
Chapter 1

Introduction
c©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian

26 February 2005

The importance of computers in physics and the nature of computer simulation is discussed. The
nature of object-oriented programming and various computer languages also is considered.

1.1 Importance of computers in physics

Computation has now become an integral part of contemporary science, and has had a profound
effect on the way we do physics, on the nature of the important questions in physics, and on the
physical systems we choose to study. Developments in computer technology are leading to new
ways of thinking about physical systems. Asking the question, “How can I formulate the problem
on a computer?,” has led to new formulations of physical laws and to the realization that it is both
practical and natural to express scientific laws as rules for a computer rather than only in terms
of differential equations.

For the purposes of discussion, we will divide the use of computers in physics into the following
categories: numerical analysis, symbolic manipulation, visualization, simulation, and the collec-
tion and analysis of data. Numerical analysis refers to the solution of well-defined mathematical
problems to produce numerical (in contrast to symbolic) solutions. For example, we know that
the solution of many problems in physics can be reduced to the solution of a set of simultaneous
linear equations. Consider the equations

2x + 3y = 18
x − y = 4.

It is easy to find the analytical solution x = 6, y = 2 using the method of substitution and pencil
and paper. Suppose we have to solve a set of four simultaneous equations. We again can find
an analytical solution, perhaps using a more sophisticated method. However, if the number of
simultaneous equations becomes much larger, we would need to use a computer to find a numerical
solution. In this mode, the computer is a tool of numerical analysis. Because it often is necessary

1

CHAPTER 1. INTRODUCTION 2

to compute a multidimensional integral, manipulate large matrices, and solve a complex differential
equation, this use of the computer is important in physics.

One of the strengths of mathematics is its ability to use the power of abstraction, which
allows us to solve many similar problems simultaneously by using symbols. Computers also can
be used to do much of the symbolic manipulation that is an integral part of mathematics. As
an example, suppose we want to know the solution to the quadratic equation, ax2 + bx + c =
0. A symbolic manipulation program can give us the solution as x = [−b ±

√
b2 − 4ac]/2a. In

addition, such a program can give us the usual numerical solutions for specific values of a, b, and
c. Mathematical operations such as differentiation, integration, matrix inversion, and power series
expansion can be performed using symbolic manipulation programs. The calculation of Feynman
diagrams, which represent multi-dimensional integrals of importance in quantum electrodynamics
has been a major impetus to the development of computer algebra software that can manipulate
and simplify symbolic expressions. Maxima, Maple, and Mathematica are examples of symbolic
languages. These programs also have many tools for numerical analysis. Matlab and Octave are
examples of software that is convenient for computations involving matrices and related tasks.

As the computer plays an increasing role in our understanding of physical phenomena, the
visual representation of complex numerical results is becoming even more important. The human
eye in conjunction with the visual processing capacity of the brain is a very sophisticated device.
Most of us can draw a good approximation to the best straight line through a sequence of data
points very quickly. Such a straight line often is more meaningful to us than the “best fit” line
drawn by a statistical package. Our eye can determine patterns and trends that might not be
evident from tables of data and can observe changes with time that can lead to insight into the
important mechanisms underlying a system’s behavior.

At the same time, the use of graphics can increase our understanding of the nature of analytical
solutions. For example, what does a sine function mean to you? We suspect that your answer is
not the series, sin x = x−x3/3!+x5/5! + . . . , but rather a periodic, constant amplitude curve (see
Figure 1.1). What is most important is the mental image gained from a visualization of the form
of the function.

Traditional modes of presenting data include two- and three-dimensional plots including con-
tour and field line plots. Frequently, more than three variables are needed to understand the
behavior of a system, and new methods of using color and texture are being developed to help
researchers gain greater insight about their data.

Numerical methods, symbolic manipulation, and visualization are powerful computational
tools, which are used for mathematical analysis and representation. An essential role of science
is to build models of reality. However, to know whether a model is consistent with observation
and experiment and to understand how the model behaves, we need to implement the model. We
call the computer implementation of the model a computer simulation or simulation for short.
Simulations may use the computational tools we have just discussed, but in a context where the
solution is generated with a minimum of analysis by including only the essential elements of the
model. For example, suppose a teacher gives $10 to each student in a class of 100. The teacher,
who also begins with $10 in her pocket, chooses a student at random and flips a coin. If the coin
is heads, the teacher gives $1 to the student; otherwise, the student gives $1 to the teacher. If
either the teacher or the student would go into debt by this transaction, the transaction is not
allowed. After many exchanges, what is the probability that a student has s dollars? What is the

CHAPTER 1. INTRODUCTION 3

sin x

x

Figure 1.1: Plot of the sine function.

probability that the teacher has t dollars? Are these two probabilities the same? Although these
particular questions can be answered by analytical methods, many problems of this nature cannot
be solved in this way.

One way to determine the answers to these questions is to do a classroom experiment. However,
such an experiment would be difficult to arrange, and it would be tedious to do a sufficient number
of transactions.

Another way to proceed is to convert the rules of the model into a computer program, simulate
many exchanges, and estimate the quantities of interest. Knowing the results might help us gain
more insight into the nature of an analytical solution if one exists. We also can modify the rules
and ask “what if?” questions. For example, would the probabilities change if the students could
exchange money with one another? What would happen if the teacher were allowed to go into
debt?

Simulations require the use of simplifying approximations to make a problem computationally
feasible. The tools of numerical analysis and visualization, and occasionally symbolic manipulation,
are frequently used. However, because simulation emphasizes an exploratory mode of learning, we
will stress this approach.

Computers also are involved in all phases of a laboratory experiment, from the design of the
apparatus to the collection and analysis of data. LabView is an example of such a data acquisition
program. This involvement of the computer has made possible experiments that would otherwise
be impossible. Some of these tasks are similar to those encountered in simulations such as the
varying of parameters and the analysis of data. However, the tasks involved in real-time control
and interactive data analysis are qualitatively different and involve the interfacing of computer
hardware to various types of instrumentation. We will not discuss this use of the computer in this
text.

CHAPTER 1. INTRODUCTION 4

Laboratory experiment Computer simulation
sample model
physical apparatus computer program
calibration testing of program
measurement computation
data analysis data analysis

Table 1.1: Analogies between a computer simulation and a laboratory experiment.

1.2 The importance of computer simulation

Why is computation becoming so important in physics? One reason is that most of our analytical
tools such as differential calculus are best suited to the analysis of linear problems. For example,
you probably have analyzed the motion of a particle attached to a spring by assuming a linear
restoring force and solving Newton’s second law of motion. In this case, a small change in the
displacement of the particle leads to a small change in the force. However, many natural phenomena
are nonlinear, and a small change in a variable might produce a large change in another. Because
relatively few nonlinear problems can be solved by analytical methods, the computer gives us a
new tool to explore nonlinear phenomena.

Another reason for the importance of computation is the growing interest in systems with many
variables or with many degrees of freedom. The money exchange model described in Section 1.1
is a simple example of a system with many variables. A similar problem is given at the end of this
chapter.

Computer simulations are sometimes referred to as computer experiments because they share
much in common with laboratory experiments. Some of the analogies are shown in Table 1.1. The
starting point of a computer simulation is the development of an idealized model of a physical
system of interest. We then need to specify a procedure or algorithm for implementing the model
on a computer and need to decide what quantities to measure. The results of such a computer
simulation can serve as a bridge between laboratory experiments and theoretical calculations.
In some cases we can obtain essentially exact results by simulating an idealized model that has
no laboratory counterpart. The results of the idealized model can serve as a stimulus to the
development of the theory. On the other hand, we sometimes can do simulations of a more realistic
model, and hence make a more direct comparison with laboratory experiments. Computation has
become a third way of doing physics and complements both theory and experiment.

Computer simulations, like laboratory experiments, are not substitutes for thinking, but are
tools that we can use to understand complex phenomena. The goal of all our investigations of
fundamental phenomena is to seek explanations of physical phenomena that can be stated concisely.

1.3 Programming languages

There is no single best programming language any more than there is a best natural language.
Fortran is the oldest of the more popular scientific programming languages and was developed by

CHAPTER 1. INTRODUCTION 5

John Backus and his colleagues at IBM between 1954 and 1957. Fortran is commonly used in
scientific applications and continues to evolve. Fortran 90/95/2000 has many modern features that
are similar to C/C++.

The Basic programming language was developed in 1965 by John Kemeny and Thomas Kurtz
of Dartmouth College as a language for introductory courses in computer science. In 1983 Kemeny
and Kurtz extended the language to include platform independent graphics and advanced control
structures necessary for structured programming. The programs in the first two editions of our
textbook were written in this version of Basic, known as True Basic.

C was developed by Dennis Ritchie at Bell Laboratories around 1972 in parallel with the Unix
operating system. C++ is an extension of C designed by Bjarne Stroustrup at Bell laboratories
in the mid-eighties. C++ is considerably more complex than C, has objected oriented features,
and other extensions. In general, programs written in C/C++ have high performance, but can be
difficult to debug. C and C++ are popular choices for developing operating systems and software
applications because they provide direct access to memory and other system resources.

Python, like Basic, was designed to be easy to learn and use. Python enthusiasts like to say
that C and C++ were written to make life easier for the computer, but Python was designed to
be easier for the programmer. Guido van Rossum created Python in the late 80’s and early 90’s.
It is an interpreted, object-oriented, general-purpose programming language that also is good for
prototyping. Python enjoys growing popularity, and a variety of free cross platform libraries are
available. Because it is interpreted, the performance of Python is significantly less than optimized
languages like C or Fortran.

Java is a relatively new object-oriented language that was created by James Gosling and others
at Sun Microsystems. Java was introduced in late 1995. Since then, it has become very popular
and is evolving rapidly. Java borrows much of its syntax from C++, but it is a simpler and more
abstract language. Although the language contains only fifty keywords, the Java platform adds a
rich library that enables a Java program to connect to the internet, render images, and perform
other high-level tasks.

Most modern languages incorporate object-oriented features. The idea of object-oriented
programming is that functions and data are grouped together in an object, rather than treated
separately. A program is a structured collection of objects that communicate with each other
causing the internal state within a given object to change. A fundamental goal of object-oriented
design is to increase the understandability and reusability of program code by focusing on what
an object does and how it is used, rather than how an object is implemented (coded).

Our choice of Java for this text is motivated in part by its platform independence, standard
graphics libraries, good performance, and its no cost availability. The popularity of Java ensures
that the language will continue to evolve, and that programming experience in Java is a valuable
and marketable skill. The Java programmer can leverage a vast collection of third-party libraries,
including those for numerical calculations and visualization. Java also is relatively simple to learn,
especially the subset of Java that we will need to do physics.

Java can be thought of as a platform in itself, similar to the Macintosh and Windows, because
it has an application programming interface (API) that enables cross-platform graphics and user
interfaces. Java programs are compiled to a platform neutral byte code so that they can run on
any computer that has a Java Virtual Machine (VM). Despite the high level of abstraction and
platform independence, the performance of Java is becoming comparable with native languages.

CHAPTER 1. INTRODUCTION 6

If a project requires more speed, the computationally demanding parts of the program can be
converted to C/C++ or Fortran.

Readers who wish to use another programming language should find the algorithmic com-
ponents of the Java program listings in the text to be easily converted into a language of their
choice.

1.4 Object oriented techniques

If you already know how to program, try reading a program that you wrote several years, or even
several weeks, ago. Many of us would not be able to follow the logic of our own program and
would have to rewrite it. And your program would probably be of little use to a friend who needs
to solve a similar problem. If you are learning programming for the first time, it is important to
learn good programming habits to minimize this problem. One way is to employ object-oriented
programming techniques such as encapsulation, inheritance, and polymorphism.

Encapsulation refers to the way that an object’s essential information, such as its position,
velocity, and mass, is exposed through a well-documented interface, but unnecessary details of the
code are hidden. For example, whenever a particle moves, it calculates its acceleration from the
total force on it. Someone who wishes to use the trajectory of the particle, for example to animate
the particle’s trajectory, needs to refer only to the interface and does not need to know how the
trajectory is calculated.

Inheritance allows a programmer to add capabilities to existing code without having to rewrite
the code or even know the details of how the code works. For example, we will write programs
that show the evolution of planetary systems, quantum mechanical wave functions, and molecular
models. Many of these programs will include code that uses (extends) code in the Open Source
Physics library known as an AbstractSimulation. This code has a timer that periodically executes
code in your program and then refreshes the on-screen animation. You can focus your effort on
programming the physics because it is not necessary to write the code to produce the timer or to
refresh the screen. Similarly, we have designed a general purpose graphical user interface (GUI)
for Open Source Physics programs by extending code from Sun known as a JFrame. Our GUI has
all the features of a standard user interface such as a menu bar, minimize button, and title, even
though we did not write the code to implement these features.

Polymorphism helps us to write reusable code. For example, it is easy to imagine many types
of objects that depend on time and are able to move. In Chapter 15 we simulate an ensemble
of particles in which the step method uses random numbers rather than forces to generate new
configurations. Using polymorphism, we can write one general purpose animation procedure, and
use it with both kinds of particles.

Science students have a rich context in which to learn programming. The past several decades
of doing physics with computers has given us numerous examples that we can use to learn physics,
programming, and data analysis. Unlike some programming manuals, the emphasis of this book
is on learning by example. We will not discuss all aspects of Java, and this text is not a substitute
for a text on Java. Think of how you learned your native language. First you learned by example,
and then you learned more systematically.

CHAPTER 1. INTRODUCTION 7

Although using an object oriented language makes it easier to write well structured programs,
it does not guarantee that your programs will be well written or even correct. The single most
important criterion of program quality is readability. If your program is easy to read and follow,
it is probably a good program. There are many analogies between a good program and a well-
written paper. Few papers and programs come out perfectly on their first draft, regardless of the
techniques and rules we use to write them. Rewriting is an important part of programming.

1.5 How to use this book

Most chapters in this text begin with a brief background summary of the nature of a system and
the important questions. We then introduce the computer algorithms, new syntax as needed, and
discuss a sample program. The programs are meant to be read as text on an equal basis with
the discussions and are interspersed throughout the text. It is strongly recommended that all the
problems be read, because many concepts are introduced after you have had a chance to think
about the result of a simulation.

It is a good idea to maintain a computer-based notebook to record your programs, results,
graphical output, and analysis of the data. This practice will help you develop good habits for
future research projects, prevent duplication, organize your thoughts, and save time. After a while,
you will find that most of your new programs will use parts of your earlier programs. Ideally, you
will use your files to write a laboratory report or mini-research paper on your work. Guidelines for
writing such a laboratory report are given in Appendix 1A.

Many of the problems in the text are open ended and do not lend themselves to simple “back
of the book” answers. So how will you know if your results are correct? How will you know
when you have done enough? There are no simple answers to either question, but we can give
some guidelines. First, you should compare the results of your program to known results whenever
possible. The known results might come from an analytical solution that exists in certain limits or
from published results. You also should look at your numbers and graphs, and determine if they
make sense. Do the numbers have the right sign? Are they the right order of magnitude? Do the
trends make sense as you change the parameters? What is the statistical error in the data? What
is the systematic error? Some of the problems explicitly ask you to do these checks, but you should
make it a habit to do as many as you can whenever possible.

How do you know when you are finished? The main guideline is whether you can tell a
coherent story about your system of interest. If you have only a few numbers and do not know
their significance, then you need to do more. Let your curiosity lead you to more explorations. Do
not let the questions asked in the problems limit what you do. The questions are only starting
points, and frequently you will be able to think of your own questions.

The following problem is an example of the kind of problems that will be posed in the following
chapters. Note its similarity to the questions posed on page 3. Although most of the simulations
that we will do will be on the kind of physical systems that you will encounter in other physics
courses, we will consider simulations in related areas, ranging from traffic flow, small world net-
works, and economics. Of course, unless you already know how to do simulations, you will have to
study the following chapters so that you will able to do problems like the following.

Problem 1.1. Distribution of money

CHAPTER 1. INTRODUCTION 8

The distribution of income in a society, f(m), behaves as f(m) ∝ m−1−α, where m is the income
(money) and the exponent α is between 1 and 2. The quantity f(m) can be taken to be the number
of people who have an amount of money between m and m + ∆m. This power law behavior of the
income distribution often is referred to as Pareto’s law or the 80/20 rule (20% of the people have
80% of the income) and was proposed by Vilfredo Pareto, an economist and sociologist, in the late
1800’s. It is interesting to investigate some simple models of a closed economy to see the relation
between the microdynamics and the resulting macroscopic distribution of money.

a. Suppose that N agents (people) can exchange money in pairs. For simplicity, we assume that all
the agents are initially assigned the same amount of money m0, and the agents are then allowed
to interact. At each time step, a pair of agents i and j with money mi and mj is randomly
chosen and a transaction takes place. Again for simplicity, let us assume that mi → m′

i and
mj → m′

j by a random reassignment of their total amount of money, mi + mj , such that

m′
i = ε(mi + mj) (1.1a)

m′
j = (1 − ε)(mi + mj), (1.1b)

where ε is a random number between 0 and 1. Note that this reassignment ensures that the
agents have no debt after the transaction, that is, they always are left with an amount m ≥ 0.
Do a simulation of this model and determine the distribution of money among the agents after
the system has relaxed to an equilibrium state. Choose N = 100 and m0 = 1000.

b. Now let us ask what happens if the agents save a fraction, λ, of their money before the trans-
action. We write

m′
i = mi + δm (1.2a)

m′
j = mj − δm (1.2b)

δm = (1 − λ)[εmj + (1 − ε)mi]. (1.2c)

Modify your program so that this savings model is implemented. Consider λ = 0.25, 0.50, 0.75,
and 0.9. For some of the values of λ, as many as 107 transactions will need to be considered.
Does the form of f(m) change for λ > 0?

The form of f(m) for the model in part (a) can be found analytically and is well known to
students who have had a course in statistical mechanics. However, the analytical form of f(m) in
part (b) is not known. More information about this model can be found in the article by Patriarca,
Chakraborti, and Kaski (see the references at the end of this chapter).

Problem 1.2. Questions to consider

a. You are familiar with the fall of various objects near the earth’s surface. Suppose that a ball
is in the earth’s atmosphere long enough for air resistance to be important. How would you
simulate the motion of the ball?

b. Suppose that you wish to model a simple liquid such as liquid Argon. Why is such a liquid
simpler to simulate than water? What is the maximum number of atoms that can be simulated

CHAPTER 1. INTRODUCTION 9

in a reasonable amount of time using present computer technology? What is the maximum real
time that is possible to simulate? That is, if we run our program for a week of computer time,
what would be the equivalent time that the liquid has evolved?

c. What are examples of systems that would be interesting to you to simulate? Can these systems
be analyzed by analytical methods? Can they be investigated experimentally?

d. A recent article by Post and Votta (see references) claims that “ . . . (computers) have largely
replaced pencil and paper as the theorist’s main tool.” Do you agree with this statement?

Appendix 1A: Laboratory reports

Laboratory reports should reflect clear writing style and obey proper rules of grammar and correct
spelling. Write in a manner that can be understood by another person who has not done the
research. In the following, we give a suggested format for your reports.

Introduction. Briefly summarize the nature of the physical system, the basic numerical method
or algorithm, and the interesting or relevant questions.

Method. Describe the algorithm and how it is implemented in the program. In some cases this
explanation can be given in the program itself. Give a typical listing of your program. Simple
modifications of the program can be included in an appendix if necessary. The program
should include your name and date, and be annotated in a way that is as self-explanatory as
possible. Be sure to discuss any important features of your program.

Verification of program. Confirm that your program is not incorrect by considering special cases
and by giving at least one comparison to a hand calculation or known result.

Data. Show the results of some typical runs in graphical or tabular form. Additional runs can
be included in an appendix. All runs should be labeled, and all tables and figures must be
referred to in the body of the text. Each figure and table should have a caption with complete
information, for example, the value of the time step.

Analysis. In general, the analysis of your results will include a determination of qualitative and
quantitative relationships between variables, and an estimation of numerical accuracy.

Interpretation. Summarize your results and explain them in simple physical terms whenever
possible. Specific questions that were raised in the assignment should be addressed here.
Also give suggestions for future work or possible extensions. It is not necessary to answer
every part of each question in the text.

Critique. Summarize the important physical concepts for which you gained a better understanding
and discuss the numerical or computer techniques you learned. Make specific comments on
the assignment and your suggestions for improvements or alternatives.

Log. Keep a log of the time spent on each assignment and include it with your report.

CHAPTER 1. INTRODUCTION 10

References and suggestions for further reading

Programming

We list some of our favorite Java programming books here. The online Java documentation pro-
vided by Sun at <java.sun.com/docs/> is essential (look for API specifications), and the tutorial,
<java.sun.com/docs/books/tutorial/>, is very helpful.

Joshua Bloch, Effective Java, Addison-Wesley (2001).

Stephen J. Chapman, Java for Engineers and Scientists, Prentice Hall (2000).

Richard J. Davies, Introductory Java for Scientists and Engineers, Addison-Wesley (1999).

Bruce Eckel, Thinking in Java, third edition, Prentice Hall (2003). This text also discusses the
finer points of object-oriented programming. See also <www.mindview.net/Books/>.

David Flanagan, Java in a Nutshell, fifth edition, O’Reilly (2005) and Java Examples in a Nutshell,
third edition, O’Reilly (2004).

Brian D. Hahn and Katherine M. Malan, Essential Java for Scientists and Engineers, Butterworth-
Heinemann (2002).

Cay S. Horstmann and Gary Cornell, Core Java 2: Fundamentals and Core Java 2: Advanced
Features both in seventh edition, Prentice Hall (2005).

Patrick Niemeyer and Jonathan Knudsen, Learning Java, second edition, O’Reilly (2002).

Robert Simmons, Jr., Hardcore Java, O’Reilly (2004).

Patrick Winston and Sundar Narasimhan, On to Java, third edition, Addison-Wesley (2001).

General References on Physics and Computers

A more complete listing of textbooks on computational physics is available at <sip.clarku.edu/books/>.

Richard E. Crandall, Projects in Scientific Computation, Springer-Verlag (1994).

Paul L. DeVries, A First Course in Computational Physics, John Wiley & Sons (1994).

Alejandro L. Garcia, Numerical Methods for Physics, second edition, Prentice Hall (2000). Matlab,
C++, and Fortran are used.

Neil Gershenfeld, The Nature of Mathematical Modeling, Cambridge University Press (1998).

Nicholas J. Giordano and Hisao Nakanishi, second edition, Computational Physics, Prentice Hall
(2005).

Dieter W. Heermann, Computer Simulation Methods in Theoretical Physics, second edition,
Springer-Verlag (1990). A discussion of molecular dynamics and Monte Carlo methods di-
rected toward advanced undergraduate and beginning graduate students.

http://java.sun.com/docs/
http://java.sun.com/docs/books/tutorial/
http://www.jscieng.co.uk/downloads.html
http://www.mindview.net/Books/
http://sip.clarku.edu/books/

CHAPTER 1. INTRODUCTION 11

David Landau and Kurt Binder, A Guide to Monte Carlo Simulations in Statistical Physics,
Cambridge University Press (2001). The authors emphasize the complementary nature of
simulation to theory and experiment.

Rubin H. Landau, A First Course in Scientific Computing, Princeton University Press (2005).

P. Kevin MacKeown, Stochastic Simulation in Physics, Springer (1997).

Tao Pang, Computational Physics, Cambridge (1997).

Franz J. Vesely, Computational Physics, second edition, Plenum Press (2002).

Michael M. Woolfson and Geoffrey J. Perl, Introduction to Computer Simulation, Oxford Uni-
versity Press (1999).

Other Articles

Problem 1.1 is based on a paper by Marco Patriarca, Anirban Chakraborti, and Kimmo Kaski,
“Gibbs versus non-Gibbs distributions in money dynamics,” Physica A 340, 334–339 (2004)
or cond-mat/0312167.

An interesting article on the future of computational science by Douglass E. Post and Lawrence
G. Votta, “Computational science demands a new paradigm,” Physics Today 58 (1), 35–41
(2005) raises many interesting questions.

Brian Hayes, “g-OLOGY,” Amer. Scientist 92 (3), 212–216 (2004) discusses the g-factor of the
electron and the importance of algebraic and numerical calculations.

	Numerical and Monte Carlo Methods
	Numerical Integration Methods in One Dimension
	Integrals as Differential Equations
	Simple Monte Carlo Evaluation of Integrals
	Numerical Integration of Multidimensional Integrals
	Monte Carlo Error Analysis
	Nonuniform Probability Distributions
	*Neutron Transport
	Importance Sampling
	Metropolis Algorithm

