public double[] getSpaceFrameAngularMomentum() {
System.arraycopy(angularMomentumBody, 0, angularMomentumSpace, 0, 3);
RigidBodyUtil.bodyToSpace(state, angularMomentumSpace);
return angularMomentumSpace;

}

void updateVectors() {
double q0 = state[0], q1 = state [2], q2 = state [4], q3 = state [6];
omegaBody[0] = 2∗(−q1∗state[1]+q0∗state[3]+q3∗state[5]−q2∗state[7]);
omegaBody[1] = 2∗(−q2∗state[1]−q3∗state[3]+q0∗state[5]+q1∗state[7]);
omegaBody[2] = 2∗(−q3∗state[1]+q2∗state[3]−q1∗state[5]+q0∗state[7]);
angularMomentumBody[0] = I1∗omegaBody[0];
angularMomentumBody[1] = I2∗omegaBody[1];
angularMomentumBody[2] = I3∗omegaBody[2];

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 793

}

public void advanceTime() {
solver .step ();
RigidBodyUtil.normalize(state);
updateVectors();

}

public double[] getState() {
return state;

}

public void getRate(double[] state, double[] rate) {
computeBodyFrameAcceleration(state);
double sum = 0;
for(int i = 1;i<9;i += 2) { // sum the q−dot values

sum += state[i]∗state[i];
}
sum = −2.0∗sum;
// use q components for clarity
double q0 = state[0], q1 = state [2], q2 = state [4], q3 = state [6];
rate [0] = state [1];
rate[1] = 0.5∗(−q1∗a1−q2∗a2−q3∗a3+q0∗sum);
rate [2] = state [3];
rate [3] = 0.5∗(q0∗a1−q3∗a2+q2∗a3+q1∗sum);
rate [4] = state [5];
rate [5] = 0.5∗(q3∗a1+q0∗a2−q1∗a3+q2∗sum);
rate [6] = state [7];
rate[7] = 0.5∗(−q2∗a1+q1∗a2+q0∗a3+q3∗sum);
rate [8] = 1.0; // time rate

}

void computeBodyFrameTorque(double[] state) {
t1 = t2 = t3 = 0;

}

void computeBodyFrameAcceleration(double[] state) {
// use components for clarity
double q0 = state[0], q1 = state [2], q2 = state [4], q3 = state [6];
double wx = 2∗(−q1∗state[1]+q0∗state[3]+q3∗state[5]−q2∗state[7]);
double wy = 2∗(−q2∗state[1]−q3∗state[3]+q0∗state[5]+q1∗state[7]);
double wz = 2∗(−q3∗state[1]+q2∗state[3]−q1∗state[5]+q0∗state[7]);
computeBodyFrameTorque(state);
a1 = (t1−(I3−I2)∗wz∗wy)/I1; // Euler’s equations of motion
a2 = (t2−(I1−I3)∗wx∗wz)/I2;
a3 = (t3−(I2−I1)∗wy∗wx)/I3;

}
}

The RigidBody class makes use of the RigidBodyUtil utility class in the ch17 package to

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 794

handle quaternion normalization and transformations between space and body frames. The class
is not listed because it is uninteresting. The static spaceToBody method multiples the given vector
by (17.33) and the static bodyToSpace method multiples the given vector by the inverse.

17.7 Free rotation

We begin by visualizing the torque-free rotation of a body about its center of mass. In general,
this simple rigid body problem does not have an analytical solution, although the special case in
which the body possess an axis of symmetry does. We use this special case to test the validity of
our numerical solutions in Exercises 17.13 and 17.14.

The RigidBodyApp program animates torque-free rotation by extending AbstractSimulation
and implementing the doStep method. Because this class is similar to other concrete animations,
we do not list it here. The program uses the RigidBodySpaceView class shown in Listing 17.10 to
display the body, the angular momentum vector, and the angular velocity vector. This program
uses the EJSFrame class and drawable elements from the displayejs package to produce a three-
dimensional visualization.

Listing 17.10: The RigidBodySpaceView class displays the rotation of a rigid body as seen in the
space frame.

package org.opensourcephysics.sip.ch17;
import org.opensourcephysics.displayejs.∗;
import org.opensourcephysics.frames.∗;

public class RigidBodySpaceView {
InteractiveSphere ellipsoid = new InteractiveSphere();
InteractiveArrow omega = new InteractiveArrow();
InteractiveArrow angularMomentum = new InteractiveArrow();
InteractiveTrace omegaTrace = new InteractiveTrace();
InteractiveTrace momentumTrace = new InteractiveTrace();
EJSFrame frame = new EJSFrame(”Space View”);
RigidBody rigidBody;
double scale = 1;
public RigidBodySpaceView(RigidBody rigidBody) {

rigidBody = rigidBody;
frame.setSize (600, 600);
frame.setDecorationType(DrawingPanel3D.DECORATION AXES);
omega.getStyle(). setFillPattern (java.awt.Color.RED);
omegaTrace.getStyle().setEdgeColor(java.awt.Color.RED);
angularMomentum.getStyle().setFillPattern(java.awt.Color.GREEN);
momentumTrace.getStyle().setEdgeColor(java.awt.Color.GREEN);
ellipsoid .setTransformation(rigidBody.getQuaternionRotation());
frame.addDrawable(ellipsoid);
frame.addDrawable(omega);
frame.addDrawable(angularMomentum);
frame.addDrawable(omegaTrace);
frame.addDrawable(momentumTrace);

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 795

frame.repaint ();
frame. setVisible (true);

}

void initialize () {
double dx = 1/Math.sqrt(rigidBody.I1); // dimension of ellipsoid is inverse to inertia
double dy = 1/Math.sqrt(rigidBody.I2);
double dz = 1/Math.sqrt(rigidBody.I3);
ellipsoid .setSizeXYZ(dx, dy, dz);
scale = Math.max(Math.max(2∗dx, 2∗dy), 2∗dz); // bounding dimension
frame.setPreferredMinMax(−scale, scale, −scale, scale, −scale , scale);
omegaTrace.clear();
momentumTrace.clear();
update();

}

void update() {
ellipsoid .setTransformation(rigidBody.getQuaternionRotation());
double[] vec = rigidBody.getSpaceFrameOmega();
double norm = Math.sqrt(vec[0]∗vec[0]+vec[1]∗vec[1]+vec[2]∗vec[2]);
norm = Math.max(norm, 1.0e−6);
double s = 1.25∗scale/norm;
omega.setSizeXYZ(s∗vec[0], s∗vec [1], s∗vec [2]);
omegaTrace.addPoint(s∗vec[0], s∗vec [1], s∗vec [2]);
vec = rigidBody.getSpaceFrameAngularMomentum();
norm = Math.sqrt(vec[0]∗vec[0]+vec[1]∗vec[1]+vec[2]∗vec[2]);
norm = Math.max(norm, 1.0e−6);
s = 1.25∗scale/norm;
angularMomentum.setSizeXYZ(s∗vec[0], s∗vec[1], s∗vec[2]);
momentumTrace.addPoint(s∗vec[0], s∗vec[1], s∗vec[2]);
frame.repaint ();

}
}

The RigidBodySpaceView class displays the physics of rigid body motion by retrieving data
that has been computed in RigidBody. This data is used to set the position and orientation of
various three-dimensional objects. The rotating body is represented using an inertia (or Poinsot)
ellipsoid whose principal axes are in the ratios I

−1/2
1 : I

−1/2
2 : I

−1/2
3 (see Symon). These el-

lipsoid diameters give a visual representation of a uniform mass distribution that produces the
given principal moments. The angular momentum and angular velocity vectors are retrieved from
RigidBody and used to set the direction of the corresponding arrows. In addition, the paths of
these two arrows through space are recorded by adding points to two InteractiveTrace objects.

Problem 17.13. Torque-free rotation about a principal axes

a. Add a second visualization showing the motion as viewed in the non-inertial body frame.

b. If the angular velocity vector coincides with a body’s principal axis, the angular momentum and
the angular velocity coincide. The body should then rotate steadily about the corresponding

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 796

principal axis because the net torque is zero and the angular momentum is constant. Does the
simulation show this result for all three axes if the moments of inertia are unequal? Perturb the
angular velocity. Are rotations about the three principal axes stable or unstable? Check each
axis. Repeat this simulation with a different set of moments of inertia.

Problem 17.14. Symmetric body torque-free rotation

a. Add a plot showing the time dependence of the angular velocity components ω1(t), ω2(t), and
ω3(t) to the RigidBodyApp class.

b. Verify that ω3(t) is constant if I1 = I2 = Is.

c. Verify that ω1(t) and ω2(t) exhibit an out of phase sinusoidal dependence if I1 = I2.

d. If α denotes the angle between the body-frame 3̂-axis and the axis of rotation, verify that

Ω =
(I3

Is
− 1

)
ω cos α, (17.45)

where Ω is the angular velocity of the ω vector’s precession about the body frame’s 3̂-axis.

Problem 17.15. Free rotation of a thin cylindrical rod
Model the free rotation of a thin cylindrical rod. Show that ω precesses about the axis of the rod.
Why does ω precess? Why does L not precess? How is the frequency of precession related to the
moments of inertia of the rod?

17.8 Motion of a spinning top

Object oriented programming makes it easy to add a torque to a RigidBody. All that needs to
be done is to override the computeBodyFrameTorque method in the superclass. A spinning top
is a body that is free to rotate about a pivot. Because the pivot point is not the center of mass,
there is an external torque due to the weight of the top. We must compute the torque’s vector
components in the body frame to use Euler’s equation of motion.

The SpinningTop shown in Listing 17.11 models a symmetric body rotating about the axis of
symmetry. The axis of symmetry is taken to be the 3̂-axis. If we assume that the center of mass
lies a unit distance from the pivot along the 3̂-axis, then the torque is computed by taking the cross
project after projecting the force into the body frame τ = 3̂ × Fbody. Listing 17.11 assumes that
the center of mass is one unit from the pivot and is acted on by an external force in the z-direction
(0, 0, 1).

Listing 17.11: The SpinningTop class models a symmetric body rotating about the axis of sym-
metry.

package org.opensourcephysics.sip.ch17;
public class SpinningTop extends RigidBody {

public SpinningTop(double[] q) {

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 797

super(q);
}

void computeBodyFrameTorque(double[] state) {
double[] vec = new double[]{0, 0, 1}; // external force in space frame
RigidBodyUtil.spaceToBody(state, vec);
t1 = −vec[1];
t2 = vec [0];
t3 = 0;

}
}

The visualization of a spinning top can take many forms. Listing 17.12 presets the spinning
top model as a table-top gyroscope using cylinders and arrows. The shaft of the gyroscope is
the body’s axis of symmetry (the body frame’s 3̂-axis) and draws a trace showing the gyroscope’s
precession. Note that the spinning about the 3̂-axis) might appear to be incorrect if the animation
step is too large. This aliasing effect often is seen in Hollywood movies showing carriage wheel
spokes rotating backward to the direction of travel.

Listing 17.12: The SpinningTopSpaceView class models a symmetric body rotating about the axis
of symmetry.

package org.opensourcephysics.sip.ch17;
import org.opensourcephysics.frames.∗;
import org.opensourcephysics.displayejs.∗;
import org.opensourcephysics.displayejs.InteractiveArrow;
import org.opensourcephysics.displayejs.utils .∗;

public class SpinningTopSpaceView {
AbstractInteractiveTile shaft = new InteractiveCylinder();
AbstractInteractiveTile disk = new InteractiveCylinder();
AbstractInteractiveTile base = new InteractiveCylinder();
AbstractInteractiveTile post = new InteractiveCylinder();
InteractiveArrow omega = new InteractiveArrow();
InteractiveArrow angularMomentum = new InteractiveArrow();
InteractiveArrow orientation = new InteractiveArrow();
InteractiveTrace orientationTrace = new InteractiveTrace();
EJSFrame frame = new EJSFrame(”Space View”);
SpinningTop rigidBody;
double scale = 1;
public SpinningTopSpaceView(SpinningTop rigidBody) {

rigidBody = rigidBody;
frame.setSize (600, 600);
// panel.setDisplayMode(DrawingPanel3D.DISPLAY NO PERSPECTIVE);
frame.setDecorationType(DrawingPanel3D.DECORATION AXES);
omega.getStyle(). setFillPattern (java.awt.Color.YELLOW);
angularMomentum.getStyle().setFillPattern(java.awt.Color.GREEN);
orientation . getStyle (). setFillPattern (java.awt.Color.RED);
orientationTrace. getStyle (). setEdgeColor(java.awt.Color.RED);
base.setSizeXYZ(2, 2, 0.15);

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 798

base.setResolution(new Resolution(4, 12, 1));
base.getStyle (). setFillPattern (java.awt.Color.RED);
base.setZ(−3);
post.setSizeXYZ (0.2, 0.2, 3);
post.setResolution(new Resolution(2, 10, 15));
post.setZ(−1.5); // shift by half the length
post.getStyle (). setFillPattern (java.awt.Color.RED);
shaft .setSizeXYZ (0.2, 0.2, 3);
shaft .setOrigin (0, 0, 0, false);
shaft .setResolution(new Resolution(1, 10, 15));
disk.setSizeXYZ (1.5, 1.5, 0.25);
disk.setOrigin (0, 0, −2, false);
disk.setResolution(new Resolution(4, 12, 1));
shaft .setTransformation(rigidBody.getQuaternionRotation());
frame.addDrawable(base);
frame.addDrawable(post);
frame.addDrawable(shaft);
frame.addDrawable(disk);
frame.addDrawable(orientation);
frame.addDrawable(omega);
frame.addDrawable(angularMomentum);
frame.addDrawable(orientationTrace);

}

void initialize () {
double dx = 1/Math.sqrt(rigidBody.I1); // dimension of ellipsoid is inverse to inertia
double dy = 1/Math.sqrt(rigidBody.I2);
double dz = 1/Math.sqrt(rigidBody.I3);
scale = Math.max(Math.max(4∗dx, 4∗dy), 4∗dz); // bounding dimension
frame.setPreferredMinMax(−scale, scale, −scale, scale, −scale , scale);
orientationTrace. clear ();
update();

}

void update() {
QuaternionRotation transformation = rigidBody.getQuaternionRotation();
shaft .setTransformation(transformation);
disk.setTransformation(transformation);
double[] vec = rigidBody.getSpaceFrameOmega();
double norm = Math.sqrt(vec[0]∗vec[0]+vec[1]∗vec[1]+vec[2]∗vec[2]);
norm = Math.max(norm, 1.0e−6);
double s = 1.5∗scale/norm;
omega.setSizeXYZ(s∗vec[0], s∗vec [1], s∗vec [2]);
vec = rigidBody.getSpaceFrameAngularMomentum();
norm = Math.sqrt(vec[0]∗vec[0]+vec[1]∗vec[1]+vec[2]∗vec[2]);
norm = Math.max(norm, 1.0e−6);
s = 1.5∗scale/norm;
angularMomentum.setSizeXYZ(s∗vec[0], s∗vec[1], s∗vec[2]);
s = 4;
vec = rigidBody.getZOrientation();

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 799

orientation .setSizeXYZ(s∗vec[0], s∗vec [1], s∗vec [2]);
orientationTrace.addPoint(s∗vec [0], s∗vec [1], s∗vec [2]);
frame.repaint ();

}
}

Problem 17.16. Uniform precession
If the angular velocity about the axis of symmetry is large, there are two two possible rates of
steady precession. These precession rates φ̇ are approximately

φ̇ ≈ I3

Is

w3

cos θ0
, (17.46)

and

φ̇ ≈ mgl

I3ω3
, (17.47)

where θ0 is the angle between the vertical and the axis of gyroscope and mgl is the weight times
the distance from the pivot to the center of mass. Demonstrate both precession rates.

Appendix 17A: Matrix Transformations

Transformations, such as rotations, can be implemented using matrices, Euler angles, or analytic
functions. All that is required is that a transformation provide a rule for mapping points in a
domain to points in a range. Some, but not all, transformations have an inverse that reverses this
operation. To abstract the concept of a transformation, EJS defines the Transformation interface.
This interface contains two methods that define the mapping and a third method that creates a
new transformation that is an exact duplicate of the existing transformation. Objects that can
make copies of themselves implement the clone interface and are said to be cloneable.

package org.opensourcephysics.displayejs;

public interface Transformation extends Cloneable {
public void direct (double[] point);
public void inverse (double[] point) throws UnsupportedOperationException;
public Object clone();

}

The Affine3DMatrix matrix class shown in Listing 17.13 implements the Transformation
interface. Because rotations are very common, the class implements the Rotation convenience
method to create a matrix using (17.15). The direct and inverse methods use the matrix and
the inverse matrix to transform a point, respectively. Because a client may not need the inverse,
because the inverse may not exist, and because an inverse is expensive to compute, we do not
compute this matrix until it is needed, in which case the inverse is computed only once. Note that
the inverse is calculated using a lower upper (LU) matrix decomposition. LU decomposition comes

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 800

from the realization that a nonsingular square matrix A can be decomposed into a product of two
matrices L and U whose components below and above the diagonal are zero, respectively.

A = LU (17.48)

We will not describe this technique further here, but you are encouraged to test that the routine in
the numerics package works and to study the algorithm further in Numerical Recipes or in other
numeral methods texts.

Listing 17.13: The Affine3DMatrix class implements the Transformation interface using a matrix
representation for the affine transformations.

package org.opensourcephysics.sip.ch17;
import org.opensourcephysics.numerics.∗;

public class Affine3DMatrix implements Transformation {
private double[][] matrix = new double[4][4]; // the transformation matrix
private double[][] inverse = null; // the inverse transformation matrix if it exsits
private boolean inverted = false; // true if the inverse has been computed
public Affine3DMatrix(double[][] matrix) {

if (matrix==null) { // identity matrix
this.matrix [0][0] = this.matrix [1][1] = this.matrix [2][2] = this.matrix [3][3] = 1;
return;

}
for(int i = 0;i<matrix.length;i++) { // loop over the rows

System.arraycopy(matrix[i], 0, this.matrix , 0, matrix[i]. length);
}

}

public static Affine3DMatrix Rotation(double theta, double[] axis) {
Affine3DMatrix at = new Affine3DMatrix(null);
double[][] atMatrix = at.matrix;
double norm = Math.sqrt(axis[0]∗axis[0]+axis[1]∗axis[1]+axis[2]∗axis [2]);
double x = axis[0]/norm, y = axis[1]/norm, z = axis[2]/norm;
double c = Math.cos(theta), s = Math.sin(theta);
double t = 1−c;
// matrix elements not listed are zero
atMatrix[0][0] = t∗x∗x+c;
atMatrix[0][1] = t∗x∗y−s∗z;
atMatrix[0][2] = t∗x∗y+s∗y;
atMatrix[1][0] = t∗x∗y+s∗z;
atMatrix[1][1] = t∗y∗y+c;
atMatrix[1][2] = t∗y∗z−s∗x;
atMatrix[2][0] = t∗x∗z−s∗y;
atMatrix[2][1] = t∗y∗z+s∗x;
atMatrix[2][2] = t∗z∗z+c;
atMatrix [3][3] = 1;
return at;

}

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 801

public static Affine3DMatrix Translation(double dx, double dy, double dz) {
Affine3DMatrix at = new Affine3DMatrix(null);
double[][] m = at.matrix;
// matrix elements not listed are zero
m[0][0] = 1;
m[0][3] = dx;
m[1][1] = 1;
m[1][3] = dy;
m[2][2] = 1;
m[2][3] = dz;
m[3][3] = 1;
return at;

}

public Object clone() {
return new Affine3DMatrix(matrix);

}

public void direct(double[] point) {
int n = point.length;
double[] tempPoint = new double[n];
System.arraycopy(point, 0, tempPoint, 0, n);
for(int i = 0;i<n;i++) {

point[i] = 0;
for(int j = 0;j<n;j++) {

point[i] += matrix[i][j]∗tempPoint[j];
}

}
}

public void inverse(double[] point) throws UnsupportedOperationException {
if (! inverted) {

calcInverse (); // computes the inverse using LU decompostion
}
if (inverse==null) { // inverse does not exist

throw new UnsupportedOperationException(”The inverse matrix does not exist.”);
}
int n = point.length;
double[] pt = new double[n];
System.arraycopy(point, 0, pt , 0, n);
for(int i = 0;i<n;i++) {

point[i] = 0;
for(int j = 0;j<n;j++) {

point[i] += inverse[i][j]∗pt[j];
}

}
}

// calcualates the inverse using Lower−Upper decomposition.
private void calcInverse() {

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 802

LUPDecomposition lupd = new LUPDecomposition(matrix);
inverse = lupd.inverseMatrixComponents();
inverted = true; // signal that the inverse computation has been performed

}
}

Exercise 17.17. Transformation interface
Write a simple program to test the Affine3DMatrix class. Show that the direct and inverse
transformations reverse each others mappings.

Appendix 17B: Conversions

Physicists use Euler angles because they are useful for analytically solving Euler’s rigid body
equations of motion in a small number of special cases. Because the quaternion representation is
unfamiliar and is not taught in standard texts, we present conversion formulas between quater-
nions, rotation matrices, and Euler angles. See Shoemake for a more complete discussion of these
conversions.

Quaternion to matrix

For a quaternion q = (q0, q1, q2, q3) that satisfies the normalization condition 1 = q2
0 + q2

1 + q2
2 + q2

3 ,
the formula for the rotation matrix is

R = 2

 1
2 − q2

2 − q2
3 q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3
1
2 − q2

1 − q2
3 q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1
1
2 − q2

1 − q2
2

 . (17.49)

Matrix to quaternion

The quaternion components can be computed using linear combinations of the rotation matrix
elements R = [ri,j]3×3. To avoid the pitfall of dividing by a small number ε (the machine precision),
we compute quaternion components using if statements:

• Compute w2 = (1 + r0,0 + r1,1 + r2,2)/4.

If w2 > ε, then

q0 =
√

w2 (17.50a)
q1 = (r1,2 − r2,1)/4q0 (17.50b)
q2 = (r2,0 − r0,2)/4q0 (17.50c)
q3 = (r0,1 − r1,0)/4q0, (17.50d)

else compute x2 = −1/2(r1,1 + r2,2).

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 803

• If x2 > ε, then

q0 = 0 (17.51a)

q1 =
√

x2 (17.51b)
q2 = r0,1/2q1 (17.51c)
q3 = r0,2/2q1, (17.51d)

else compute y2 = 1/[2(1 − r2,2)].

• If y2 > ε, then

q0 = 0 (17.52a)
q1 = 0 (17.52b)

q2 =
√

y2 (17.52c)
q3 = r1,2/2q2, (17.52d)

else compute

q0 = 0 (17.53a)
q1 = 0 (17.53b)
q2 = 0 (17.53c)
q3 = 1. (17.53d)

Euler angles to matrix

Euler angles are generally described in physics texts (see Goldstein) as a group of three rotations
about a set of body-frame axes. An object is created with the body frame aligned with the space
frame. The first rotation is about the body frame’s 3̂ axis by an angle φ; the second rotation is
about the new x axis by an angle θ, and the third rotation is about the new z axis by an angle φ.
Other definitions of Euler angles are possible. For example, the Java 3D API defines Euler angles
as three rotations about a set of axes fixed in space. All possible positions of an object can be
represented using either of these conventions.

The first rotation is about z and is given by

A(φ) =

 cos φ sinφ 0
− sinφ cos φ 0

0 0 1

 . (17.54)

The second rotation is about the new x axis and is given by

B(θ) =

0 0 1
0 cos θ sin θ
0 − sin θ cos θ

 . (17.55)

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 804

And the last last rotation is again about the new z axis

C(ψ) =

 cos ψ sinψ 0
− sinψ cos ψ 0

0 0 1

 . (17.56)

The application of the three Euler rotation matrices C(ψ)B(θ)A(φ) in this order produces the
transformation:

R(ψ, θ φ) =

 cos ψ cos φ − cos θ sinφ sinψ cos ψ sinφ + cos θ cos φ sinψ sinψ sin θ
− sinψ cos φ − cos θ sinφ cos ψ − sinψ sinφ + cos θ cos φ cos ψ cos ψ sin θ

sin θ sinφ − sin θ cos φ cos θ

 . (17.57)

Euler angles to quaternion

There are many possible conventions for the Euler angles. We again use the definition found in
Goldstein.

q0 = cos θ/2 cos
1
2
(φ + ψ) (17.58a)

q1 = sin θ/2 cos
1
2
(φ − ψ) (17.58b)

q2 = sin θ/2 sin
1
2
(φ − ψ) (17.58c)

q3 = sin θ/2 sin
1
2
(φ + ψ). (17.58d)

Matrix to Euler Angles

The conversion from matrix elements to Euler angles is ill-defined because inverse trigonometric
functions do not uniquely specify the resulting quadrant. From (17.57) we see that cos θ = r2,2.
We then use sin θ =

√
1 − cos2 θ to compute sin θ to within a sign. As in the matrix to quaternion

conversion, we again use if statements to avoid dividing a number less than the machine precision
ε:

If |r2,2| > ε, then

cos θ = r2,2 (17.59a)

sin θ =
√

1 − cos2 θ (17.59b)
cos φ = = r1,0/ sin θ (17.59c)
sinφ = −r2,0/ sin θ (17.59d)
cos ψ = r1,2/ sin θ (17.59e)
sinψ = r0,2/ sin θ, (17.59f)

CHAPTER 17. VISUALIZATION AND RIGID BODY DYNAMICS 805

else

cos θ = 0 (17.60a)
sin θ = 1 (17.60b)
cos φ = = r1,0 (17.60c)
sinφ = −r2,0 (17.60d)
cos ψ = 1 (17.60e)
sinψ = 0. (17.60f)

Quaternions to Euler Angles

Convert the quaternion to a rotation matrix and then convert the matrix to Euler angles.

References and Suggestions for Further Reading

Didier H. Besset, Object-Oriented Implementation of Numerical Methods, Morgan Kaufmann
(2001).

David H. Eberly, Game Physics, Morgan Kaufmann (2004)

Denis J. Evans, “On the representation of orientation space,” Mol. Phys. 34 (2) 317–325 (1977).

James D. Foley, Andries van Dam, Steven Feiner, and John Hughes Computer Graphics: Principles
and Practice, second edtion, Addison Wesley (1990).

Herbert Goldstein, Charles P. Poole, and John L. Safko, Classical Mechanics, third edition,
Addison-Wesley (2002). Chapter 4 discusses the kinematics of rigid body motion.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes, second edition, Cambridge University Press (1992).

D. C. Rapaport, “Molecular dynamics simulation using quaternions,” J. Comp. Phys. 60 306–314
(1985).

D. C. Rapaport, The Art of Molecular Dynamics Simulation, second edition, Cambridge Univer-
sity Press (2004). Chapter 8 discusses the molecular dynamics of rigid molecules.

Philip J. Schneider and David H. Eberly, Geometric Tools for Computer Graphics, Morgan Kauf-
mann (2003)

Ken Shoemake,“Animating rotation with quaternion curves,” ACM Transactions in Graphics 19
(3), 256–276 (1994).

KeithR.Symon, Mechanics, Addison-Wesley (1971).

James M. Van Verth and Lars M. Bishop, Essential Mathematics for Games and Interactive
Applications, Morgan Kaufmann (2004).

