
Chapter 11

Numerical and Monte Carlo
Methods

c©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
3 March 2005

Simple classical and Monte Carlo methods are illustrated in the context of the numerical methods
including the evaluation of definite integrals.

11.1 Numerical Integration Methods in One Dimension

In this chapter we will find that we can use sequences of random numbers to estimate definite
integrals, a problem that seemingly has nothing to do with randomness. To place the Monte Carlo
numerical integration methods in perspective, we will first discuss several common classical methods
for determining the numerical value of definite integrals. We will find that these classical methods,
although usually preferable in low dimensions, are impractical for multidimensional integrals and
that Monte Carlo methods are essential for the evaluation of the latter if the number of dimensions
is sufficiently high.

Consider the one-dimensional definite integral of the form

F =
∫ b

a

f(x) dx. (11.1)

For some choices of the integrand f(x), the integration in (11.1) can be done analytically, found
in tables of integrals, or evaluated as a series. However, there are relatively few functions that can
be evaluated analytically and most functions must be integrated numerically.

The classical methods of numerical integration are based on the geometrical interpretation
of the integral (11.1) as the area under the curve of the function f(x) from x = a to x = b (see

435



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 436

f(x)

a b 
x

area

Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n ∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate of the integral, Fn, is given by

Fn =
n−1∑
i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation the integral is approximated by computing the area under
a trapezoid with one side equal to f(x) at the beginning of the interval and the other side equal
to f(x) at the end of the interval. This approximation is equivalent to replacing the function by a
straight line connecting the values of f(x) at the beginning and the end of each interval. Because
the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x, the total
area Fn of the trapezoids is given by

Fn =
[1
2
f(x0) +

n−1∑
i=1

f(xi) +
1
2
f(xn)

]
∆x. (trapezoidal approximation) (11.4)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 437

1.0

f(x)

x
0 π/4 π/2

Figure 11.2: The rectangular approximation for f(x) = cos x for 0 ≤ x ≤ π/2. The error in
the rectangular approximation is shaded. Numerical values of the error for various values of the
number of intervals n are given in Table 11.1.

A generally more accurate method is to use a quadratic or parabolic interpolation procedure
through adjacent triplets of points. For example, the equation of the second-order polynomial that
passes through the points (x0, y0), (x1, y1), and (x2, y2) can be written as

y(x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

+ y2
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
. (11.5)

What is the value of y(x) at x = x1? The area under the parabola y(x) between x0 and x2 can be
found by simple integration and is given by

F0 =
1
3
(
y0 + 4y1 + y2

)
∆x, (11.6)

where ∆x = x1−x0 = x2−x1. The total area under all the parabolic segments yields the parabolic
approximation for the total area:

Fn =
1
3
[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .

+ 2f(xn−2) + 4f(xn−1) + f(xn)
]
∆x. (Simpson’s rule) (11.7)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 438

This approximation is known as Simpson’s rule, although a more descriptive name would be the
parabolic approximation. Note that Simpson’s rule requires that n be even.

To write a Java program that implements the rectangular approximation, we must define the
function we wish to integrate numerically. Although we could define a new class, it is convenient
to input the function as a string and then parse the string so that the function can be evaluated.
The ParsedFunction class in the numerics package is designed to do this task.

String str = ”cos(x)”; // default string
Function f;
try {

f = new ParsedFunction(str);
}catch (ParserException ex) {
// recover if str does not represent a valid function
}

Because the ParsedFunction often is used with keyboard input and it is common for users to
mistype, the ParsedFunction constructor throws an exception that must be caught. As an exam-
ple, we have chosen the cosine function, so that we can compare our numerical results to the exact
results.

To display a function in a drawing panel, we must evaluate the function f(x) at various x values
and plot the (x, f(x)) data points. Although we could do so using a loop to add a predetermined
number of points to a data set, there is a better way using the FunctionDrawer class in the display
package. The FunctionDrawer evaluates a given function at every pixel location within a drawing
panel thereby producing a plot with optimum resolution.

// drawingPanel created previously
drawingPanel.addDrawable(new FunctionDrawer(f));

We next define the class RectangularApproximation that computes the area under the curve
using the rectangular approximation. This class also displays the rectangles used to compute the
area. Note how we have extended the Dataset class to produce the visualization.

/∗
∗ The org.opensourcephysics.ch16 package contains examples
∗ for Chapter 11, Numerical and Monte Carlo Methods, of the
∗ book An Introduction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.numerics.∗;

/∗∗
∗ RectangularApproximation displays a rectangular approximation to an integral.
∗
∗ @author H. Gould, J. Tobochnik, W. Christian, J. Gould
∗ @version 1.0
∗/

public class RectangularApproximation extends Dataset {



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 439

double sum = 0; // the inegral

/∗∗
∗ Constructs a RectangularApproximation to the integral for the given function.
∗
∗ @param f Function
∗ @param a double the lower limit
∗ @param b double the upper limit
∗ @param num int
∗/
public RectangularApproximation(Function f, double a, double b, int num) {

setMarkerColor(new java.awt.Color(255,0,0,128)); // transparent red
setMarkerShape(Dataset.AREA);
sum = 0;
double x = a; // lower limit
double y = f.evaluate(a);
double dx=(b−a)/num;
append(x, 0); // start on the x axis
append(x, y); // the top left hand corner of the first rectangle
while (x < b) { // b is the upper limit

x += dx;
append(x, y); // assume y is constant as x is increased
sum += y;
y = f.evaluate(x ); // calculate a new y at the new x
append(x, y); // the top left hand corner of the next rectangle

}
append(x, 0); // finish on the x axis
sum ∗= dx;

}
}

As usual, the target is defined in the NumericalIntegrationApp class.
/∗
∗ The org.opensourcephysics.ch16 package contains examples
∗ for Chapter 11, Numerical and Monte Carlo Methods, of the
∗ book An Introduction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.numerics.∗;

/∗∗
∗ NumericalIntegrationApp implements a visualization of the integral of f(x) from x = a to x = b.
∗
∗ @author H. Gould, J. Tobochnik, W. Christian, J. Gould
∗ @version 1.0 revised 12/21/04 JT



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 440

∗/
public class NumericalIntegrationApp extends AbstractCalculation {

PlotFrame plotFrame = new PlotFrame(”x”,”f(x)”,”Numerical Integration Visualization”);

/∗∗
∗ Resets the calculation .
∗/

public void resetCalculation() {
control .setValue(”f(x)” , ”cos(x)”);
control .setValue(”lower limit a” , 0);
control .setValue(”upper limit b”, Math.PI/2);
control .setValue(”n” , 4);

}

/∗∗
∗ Calculates and displays the approximate integral.
∗/

public void calculate() {
String fstring = control .getString(”f(x)”);
double a = control.getDouble(”lower limit a”);
double b = control.getDouble(”upper limit b”);
int n = control.getInt(”n”); // number of intervals
Function f;
try {

f = new ParsedFunction(fstring);
}
catch (ParserException ex) {

control . println(ex.getMessage());
plotFrame.clearDrawables();
return;

}
plotFrame.clearDrawables();
plotFrame.setPreferredMinMaxX(a,b); // sets the domain of x to the integration limits
plotFrame.addDrawable(new FunctionDrawer(f));
RectangularApproximation approx=new RectangularApproximation(f,a,b,n);
plotFrame.addDrawable(approx);
plotFrame.setMessage(”˜ area = ”+decimalFormat.format(approx.sum));
control . println(”approx area under curve = ” + approx.sum);

}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main(String[] args) {
CalculationControl.createApp(new NumericalIntegrationApp());

}
}

Let us consider the accuracy of the rectangular approximation for the integral of f(x) = cos x



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 441

from x = 0 to x = π/2 by comparing the numerical results shown in Table 11.1 with the exact
answer of unity. Note that the error decreases as n−1. This observed n dependence of the error is
consistent with the analytical derivation of the n dependence of the error obtained in Appendix 11A.
We explore the n dependence of the error associated with other numerical integration methods in
Problems 11.1 and 11.2.

n Fn ∆n

2 1.34076 0.34076
4 1.18347 0.18347
8 1.09496 0.09496
16 1.04828 0.04828
32 1.02434 0.02434
64 1.01222 0.01222
128 1.00612 0.00612
256 1.00306 0.00306
512 1.00153 0.00153
1024 1.00077 0.00077

Table 11.1: Rectangular approximations of the integral of cosx from x = 0 to x = π/2 as a
function of n, the number of intervals. The error ∆n is the difference between the rectangular
approximation and the exact result of unity. Note that the error ∆n decreases approximately as
n−1, that is, if n is increased by a factor of 2, ∆n decreases by a factor 2.

Problem 11.1. The rectangular and midpoint approximations

a. Test NumericalIntegrationApp by reproducing the results in Table 11.1.

b. Use the rectangular approximation to determine numerical approximations for the definite in-
tegrals of f(x) = 2x + 3x2 + 4x3 and f(x) = e−x for 0 ≤ x ≤ 1 and f(x) = 1/x for 1 ≤ x ≤ 2.
What is the approximate n dependence of the error in each case?

c. A straightforward modification of the rectangular approximation is to evaluate f(x) at the
midpoint of each interval. Define a MidpointApproximation class by making the necessary
modifications and approximate the integral of f(x) = cos x in the interval 0 ≤ x ≤ π/2.
How does the magnitude of the error compare with the results shown in Table 11.1? What is
the approximate dependence of the error on n? Remember that you need to change how the
rectangles are drawn.

d. Use the midpoint approximation to determine the definite integrals considered in part (b). What
is the approximate n dependence of the error in each case?

Problem 11.2. The trapezoidal approximation

a. Modify your program so that the trapezoidal approximation is computed and determine the n-
dependence of the error for the same functions as in Problem (11.1). What is the approximate
n dependence of the error in each case? Which approximation yields the best results for the
same computation time?



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 442

b. It is possible to double the number of intervals without losing the benefit of the previous
calculations. For n = 1, the trapezoidal approximation is proportional to the average of f(a)
and f(b). In the next approximation the value of f at the midpoint is added to this average.
The next refinement adds the values of f at the 1/4 and 3/4 points. Modify your program so
that the number of intervals is doubled each time and the results of previous calculations are
used. The following pseudocode should be helpful:

if (n == 1) {
sum = 0.5∗(b − a)∗(f(a) + f(b));

}
else {

int nadd = (int) Math.pow(2.0, n); // additional intervals
double delta = (b − a)/nadd;
double x = a + 0.5∗delta;
double intermediateSum = 0.0;
for (int i = 1; i <= nadd; i++) {

intermediateSum = intermediateSum + f(x);
x = x + delta;

}
sum = 0.5∗(sum + (b − a)∗sum/nadd;

}

Although the rectangular and trapezoidal algorithms converge relatively slowly and are there-
fore not recommended, they do illustrate the basic technique. In practice, Simpson’s rule is ade-
quate for functions f(x) that are reasonably well behaved, that is, functions that can be adequately
represented by a polynomial. If f(x) is such a function, we can adopt the strategy of evaluating the
area for a given number of intervals n and then doubling the number of intervals and evaluating
the area again. If the two evaluations are sufficiently close to one another, we stop. Otherwise, we
again double n until we achieve the desired accuracy. Of course, this strategy will fail if f(x) is
not well behaved. An example of a poorly behaved function is f(x) = x−1/3 at x = 0, where f(x)
diverges. Another example where this strategy might fail is when a limit of integration is equal to
±∞. In many cases we can eliminate the problem by a change of variables.

Problem 11.3. Simpson’s rule

a. Write a class that implements Simpson’s rule. Either adapt your program so that it uses
Simpson’s rule directly or convince yourself that the result of Simpson’s rule can be expressed
as

Sn = (4T2n − Tn)/3, (11.8)

where Tn is the result from the trapezoidal approximation for n intervals. It is not necessary
to provide a visualization of the area. Then use your program to to approximate the integral
of f(x) = (2π)−1/2 e−x2

for −1 ≤ x ≤ 1. Do you obtain the same result by choosing the
interval [0, 1] and then multiplying by two?

b. Determine the same integrals as in part (11.2) and discuss the relative merits of the various
approximations.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 443

c. Evaluate the integral of the function f(x) = 4
√

1 − x2 for −1 ≤ x ≤ 1. What value of n is
needed for four decimal accuracy? The reason for the slow convergence can be understood by
reading Appendix 11A.

d. So far, our strategy for numerically estimating the value of definite integrals has been to choose
one or more of the classical integration formulae and to compute Fn and F2n for reasonable
values of n. If the difference |F2n −Fn| is too large, then we double n until the desired accuracy
is reached. The success of this strategy is based on the implicit assumption that the sequence
Fn, F2n, · · · converges to the true integral F . Is there a way of extrapolating this sequence to
the limit? Explore this idea by using the trapezoidal approximation. Because the error for this
approximation decreases approximately as n−2, we can write F = Fn + Cn−2, and plot Fn as
a function of n−2 to obtain the extrapolated result F . Apply this procedure to the integrals
considered in some of the above problems and compare your results to those found from the
trapezoidal approximation and Simpson’s rule alone. A more sophisticated application of this
idea is known as Romberg integration (cf. Press et al.).

Because integration is a routine task, we have implemented the integration methods discussed
in this section in the Integral class in the numerics package. (The integralODE method is
discussed in Section 11.2.) Listing 11.1 shows how this class is used.

Listing 11.1: The IntegralApp program tests the Integral class.
/∗
∗ The org.opensourcephysics.ch16 package contains examples
∗ for Chapter 11, Numerical and Monte Carlo Methods, of the
∗ book An Introduction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.numerics.∗;

/∗∗
∗ IntegralApp tests the static methods in the Integral class .
∗
∗ @author H. Gould, J. Tobochnik, W. Christian, J. Gould
∗ @version 1.0
∗/

public class IntegralApp {
static final double LN2 = Math.log(2); // integral of 1/x from 1 to 2

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/
public static void main(String[] Args) {

Function f = new TestFunction();
double a = 1, b = 2;
double tolerance = 1.0e−10;
double area = Integral.ode(f, a , b, tolerance );



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 444

System.out.println(”ODE area = ” + area + ” err = ” + (area − LN2));
area = Integral . trapezoidal(f , a , b , 2, tolerance );
System.out.println(”Trapezoidal area = ” + area + ” err = ”+(area − LN2));
area = Integral .simpson(f, a , b , 2, tolerance );
System.out.println(”Simpson area = ” + area + ” err = ”+ (area − LN2));
area = Integral .romberg(f, a , b , 2, tolerance );
System.out.println(”Romberg area =” + area + ” err = ”+ (area − LN2));

}
}

/∗∗
∗ A test function for numeric integration.
∗/

class TestFunction implements Function {
public double evaluate(double x) {

return 1.0/x;
}

}

Algorithms in the Integral class are implemented using static methods so that they are easy
to invoke. Note that these methods accept a tolerance parameter that allows the user to specify
an acceptable relative precision. Because computers store floating point numbers using a constant
number of decimal places, we use relative precision to estimate the accuracy of our integration
method. However, relative precision is meaningful only if the result is different from zero. If the
result is zero, the only possible check is for absolute precision. Because research-grade numerical
algorithms should check the precision of their output, the Util class in the numerics package
defines the following general purpose method for computing the relative precision from an absolute
precision and a numerical result.

public static double relativePrecision(final double epsilon, final double result) {
return (result > defaultNumericalPrecision)

? epsilon/result
: epsilon ;

}

The defaultNumericalPrecision is a named constant that is set to Math.sqrt(Double.MIN VALUE).

Problem 11.4. The Integral class
Add a static counter to keep track of the number of times the test function is evaluated in the
IntegralApp class. Use this counter to compare the efficiencies of the various integration algo-
rithms.

a. How many functions calls are required for each numerical method if the tolerance is set to 10−3?
10−12?

b. How does the execution time depend on the numerical method?

c. What is the maximum tolerance that can be achieved by each method?



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 445

11.2 Integrals as Differential Equations

Another approach to evaluating one-dimensional integrals is to recast them as differential equations.
Consider an indefinite integral of the form

F (x) =
∫ x

a

f(t) dt, (11.9)

where F (a) = 0. If we differentiate F (x) with respect to x, we find the following first-order
differential equation:

dF (x)
dx

= f(x) . (11.10)

with the boundary condition

F (a) = 0 . (11.11)

Because the function f(x) is known, (11.10) can be solved for F (x) using the numerical algorithms
that we introduced earlier for obtaining the numerical solutions of first-order differential equations.

We also can adopt the rate equation approach that we developed in Chapter 3. Listing 11.2
defines the IndefiniteIntegral class with the required rate equation. This class can be used
with any ODESolver. The choice of ODESolver depends on the properties of the integrand. The
rectangular approximation shown in Figure 11.2 is equivalent to the Euler method because the rate
of increase of the area, that is, the value of F , is assumed to be constant during the integration
step. A second-order Runge-Kutta algorithm is comparable to Simpson’s rule. We test other ode
solvers in Problem 11.5.

In general, the methods of solving ordinary differential equations and doing numerical integrals
are not equivalent. For example, we cannot use Simpson’s rule to obtain the numerical solution of
an differential equation of the form dy/dx = f(x, y). Why?

Listing 11.2: The IndefiniteIntegral class defines a rate equation in order to evaluate the
indefinite integral of the given function.

/∗
∗ The org.opensourcephysics.ch11 package contains examples
∗ for Chapter 16, Numerical and Monte Carlo Methods, of the
∗ book An Introdiction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.numerics.∗;

/∗∗
∗ IndefiniteIntegral defines a rate equation in order to
∗ evaluate the indefinite integral of the given function.
∗
∗ @author Wolfgang Christian



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 446

∗/
public class IndefiniteIntegral implements ODE {

double[] state = new double[2];
Function f;
public IndefiniteIntegral (Function f , double start){

state [0] = 0; // integral
state [1] = start ; // independent variable
f = f ;

}
public double[] getState(){

return state;
}
public void getRate(double[] state, double rate[] ){

rate [0] = f .evaluate(state [1]); // integral
rate [1] = 1; // independent variable

}
}

The IndefiniteIntegralApp class uses the IndefiniteIntegral class to implement a visu-
alization of the integral and can be download from the ch11 directory.

Problem 11.5. Ode solvers and indefinite integrals
Determine the integrals of the same functions as in Problem 11.1 using the Euler and fourth-order
Runge-Kutta differential equation solvers. Compare the accuracy of the results to those obtained
in Problem 11.4 using the same step size.

Simpson’s rule fails (or is slowly convergent) if the function has regions of rapid change. In this
case, an adaptive step-size ODE algorithm is convenient and usually effective. The RK45MultiStep
solver not only adapts the integration step to the integrand, but it allows the user to set a tolerance.
We use it to examine an approximation to the Dirac delta function in Problem 11.6.

Problem 11.6. Delta function approximation
The Dirac delta function can be approximated by the following function:

δ(x) =
1
π

lim
ε→0

ε

x2 + ε2
. (11.12)

Test this approximation by integrating (11.12) over a suitable range of x using various values of ε.
Try adaptive ODE solvers with a tolerance of 10−8. How small a value of ε produces an error of
10−4? 10−5?

11.3 Simple Monte Carlo Evaluation of Integrals

We now explore a totally different method of estimating integrals. Let us introduce this method
with the following example. Suppose an irregularly shaped pond is in the middle of a field of known
area A. We can estimate the area of the pond by throwing stones so that they land at random
within the boundary of the field and counting the number of splashes that occur when a stone



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 447

lands in a pond. The area of the pond is approximately the area of the field times the fraction
of stones that make a splash. This simple procedure is an example of a Monte Carlo method.
More explicitly, imagine a rectangle of height h, width (b − a), and area A = h(b − a) such that
the function f(x) is within the boundaries of the rectangle (see Figure 11.3). Compute n pairs of
random numbers xi and yi with a ≤ xi ≤ b and 0 ≤ yi ≤ h. The fraction of points xi, yi that
satisfy the condition yi ≤ f(xi) is an estimate of the ratio of the integral of f(x) to the area of the
rectangle. Hence, the estimate Fn in the hit or miss method is given by

Fn = A
ns

n
, (hit or miss method) (11.13)

where ns is the number of “splashes” or points below the curve, and n is the total number of
points. The number of trials n in (11.13) should not be confused with the number of intervals used
in the numerical methods discussed in Section 11.1.

Another Monte Carlo integration method is based on the mean-value theorem of calculus,
which states that the definite integral (11.1) is determined by the average value of the integrand
f(x) in the range a ≤ x ≤ b. To determine this average, we choose the xi at random instead
of at regular intervals and sample the value of f(x). For the one-dimensional integral (11.1), the
estimate Fn of the integral in the sample mean method is given by

Fn = (b − a) 〈f〉 = (b − a)
1
n

n∑
i=1

f(xi). (sample mean method) (11.14)

The xi are random numbers distributed uniformly in the interval a ≤ xi ≤ b, and n is the number
of trials. Note that the forms of (11.3) and (11.14) are formally identical except that the n points
are chosen with equal spacing in (11.3) and with random spacing in (11.14). We will find that for
low dimensional integrals (11.3) is more accurate, but for higher dimensional integrals (11.14) does
better.

A simple method that implements the hit or miss method is given below. Note the use of the
Random class and the methods setSeed and nextDouble(). The primary reason that it is desirable
to specify the seed rather than to choose it more or less at random from the time (as is done by
Math.random()) is that it is convenient to use the same random number sequence when testing
a Monte Carlo program. Suppose that our program gives a strange result for a particular run of
our program. If we notice a possible error in the program and then change the program, we can
use the same sequence to test whether our program changes make any difference. Another reason
for specifying the seed is that another user can obtain the same results if we tell them the seed we
used. We discuss the generation of random number sequences in Section 7.9.

/∗
∗ The org.opensourcephysics.ch16 package contains examples
∗ for Chapter 11, Numerical and Monte Carlo Methods, of the
∗ book An Introduction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.controls.∗;
import java.util.Random;



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 448

h

a b

f(x)

Figure 11.3: The function f(x) is in the domain determined by the rectangle of height H and
width (b − a).

public class MonteCarloEstimatorApp extends AbstractSimulation {
private Random rnd = new Random();
private int n; // number of trials
private long seed;
private double a,b; // interval limits
private double ymax = 1.0, estimatedArea;
private long hits = 0;

public void reset() {
control .setValue(”lower limit a” , 0);
control .setValue(”upper limit b” , 1.0);
control .setValue(”seed”, 1379);

}

public double evaluate(double x) {
return Math.sqrt(1 − x∗x);

}

public void initialize () {
a = control.getDouble(”lower limit a”);
b = control.getDouble(”upper limit b”);
n = 0;
seed = (long) control.getInt(”seed”);
hits = 0;
rnd.setSeed(seed);

}



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 449

public void doStep() {
double x = rnd.nextDouble()∗(b − a); // nextDouble returns random double between 0 (inclusive) and 1 (exclusive)
double y = rnd.nextDouble()∗ymax;
if (y <= evaluate(x)) {

hits++;
}
n++;

}

public void stopAnimation() {
super.stopAnimation();
control . println(”n = ” + n + ” estimated area = ” + (hits∗(b−a)∗ymax)/n);

}

public static void main(String[] args) {
SimulationControl.createApp(new MonteCarloEstimatorApp());

}
}

Note that the method assumes that we have instantiated an object of the Random class:

Random rnd = new Random();

Problem 11.7. Monte Carlo integration in one dimension

a. Write a program using the hit or miss Monte Carlo method to estimate Fn, the integral of
f(x) = 4

√
1 − x2 in the interval 0 ≤ x ≤ 1, as a function of n. Choose a = 0, b = 1, h = 1,

and compute the mean value of the function
√

1 − x2. Multiply the estimate by 4 to determine
Fn. Calculate the difference between Fn and the exact result of π. This difference is a measure
of the error associated with the Monte Carlo estimate. Make a log-log plot of the error as a
function of n. What is the approximate functional dependence of the error on n for large n, for
example, n ≥ 106?

b. Estimate the same integral using the sample mean Monte Carlo method (11.14) and compute
the error as a function of the number of trials n for n ≥ 106. How many trials are needed to
determine Fn to two decimal places? What is the approximate functional dependence of the
error on n for large n?

c. Determine the computational time per trial using the two Monte Carlo methods. Which Monte
Carlo method is preferable?

11.4 Numerical Integration of Multidimensional Integrals

Many problems in physics involve averaging over many variables. For example, suppose we know
the position and velocity dependence of the total energy of ten interacting particles. In three
dimensions each particle has three velocity components and three position components. Hence
the total energy is a function of 60 variables, and a calculation of the average energy per particle



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 450

involves computing a d = 60 dimensional integral. (More accurately, the total energy is a function
of 60 − 6 = 54 variables if we use center of mass and relative coordinates.) If we divide each
coordinate into p intervals, there would be p60 points to sum. Clearly, standard numerical methods
such as Simpson’s rule would be impractical for this example. A discussion of the n dependence of
the error associated with the standard numerical methods for d-dimensional integrals is given in
Appendix 11A. We show that if the error decreases as n−a for d = 1, then the error decreases as
n−a/d in d dimensions. In contrast, we find (see Section 11.5) that the error for all Monte Carlo
integration methods decreases as n−1/2 independently of the dimension of the integral. Because the
computational time is roughly proportional to n in both the classical and Monte Carlo methods,
we conclude that for low dimensions, the classical numerical methods such as Simpson’s rule are
preferable to Monte Carlo methods unless the domain of integration is very complicated. However,
the error in the conventional numerical methods increases with dimension (see Appendix 11A),
and Monte Carlo methods are essential for higher dimensional integrals.

To illustrate the general method for evaluating multidimensional integrals, we consider the
two-dimensional integral

F =
∫

R

f(x, y) dxdy, (11.15)

where R denotes the region of integration. The extension to higher dimensions is straightforward,
but tedious. Form a rectangle that encloses the region R, and divide this rectangle into squares of
length h. Assume that the rectangle runs from xa to xb in the x direction and from ya to yb in the
y direction. The total number of squares is nxny, where nx = (xb − xa)/h and ny = (yb − ya)/h.
If we use the midpoint approximation, the integral F is estimated by

F ≈
nx∑
i=1

ny∑
j=1

f(xi, yj)H(xi, yj)h2, (11.16)

where xi = xa + (i − 1
2 )h, yj = ya + (j − 1

2 )h, and the function H(x, y) equals unity if (x, y) is in
R and is zero otherwise. A simple Monte Carlo method for evaluating a two-dimensional integral
uses the same rectangular region as in the above, but the n points (xi, yi) are chosen at random
within the rectangle. The estimate for the integral is then

Fn =
A

n

n∑
i=1

f(xi, yi)H(xi, yi), (11.17)

where A is the area of the rectangle. Note that if f(x, y) = 1 everywhere, then (11.17) is equivalent
to the hit or miss method of calculating the area of the region R. In general, (11.17) represents
the area of the region R multiplied by the average value of f(x, y) in R. In Section 11.8 we discuss
a more efficient Monte Carlo method for evaluating definite integrals.

Problem 11.8. Two-dimensional numerical integration

a. Write a program to implement the midpoint approximation in two dimensions and integrate
the function f(x, y) = x2 + 6xy + y2 over the region defined by the condition x2 + y2 ≤ 1. Use
h = 0.1, 0.05, 0.025, and 0.0125. Display n, the number of squares, and the estimate for the
integral.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 451

b. Repeat part (a) using a Monte Carlo method and the same number of points n. For each value
of n repeat the calculation several times to obtain a crude estimate of the random error.

Problem 11.9. Volume of a hypersphere

a. The interior of a d-dimensional hypersphere of unit radius is defined by the condition x1
2 +

x2
2 + . . . xd

2 ≤ 1. Write a program that finds the volume of a hypersphere using the midpoint
approximation. If you are clever, you can write a program that does any dimension using
recursive subroutines. Test your program for d = 2 and d = 3, and then find the volume for
d = 4 and d = 5. Begin with h = 0.2, and decrease h until your results do not change by more
than 1%, or until you run out of patience or resources.

b. Repeat part (a) using a Monte Carlo technique. For each value of n, repeat the calculation
several times to obtain a rough estimate of the random error. Is a program valid for any d
easier to write in this case than in part (a)?

11.5 Monte Carlo Error Analysis

Both the classical numerical integration methods and the Monte Carlo methods yield approximate
answers whose accuracy depends on the number of intervals or on the number of trials respectively.
So far, we have used our knowledge of the exact value of various integrals to determine that the
error in the Monte Carlo method approaches zero as approximately n−1/2 for large n, where n is
the number of trials. In the following, we will find how to estimate the error when the exact answer
is unknown. Our main result is that the n dependence of the error is independent of the nature
of the integrand and, most importantly, independent of the number of dimensions. Because the
appropriate measure of the error in Monte Carlo calculations is subtle, we first determine the error
for an explicit example. Consider the Monte Carlo evaluation of the integral of f(x) = 4

√
1 − x2

in the interval [0, 1] (see Problem 11.7). Our result for a particular sequence of n = 104 random
numbers using the sample mean method is Fn = 3.1489. How does this result for Fn compare with
your result found in Problem 11.7 for the same value of n? By comparing Fn to the exact result
of F = π ≈ 3.1416, we find that the error associated with n = 104 trials is approximately 0.0073.
How can we estimate the error if the exact result is unknown? How can we know if n = 104 trials is
sufficient to achieve the desired accuracy? Of course, we cannot answer these questions definitively
because if the actual error in Fn were known, we could correct Fn by the required amount and
obtain F . The best we can do is to calculate the probability that the true value F is within a
certain range centered on Fn. If the integrand were a constant, then the error would be zero, that
is, Fn would equal F for any n. Why? This limiting behavior suggests that a possible measure of
the error is the variance σ2 defined by

σ2 = 〈f2〉 − 〈f〉2, (11.18)

where

〈f〉 =
1
n

n∑
i=1

f(xi), (11.19a)

and



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 452

〈f2〉 =
1
n

n∑
i=1

f(xi)2. (11.19b)

From the definition of the standard deviation σ, we see that if f is independent of x, σ is zero. For
our example and the same sequence of random numbers used to obtain Fn = 3.1489, we obtain
σn = 0.8850. Because this value of σ is two orders of magnitude larger than the actual error, we
conclude that σ cannot be a direct measure of the error. Instead, σ is a measure of how much the
function f(x) varies in the interval of interest. Another clue to finding an appropriate measure of
the error can be found by increasing n and seeing how the actual error decreases as n increases.
In Table 11.2 we see that as n goes from 102 to 104, the actual error decreases by a factor of 10,
that is, as ∼ 1/n

1
2 . However, we also see that σn is roughly constant and is much larger than the

actual error.

n Fn actual error σn

102 3.0692 0.0724 0.8550
103 3.1704 0.0288 0.8790
104 3.1489 0.0073 0.8850

Table 11.2: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. The actual error is given by the difference |Fn − π|. The standard deviation σn is
found using (11.18).

run α Mα actual error
1 3.1489 0.0073
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 3.1526 0.0110
6 3.1397 0.0019
7 3.1311 0.0105
8 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Table 11.3: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. A total of 10 measurements of n = 104 trials each were made. The mean value Mα

and the actual error |Mα − π| for each measurement are shown.

One way to obtain an estimate for the error is to make additional runs of n trials each.
Each run of n trials yields a mean or measurement that we denote as Mα. In general, these
measurements are not equal because each measurement uses a different finite sequence of random
numbers. Table 11.3 shows the results of ten separate measurements of n = 104 trials each. We see
that the actual error varies from measurement to measurement. Qualitatively, the magnitude of
the differences between the measurements is similar to the actual errors, and hence these differences



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 453

are a measure of the error associated with a single measurement. To obtain a quantitative measure
of this error, we determine the differences of these measurements using the standard deviation of
the means σm which is defined as

σm
2 = 〈M2〉 − 〈M〉2, (11.20)

where

〈M〉 =
1
m

m∑
α=1

Mα, (11.21a)

and

〈M2〉 =
1
m

m∑
α=1

Mα
2. (11.21b)

From the values of Mα in Table 11.3 and the relation (11.20), we find that σm = 0.0068. This value
of σm is consistent with the results for the actual errors shown in Table 11.3 which we see vary from
0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is a measure
of the error for a single measurement. The more precise interpretation of σm is that a single
measurement has a 68% chance of being within σm of the “true” mean. Hence the probable error
associated with our first measurement of Fn with n = 104 is 3.149 ± 0.007. Although σm gives an
estimate of the probable error, our method of obtaining σm by making additional measurements
is impractical because we could have combined the additional measurements to make a better
estimate. In Appendix 11.9 we derive the relation

σm =
σ√

n − 1
(11.22a)

≈ σ√
n

. (11.22b)

The reason for the expression 1/
√

n − 1 in (11.22a) rather than 1/
√

n is similar to the reason for the
expression 1/

√
n − 2 in the error estimates of the least squares fits (see (7.41)). The idea is that to

compute σ, we need to use n trials to compute the mean, 〈f(x)〉, and, loosely speaking, we have only
n− 1 independent trials remaining to calculate σ. Because we almost always make a large number
of trials, we will use the relation (11.22b) and consider only this limit in Appendix 11A. Note that
(11.22) implies that the most probable error decreases with the square root of the number of trials.
For our example we find that the most probable error of our initial measurement is approximately
0.8850/100 ≈ 0.009, an estimate consistent with the known error of 0.007 and with our estimated
value of σm ≈ 0.007.

One way to verify the relation (11.22) is to divide the initial measurement of n trials into s
subsets. This procedure does not require additional measurements. We denote the mean value of
f(xi) in the kth subset by Sk. As an example, we divide the 104 trials of the first measurement into
s = 10 subsets of n/s = 103 trials each. The results for Sk are shown in Table 11.4. As expected,
the mean values of f(x) for each subset k are not equal. A reasonable candidate for a measure
of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.23)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 454

subset k Sk

1 3.14326
2 3.15633
3 3.10940
4 3.15337
5 3.15352
6 3.11506
7 3.17989
8 3.12398
9 3.17565
10 3.17878

Table 11.4: The values of Sk for f(x) = 4
√

1 − x2 for 0 ≤ x ≤ 1 is shown for 10 subsets of 103

trials each. The average value of f(x) over the 10 subsets is 3.14892, in agreement with the result
for Fn for the first measurement shown in Table 11.3.

where the averages are over the subsets. From Table 11.4 we obtain σs = 0.025, a result that is
approximately three times larger than our estimate of 0.007 for σm. However, we would like to
define an error estimate that is independent of how we subdivide the data. This quantity is not σs,
but the ratio σs/

√
s, which for our example is approximately 0.025/

√
(10) ≈ 0.008. This value is

consistent with both σm and the ratio σ/
√

n. We conclude that we can interpret the n trials either
as a single measurement or as a collection of s measurements with n/s trials each. In the former
interpretation, the probable error is given by the standard deviation of the n trials divided by the
square root of the number of trials. In the same spirit, the latter interpretation implies that the
probable error is given by the standard deviation of the s measurements of the subsets divided by
the square root of the number of subset measurements. We can make the error as small as we wish
by either increasing the number of trials or by increasing the efficiency of the individual trials and
thereby reducing the standard deviation σ. Several reduction of variance methods are introduced
in Sections 11.8 and 11.9.

Problem 11.10. Estimate of the Monte Carlo error

a. Estimate the integral of f(x) = e−x in the interval 0 ≤ x ≤ 1 using the sample mean Monte
Carlo method with n = 102, n = 103, and n = 104. Compute the standard deviation σ as
defined by (11.18). Does your estimate of σ change significantly as n is increased? Determine
the exact answer analytically and estimate the n dependence of the error. How does your
estimated error compare with the error estimate obtained from the relation (11.22)?

b. Generate nineteen additional measurements of the integral each with n = 103 trials. Compute
σm, the standard deviation of the twenty measurements. Is the magnitude of σm consistent with
your estimate of the error obtained in part (a)? Will your estimate of σm change significantly
if more measurements are made?

c. Divide your first measurement of n = 103 trials into s = 20 subsets of 50 trials each. Compute
the standard deviation of the subsets σs. Is the magnitude σs/

√
s consistent with your previous

error estimates?



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 455

d. Divide your first measurement into s = 10 subsets of 100 trials each and again compute the
standard deviation of the subsets. How does the value of σs compare to what you found in part
(c)? What is the value of σs/

√
s in this case? How does the standard deviation of the subsets

compare using the two different divisions of the data?

e. Estimate the integral ∫ 1

0

e−x2
dx (11.24)

to two decimal places using σn/
√

n as an estimate of the probable error.

∗Problem 11.11. Importance of randomness
We learned in Chapter 7 that the random number generator included with many programming
languages is based on the linear congruential method. In this method each term in the sequence
can be found from the preceding one by the relation

xn+1 = (axn + c) modm, (11.25)

where x0 is the seed, and a, c, and m are nonnegative integers. The random numbers r in the unit
interval 0 ≤ r < 1 are given by rn = xn/m. The notation y = xmodm means that if x exceeds m,
then the modulus m is subtracted from x as many times as necessary until 0 ≤ y < m. Eventually,
the sequence of numbers generated by (11.25) will repeat itself, yielding a period for the random
number generator. To examine the effect of a poor random number generator, we choose values of
x0, m, a, and c such that (11.25) has poor statistical properties, for example, a short period. What
is the period for x0 = 1, a = 5, c = 0, and m = 32? Estimate the integral in Problem 11.10a by
making a single measurement of n = 103 trials using the “random number” generator (11.25) with
the above values of x0, a, c, and m. Analyze your measurement in the same way as before, that
is, calculate the mean, the mean of each of the twenty subsets, and the standard deviation of the
means of the subsets. Then divide your data into ten subsets and calculate the same quantities.
Are the standard deviations of the subsets related as before? If not, why?

∗Problem 11.12. Bootstrapping
Suppose we have a series of measurements and wish to determine some property of the system
from which the measurements were made. However, we do not know the underlying probability
distribution of the data and the data might be very complicated. For example, each data point
could be a vector of numbers rather than a single number. Usually we wish to compute quantities
such as the average of the measurments, the slope and intercept of the equation that best fits a
set of pairs of measurements, or some other function of the measured data. How do we estimate
the errors of the quantities of interest in an unbiased and automatic way?

One way is to use a method known as bootstrapping. Assume we have a set of n measurements.
For example, we could have n values of the pairs (xi, yi), and we want to fit this data to the best
straight line. If we label the original set of measurements, M = {m1, m2, . . . mn}, then the kth
resampled data set M k also consists of n measurements that are randomly chosen from the original
set. This procedure means that some of the mi may not appear in Mk and some may appear more
than once. We then can compute any quantity Gk from the resampled data set. For example, Gk



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 456

could be the slope found from a least squares calculation. If we do this resampling nr times, a
measure of the error in the quantity G is given by

σG =
[ nr∑

k=1

(Gk − 〈Gk〉)2/(nr − 1)
]1/2

. (11.26)

To see how this procure works, consider n = 15 pairs of points xi randomly distributed between
0 and 1, and corresponding values of y given by yi = 2xi + 3 + ri, where ri is a uniform random
number between −1 and +1. Compute the best slope, mls, and intercept, bls using the least squares
method and their corresponding errors using (7.40). Now resample the data 200 times, computing
a slope and intercept each time using the least squares method. From your results estimate the
errors for the slope and intercept using (11.26). How well do the estimates from bootstrapping
compare with the direct error estimates? Does the average of the bootstrap values for the slope
and intercept equal mls and bls, respectively. If not why not? Do your conclusions change if you
resample 1000 times?

11.6 Nonuniform Probability Distributions

In Sections 11.3 and 11.5 we learned how uniformly distributed random numbers can be used to
estimate definite integrals. As we might expect, we will find that it is more efficient to sample the
integrand f(x) more often in regions of x where the magnitude of f(x) is large or rapidly varying.
Because such importance sampling methods require nonuniform probability distributions, we first
consider several methods for generating random numbers that are not distributed uniformly before
we consider importance sampling methods in Section 11.8. In the following, we will denote r as a
member of a uniform random number sequence in the unit interval 0 ≤ r < 1.

Suppose that two discrete events occur with probabilities p1 and p2 such that p1+p2 = 1. How
can we choose the two events with the correct probabilities using a uniform probability distribution?
For this simple case, it is obvious that we choose event 1 if r < p1; otherwise, we choose event 2.
If there are three events with probabilities p1, p2, and p3, then if r < p1 we choose event 1; else if
r < p1 +p2, we choose event 2; else we choose event 3. We can visualize these choices by dividing a
line segment of unit length into three pieces whose lengths are as shown in Figure 11.4. A random
point r on the line segment will land in the ith segment with a probability equal to pi.

Now consider n discrete events. How do we determine which event, i, to choose given the
value of r? The generalization of the procedure we have followed for n = 2 and 3 is to find the
value of i that satisfies the condition

i−1∑
j=0

pj ≤ r ≤
i∑

j=0

pj , (11.27)

where we have defined p0 ≡ 0. Check that (11.27) reduces to the correct procedure for n = 2 and
n = 3.

Now let us consider a continuous nonuniform probability distribution. One way to generate
such a distribution is to take the limit of (11.27) and associate pi with p(x) dx, where the probability



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 457

p1 p2 p3

Figure 11.4: The unit interval is divided into three segments of lengths p1 = 0.2, p2 = 0.5, and
p3 = 0.3. Sixteen random numbers are represented by the filled circles uniformly distributed on
the unit interval. The fraction of circles within each segment is approximately equal to the value
of pi for that segment.

density p(x) is defined such that p(x) dx is the probability that the event x is in the interval between
x and x + dx. The probability density p(x) is normalized such that∫ +∞

−∞
p(x) dx = 1. (11.28)

In the continuum limit the two sums in (11.27) become the same integral and the inequalities
become equalities. Hence we can write

P (x) ≡
∫ x

−∞
p(x′) dx′ = r. (11.29)

From (11.29) we see that the uniform random number r corresponds to the cumulative probability
distribution function P (x), which is the probability of choosing a value less than or equal to x. The
function P (x) should not be confused with the probability density p(x) or the probability p(x) dx.
In many applications the meaningful range of values of x is positive. In that case, we have p(x) = 0
for x < 0.

The relation (11.29) leads to the inverse transform method for generating random numbers
distributed according to the function p(x). This method involves generating a random number r
and solving (11.29) for the corresponding value of x. As an example of the method, we use (11.29)
to generate a random number sequence according to the uniform probability distribution on the
interval a ≤ x ≤ b. The desired probability density p(x) is

p(x) =

{
(1/(b − a), a ≤ x ≤ b

0, otherwise.
(11.30)

The cumulative probability distribution function P (x) for a ≤ x ≤ b can be found by substituting
(11.30) into (11.29) and performing the integral. The result is

P (x) =
x − a

b − a
. (11.31)

If we substitute the form (11.31) for P (x) into (11.29) and solve for x, we find the desired relation

x = a + (b − a)r. (11.32)

The variable x given by (11.32) is distributed according to the probability distribution p(x) given
by (11.30). Of course, the relation (11.32) is rather obvious, and we already have used (11.32) in
our Monte Carlo programs.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 458

We next apply the inverse transform method to the probability density function

p(x) =

{
(1/λ) e−x/λ, if 0 ≤ x ≤ ∞
0, x < 0.

(11.33)

In Section 11.7 we will use this probability density to find the distance between scattering events
of a particle whose mean free path is λ. If we substitute (11.33) into (11.29) and integrate, we find
the relation

r = P (x) = 1 − e−x/λ. (11.34)

The solution of (11.34) for x yields x = −λ ln(1− r). Because 1− r is distributed in the same way
as r, we can write

x = −λ ln r. (11.35)

The variable x found from (11.35) is distributed according to the probability density p(x) given
by (11.33). On many computers the computation of the natural logarithm in (11.35) is relatively
slow, and hence the inverse transform method might not necessarily be the most efficient method
to use.

From the above examples, we see that two conditions must be satisfied in order to apply the
inverse transform method. Specifically, the form of p(x) must allow us to perform the integral in
(11.29) analytically, and it must be practical to invert the relation P (x) = r for x.

The Gaussian probability density,

p(x) =
1

(2πσ2)1/2
e−x2/2σ2

, (11.36)

is an example of a probability density for which the cumulative distribution P (x) cannot be ob-
tained analytically. However, we can generate the two-dimensional probability p(x, y) dx dy given
by

p(x, y) dx dy =
1

2πσ2
e−(x2+y2)/2σ2

dx dy. (11.37)

First, we make a change of variables to polar coordinates:

r = (x2 + y2)1/2, θ = tan−1 y

x
. (11.38)

We let ρ = r2/2 and write the two-dimensional probability as

p(ρ, θ) dρdθ =
1
2π

e−ρdρ dθ, (11.39)

where we have set σ = 1. If we generate ρ according to the exponential distribution (11.33) and
generate θ uniformly in the interval 0 ≤ θ < 2π, then the variables

x = (2ρ)1/2 cos θ and y = (2ρ)1/2 sin θ (Box-Muller method) (11.40)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 459

will each be generated according to (11.36) with zero mean and σ = 1. (Note that the two-
dimensional density (11.37) is the product of two independent one-dimensional Gaussian distri-
butions.) This way of generating a Gaussian distribution is known as the Box-Muller method.
We discuss other methods for generating the Gaussian distribution in Problem 11.12 and Ap-
pendix 11C.

Problem 11.13. Nonuniform probability densities

a. Write a program to simulate the simultaneous rolling of two dice. In this case the events are
discrete and occur with nonuniform probability. You might wish to revisit Problem 7.23 and
simulate the game of craps.

b. Write a program to verify that the sequence of random numbers {xi} generated by (11.35) is
distributed according to the exponential distribution (11.33).

c. Generate random variables according to the probability density function

p(x) =

{
2(1 − x), if 0 ≤ x ≤ 1;
0, otherwise.

(11.41)

d. Verify that the variables x and y in (11.40) are distributed according to the Gaussian distribu-
tion. What is the mean value and the standard deviation of x and of y?

e. How can you use the relations (11.40) to generate a Gaussian distribution with arbitrary mean
and standard deviation?

Problem 11.14. Generating normal distributions
Fernández and Criado have suggested another method of generating normal distributions which is
much faster than the Box-Muller method. We will just discuss the algorithm; the proof that the
algorithm leads to a normal distribution is given in their paper. The algorithm is as follows:

i. Begin with N numbers, vi, in an array. Set all the vi = σ, where σ is the desired standard
deviation for the normal distribution.

ii. Update the array by randomly choosing two different entries, vi and vj from the array. Then
let vi = (vi + vj)/

√
2 and use the new vi to set vj = −vi + vj

√
2.

iii. Repeat step (ii) many times to bring the array of numbers to “equilibrium.”

iv. After equilibration, the entries vi will have a normal distribution with the desired standard
deviation and zero mean.

Write a program to produce random numbers according to this algorithm. Your program should
allow the user to enter N and σ and a button should be available to allow for equilibration. The
output should be the probability distribution of the random numbers that are produced as well as
their mean and standard deviation. First make sure that the standard deviation of the probability
distribution approaches the desired input σ for sufficiently long equilibration times. What is the
order of magnitude of the equilibration time? Does it depend on N? Plot the natural log of the
probability distribution versus v2 and check that you obtain a straight line with the appropriate
slope.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 460

x

z

θ

v

v'

Figure 11.5: The definition of the scattering angle θ. The velocity before scattering is v and the
velocity after scattering is v′. The scattering angle θ is independent of v and is defined relative to
the z axis.

11.7 *Neutron Transport

We now consider the application of a nonuniform probability distribution to the simulation of the
transmission of neutrons through bulk matter, one of the original applications of a Monte Carlo
method. Suppose that a neutron is incident on a plate of thickness t. We assume that the plate is
infinite in the x and y directions and that the z axis is normal to the plate. At any point within
the plate, the neutron can either be captured with probability pc or scattered with probability
ps. These probabilities are proportional to the capture cross section and scattering cross section,
respectively. If the neutron is scattered, we need to find its new direction as specified by the polar
angle θ (see Figure 11.5). Because we are not interested in how far the neutron moves in the x or
y direction, the value of the azimuthal angle φ is irrelevant.

If the neutrons are scattered equally in all directions, then the probability p(θ, φ) dθdφ equals
dΩ/4π, where dΩ is an infinitesimal solid angle and 4π is the total solid angle. Because dΩ =
sin θ dθdφ, we have

p(θ, φ) =
sin θ

4π
. (11.42)

We can find the probability density for θ and φ separately by integrating over the other angle. For
example,

p(θ) =
∫ 2π

0

p(θ, φ) dφ =
1
2

sin θ, (11.43)

and

p(φ) =
∫ π

0

p(θ, φ) dθ =
1
2π

. (11.44)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 461

Because the point probability p(θ, φ) is the product of the probabilities p(θ) and p(φ), θ and φ
are independent variables. Although we do not need to generate a random angle φ, we note that
because p(φ) is a constant, φ can be found from the relation

φ = 2πr. (11.45)

To find θ according to the distribution (11.43), we substitute (11.43) in (11.29) and obtain

r =
1
2

∫ θ

0

sinx dx (11.46)

If we do the integration in (11.46), we find

cos θ = 1 − 2r. (11.47)

Note that (11.45) implies that φ is uniformly distributed between 0 and 2π and (11.47) implies
that cos θ is uniformly distributed between −1 and +1. We could invert the cosine in (11.47) to
solve for θ. However, to find the z component of the path of the neutron through the plate, we
need to multiply the path length 
 by cos θ, and hence we need cos θ rather than θ.

The path length, which is the distance traveled between subsequent scattering events, is
obtained from the exponential probability density, p(
) ∝ e−�/λ (see (11.33)). From (11.35), we
have


 = −λ ln r, (11.48)

where λ is the mean free path. Now we have all the necessary ingredients for calculating the
probabilities for a neutron to pass through the plate, be reflected off the plate, or be captured
and absorbed in the plate. The input parameters are the thickness of the plate t, the capture and
scattering probabilities pc and ps, and the mean free path λ. We begin with z = 0, and implement
the following steps:

1. Determine if the neutron is captured or scattered. If it is captured, then add one to the
number of captured neutrons, and go to step 5.

2. If the neutron is scattered, compute cos θ from (11.47) and 
 from (11.48). Change the z
coordinate of the neutron by 
 cos θ.

3. If z < 0, add one to the number of reflected neutrons. If z > t, add one to the number of
transmitted neutrons. In either case, skip to step 5 below.

4. Repeat steps 1–3 until the fate of the neutron has been determined.

5. Repeat steps 1–4 with additional incident neutrons until sufficient data has been obtained.

Problem 11.15. Elastic neutron scattering

a. Write a program to implement the above algorithm for neutron scattering through a plate.
Assume t = 1 and pc = ps/2. Find the transmission, reflection, and absorption probabilities for
the mean free path λ equal to 0.01, 0.05, 0.1, 1, and 10. Begin with 100 incident neutrons, and
increase this number until satisfactory statistics are obtained. Give a qualitative explanation of
your results.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 462

b. Choose t = 1, pc = ps, and λ = 0.05, and compare your results with the analogous case
considered in part (a).

c. Repeat part (b) with t = 2 and λ = 0.1. Do the various probabilities depend on λ and t
separately or only on their ratio? Answer this question before doing the simulation.

d. Draw some typical paths of the neutrons. From the nature of these paths, explain the results in
parts (a)–(c). For example, how does the number of scattering events change as the absorption
probability changes?

Problem 11.16. Inelastic neutron scattering

a. In Problem 11.15 we assumed elastic scattering, that is, no energy is lost during scattering. Here
we assume that some of the neutron energy E is lost and that the mean free path is proportional
to the speed and hence to

√
E. Modify your program so that a neutron loses a fraction f of its

energy at each scattering event, and assume that λ =
√

E. Consider f = 0.05, 0.1, and 0.5, and
compare your results with those found in Problem 11.15a.

b. Make a histogram for the path lengths between scattering events and plot the path length
distribution function for f = 0.1, 0.5, and 0 (elastic scattering).

The above procedure for simulating neutron scattering and absorption is more computer inten-
sive than necessary. Instead of considering a single neutron at a time, we can consider a collection
of neutrons at each position. Then instead of determining whether one neutron is captured or
scattered, we determine the fraction that is captured and the fraction that is scattered. For ex-
ample, at the first scattering site, a fraction pc of the neutrons are captured and a fraction ps

are scattered. We accumulate the fraction pc for the captured neutrons. We also assume that all
the scattered neutrons move in the same direction with the same path length, both of which are
generated at random as before. At the next scattering site there are p2

s scattered neutrons and
pspc captured neutrons. At the end of m steps, the fraction of neutrons remaining is w = pm

s and
the total fraction of captured neutrons is pc + pcps + pcp

2
s + . . . + pcp

m−1
s . If the new position at

the mth step is at z < 0, we add w to the sum for the reflected neutrons; if z > t, we add w to the
neutrons transmitted. When the neutrons are reflected or absorbed, we start over again at z = 0
with another collection of neutrons.

Problem 11.17. Improved neutron scattering method
Apply the improved Monte Carlo method to neutron transmission through a plate. Repeat the
simulations suggested in Problem a and compare your new and previous results. Also compare the
computational times for the two approaches to obtain comparable statistics.

The power of the Monte Carlo method becomes apparent when the geometry of the material
is complicated or when the material is spatially nonuniform so that the cross sections vary from
point to point. A difficult problem of current interest is the absorption of various forms of radiation
in the human body.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 463

Problem 11.18. Transmission through layered materials
Consider two plates with the same thickness t = 1 that are stacked on top of one another with no
space between them. For one plate, pc = ps, and for the other, pc = 2ps, that is, the top plate
is a better absorber. Assume that λ = 1 in both plates. Find the transmission, reflection, and
absorption probabilities for elastic scattering. Does it matter which plate receives the incident
neutrons?

11.8 Importance Sampling

In Section 11.5 we found that the error associated with a Monte Carlo estimate is proportional
to the standard deviation σ of the integrand and inversely proportional to the square root of the
number of trials. Hence, there are only two ways of reducing the error in a Monte Carlo estimate
– either increase the number of trials or reduce the variance. Clearly the latter choice is desirable
because it does not require much more computer time. In this section we introduce importance
sampling techniques that reduce σ and improve the efficiency of each trial.

To do importance sampling in the context of numerical integration, we introduce a positive
function p(x) such that

∫ b

a

p(x) dx = 1, (11.49)

and rewrite the integral (11.1) as

F =
∫ b

a

[
f(x)
p(x)

]
p(x) dx. (11.50)

We can evaluate the integral (11.50) by sampling according to the probability distribution p(x)
and constructing the sum

Fn =
1
n

n∑
i=1

f(xi)
p(xi)

. (11.51)

The sum (11.51) reduces to (11.14) for the uniform case p(x) = 1/(b − a).
We wish to choose a form for p(x) that minimizes the variance of the integrand f(x)/p(x).

Because we cannot evaluate the variance analytically in general, we determine σ a posteriori and
choose a form of p(x) that mimics f(x) as much as possible, particularly where f(x) is large. A
suitable choice of p(x) would make the integrand f(x)/p(x) slowly varying, and hence reduce the
variance. As an example, we again consider the integral (see Problem 11.10e)

F =
∫ 1

0

e−x2
dx. (11.52)

The estimate of F with p(x) = 1 for 0 ≤ x ≤ 1 is shown in the first column of Table 11.5. A
simple choice of a weight function is p(x) = Ae−x, where A is chosen such that p(x) is normalized
on the unit interval. Note that this choice of p(x) is positive definite and is qualitatively similar



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 464

p(x) = 1 p(x) = Ae−x

n (trials) 5 × 106 4 × 105

Fn 0.74684 0.74689
σ 0.2010 0.0550
σ/

√
n 0.00009 0.00009

Total CPU time (s) 20 2.5
CPU time per trial(s) 4 × 10−6 6 × 10−6

Table 11.5: Comparison of the Monte Carlo estimates of the integral (11.52) using the uniform
probability density p(x) = 1 and the nonuniform probability density p(x) = Ae−x. The normal-
ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
integral to five decimal places is 0.74682. The estimates Fn, variance σ, and the probable error
σ/n1/2 are shown. The CPU time (seconds) is shown for comparison only.

to f(x). The results are shown in the second column of Table 11.5. We see that although the
computation time per trial for the nonuniform case is larger, the smaller value of σ makes the use
of the nonuniform probability distribution more efficient.

Problem 11.19. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral

∫ 3

0

x3/2 e−x dx. (11.53)

c. Choose p(x) = Ae−λx and estimate the integral∫ π

0

1
x2 + cos2 x

dx. (11.54)

Determine the value of λ that minimizes the variance of the integral.

An alternative approach is to use the known values of f(x) at regular intervals to sample
more often where f(x) is relatively large. Because the idea is to use f(x) itself to determine the
probability of sampling, we only consider integrands that are non-negative. To compute a rough
estimate of the relative values of f(x), we first compute its average value by taking k equally spaced
points si and computing

S =
k∑

i=1

f(si) (11.55)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 465

This sum divided by k gives the average value of f in the interval. The approximate value of the
integral is given by F ≈ Sh, where h = (b− a)/k. This approximation of the integral is equivalent
to the rectangular or mid-point approximation depending on where we compute the values of f(x).
We then generate n random samples as follows. The probability of choosing subinterval i is given
by the probability

pi =
f(si)

S
. (11.56)

Note that the sum over all subintervals of pi is normalized to unity. To choose a subinterval with the
desired probability, we generate a random number r uniformly in the interval [a, b] and determine
the subinterval i that satisfies the inequality (11.27). Now that the subinterval has been chosen
with the desired probability, we generate a random number xi in the subinterval [si, si + h] and
compute the ratio f(xi)/p(xi). The estimate of the integral is given by the following considerations.
The probability pi in (11.56) is the probability of choosing the subinterval i, not the probability of
choosing a value of x between x and x+∆x. The probability p(x)∆x is pi times the the probability
of picking the particular value of x in subinterval i:

p(xi)∆x = pi
∆x

h
. (11.57)

Hence, we have that

Fn =
1
n

n∑
i=1

f(xi)
p(xi)

=
h

n

n∑
i=1

f(xi)
pi

. (11.58)

Problem 11.20. Sampling where the function is bigger
Apply the above method to estimate the integral of f(x) =

√
1 − x2 in the unit interval. Under

what circumstances would this approach be most useful?

11.9 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫

p(x)f(x) dx∫
p(x) dx

, (11.59)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter 15
we will discuss the application of the Metropolis algorithm to problems in statistical mechanics.
For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 466

of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.60)

The relation (11.60) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.60) is

T (xi → xj) = min
[
1,

p(xj)
p(xi)

]
. (11.61)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.
Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2∗rnd.nextDouble() − 1.0)∗delta;
double w = p(xtrial)/p(x);
if (rnd <= w) {

x = xtrial ;
naccept++; // number of acceptances

}

Problem 11.21. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 467

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2
〈x2

i 〉 − 〈xi〉2
, (11.62)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j = 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.22. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =

∫ ∞
0

xe−x dx∫ ∞
0

e−x dx
, (11.63)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x + ∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.4. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.64)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 468

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.65)

We first estimate the error associated with the rectangular approximation with f(x) evaluated at
the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between (11.65)
and the estimate f(xi)∆x:

∆i =
[∫ xi+1

xi

f(x) dx

]
− f(xi)∆x ≈ 1

2
f ′(xi)(∆x)2. (11.66)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1. The estimated error associated with the trapezoidal
approximation can be found in the same way. The error in the interval [xi, xi+1] is the difference
between the exact integral and the estimate, 1

2 [f(xi) + f(xi+1)]∆x:

∆i =
[∫ xi+1

xi

f(x) dx

]
− 1

2
[f(xi) + f(xi+1)]∆x. (11.67)

If we use (11.65) to estimate the integral and (11.64) to estimate f(xi+1) in (11.67), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2. Because Simpson’s rule is based on fitting f(x) in the interval [xi−1, xi+1] to a parabola,
error terms proportional to f ′′ cancel. We might expect that error terms of order f ′′′(xi)(∆x)4

contribute, but these terms cancel by virtue of their symmetry. Hence the (∆x)4 term of the
Taylor expansion of f(x) is adequately represented by Simpson’s rule. If we retain the (∆x)4 term
in the Taylor series of f(x), we find that the error in the interval [xi, xi+1] is of order f ′′′′(xi)(∆x)5

and that the total error in the interval [a, b] associated with Simpson’s rule is O(n−4). The error
estimates can be extended to two dimensions in a similar manner. The two-dimensional integral of
f(x, y) is the volume under the surface determined by f(x, y). In the “rectangular” approximation,
the integral is written as a sum of the volumes of parallelograms with cross sectional area ∆x∆y
and a height determined by f(x, y) at one corner. To determine the error, we expand f(x, y) in a
Taylor series

f(x, y) = f(xi, yi) +
∂f(xi, yi)

∂x
(x − xi) +

∂f(xi, yi)
∂y

(y − yi) + . . . , (11.68)

and write the error as

∆i =
[∫ ∫

f(x, y) dxdy

]
− f(xi, yi)∆x∆y. (11.69)

If we substitute (11.68) into (11.69) and integrate each term, we find that the term proportional
to f cancels and the integral of (x − xi) dx yields 1

2 (∆x)2. The integral of this term with respect
to dy gives another factor of ∆y. The integral of the term proportional to (y − yi) yields a similar



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 469

contribution. Because ∆y also is order ∆x, the error associated with the intervals [xi, xi+1] and
[yi, yi+1] is to leading order in ∆x:

∆i ≈
1
2
[f ′

x(xi, yi) + f ′
y(xi, yi)](∆x)3. (11.70)

We see that the error associated with one parallelogram is order (∆x)3. Because there are n
parallelograms, the total error is order n(∆x)3. However in two dimensions, n = A/(∆x)2, and
hence the total error is order n−1/2. In contrast, the total error in one dimension is order n−1,
as we saw earlier. The corresponding error estimates for the two-dimensional generalizations of
the trapezoidal approximation and Simpson’s rule are order n−1 and n−2 respectively. In general,
if the error goes as order n−a in one dimension, then the error in d dimensions goes as n−a/d.
In contrast, Monte Carlo errors vary as order n−1/2 independent of d. Hence for large enough d,
Monte Carlo integration methods will lead to smaller errors for the same choice of n.

Appendix 11B: The Standard Deviation of the Mean

In Section 11.5 we gave empirical reasons for the claim that the error associated with a single
measurement consisting of n trials equals σ/

√
n, where σ is the standard deviation in a single mea-

surement. We now present an analytical derivation of this relation. The quantity of experimental
interest is denoted as x. Consider m sets of measurements each with n trials for a total of mn
trials. We use the index α to denote a particular measurement and the index i to designate the
ith trial within a measurement. We denote xα,i as trial i in the measurement α. The value of a
measurement is given by

Mα =
1
n

n∑
i=1

xα,i. (11.71)

The mean M of the total mn individual trials is given by

M =
1
m

m∑
α=1

Mα =
1

nm

m∑
α=1

n∑
i=1

xα,i. (11.72)

The difference between measurement α and the mean of all the measurements is given by

eα = Mα − M. (11.73)

We can write the variance of the means as

σm
2 =

1
m

m∑
α=1

eα
2. (11.74)

We now wish to relate σm to the variance of the individual trials. The discrepancy dα,i between
an individual sample xα,i and the mean is given by

dα,i = xα,i − M. (11.75)



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 470

Hence, the variance σ2 of the nm individual trials is

σ2 =
1

mn

m∑
α=1

n∑
i=1

dα,i
2. (11.76)

We write

eα = Mα − M = 1
n

∑n
i=1

(
xα,i − M

)
(11.77)

= 1
n

∑n
i=1 dα,i. (11.78)

If we substitute (11.78) into (11.74), we find

σm
2 =

1
m

n∑
α=1

(
1
n

n∑
i=1

dα,i

)⎛
⎝ 1

n

n∑
j=1

dα,j

⎞
⎠ . (11.79)

The sum in (11.79) over trials i and j in set α contains two kinds of terms—those with i = j and
those with i = j. We expect that dα,i and dα,j are independent and equally positive or negative
on the average. Hence in the limit of a large number of measurements, we expect that only the
terms with i = j in (11.79) will survive, and we write

σm
2 =

1
mn2

n∑
α=1

n∑
i=1

dα,i
2. (11.80)

If we combine (11.80) with (11.76), we arrive at the desired result

σm
2 =

σ2

n
. (11.81)

Appendix 11C: The Acceptance-Rejection Method

Although the inverse transform method discussed in Section 11.6 can in principle be used to gen-
erate any desired probability distribution, in practice the method is limited to functions for which
the equation, r = P (x), can be solved analytically for x or by simple numerical approximation.
Another method for generating nonuniform probability distributions is the acceptance-rejection
method due to von Neumann. Suppose that p(x) is a (normalized) probability density function
that we wish to generate. For simplicity, we assume p(x) is nonzero in the unit interval. Consider
a positive definite comparison function w(x) such that w(x) > p(x) in the entire range of interest.
A simple although not generally optimum choice of w is a constant greater than the maximum
value of p(x). Because the area under the curve p(x) in the range x to x + ∆x is the probability
of generating x in that range, we can follow a procedure similar to that used in the hit or miss
method. Generate two numbers at random to define the location of a point in two dimensions
which is distributed uniformly in the area under the comparison function w(x). If this point is
outside the area under p(x), the point is rejected; if it lies inside the area, we accept it. This
procedure implies that the accepted points are uniform in the area under the curve p(x) and that
their x values are distributed according to p(x). One procedure for generating a uniform random
point (x, y) under the comparison function w(x) is as follows.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 471

1. Choose a form of w(x). One choice would be to choose w(x) such that the values of x
distributed according to w(x) can be generated by the inverse transform method. Let the
total area under the curve w(x) be equal to A.

2. Generate a uniform random number in the interval [0, A] and use it to obtain a corresponding
value of x distributed according to w(x).

3. For the value of x generated in step (2), generate a uniform random number y in the interval
[0, w(x)]. The point (x, y) is uniformly distributed in the area under the comparison function
w(x). If y ≤ p(x), then accept x as a random number distributed according to p(x).

Repeat steps (2) and (3) many times. Note that the acceptance-rejection method is efficient only
if the comparison function w(x) is close to p(x) over the entire range of interest.

Appendix 11D: Polynomials

Interpolation is a technique that allows us to estimate a function within the range of a tabulated
set of sample points.1 For example, Fourier analysis (see Chapter 9) generates a trigonometric
series that can be evaluated between the points that are used to calculate the coefficients. We
now describe how polynomials are implemented and used including interpolation between sample
points.

A polynomial is a function that is expressed as

p(x) =
n∑

i=0

aix
i, (11.82)

where n is the degree of the polynomial and the n constants ai are the coefficients. The evaluation
of (11.82) as written is very inefficient because x is repeatedly multiplied by itself and the entire
sum requires O(N2) multiplications. A more efficient algorithm was published in 1819 by W. G.
Horner.2 It uses a factored polynomial and requires only n multiplications and n additions and is
now known as Horner’s rule. It is written as follows:

p(x) = a0 + x
[
a1 + x

[
a2 + x[a3 + · · · ]

]]
. (11.83)

Using the correct algorithm for this simple task can dramatically reduce processor time if large
polynomials are repeatedly evaluated.

Polynomials are important computationally because most analytic functions can be approx-
imated as a polynomial using a Taylor series expansion. Polynomials can be added, multiplied,
integrated, and differentiated analytically and the result is still a polynomial. This property makes
them ideally suited for object-oriented programming. The Polynomial class in the numerics pack-
age implements many of these algebraic operations (see Table 11.6). Listing 11.3 shows how this
class is used to calculate and display a polynomial’s roots.

1Extrapolation estimates the function outside the range covered by the sample points.
2This method of evaluating polynomials by factoring was already known to Newton.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 472

Polynomial methods
add(double a) Adds a scalar to this polynomial and returns a new polynomial.
add(Polynomial p) Adds a polynomial to this polynomial and returns a new poly-

nomial.
deflate(double r) Reduces the degree of this polynomial by removing the given

root r.
derivative() Returns the derivative of this polynomial.
integral(double a) Returns the integral of this polynomial having the value a at

x = 0.
subtract(double a) Subtracts a scalar from this polynomial and returns a new

polynomial.
subtract(Polynomial p) Subtracts a polynomial from this polynomial and returns a

new polynomial.

Table 11.6: Some of the methods for manipulating polynomials.

Listing 11.3: The PolynomialApp class tests the Polynomial class.
/∗
∗ The org.opensourcephysics.ch16 package contains examples
∗ for Chapter 11, Numerical and Monte Carlo Methods, of the
∗ book An Introduction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;
import org.opensourcephysics.numerics.∗;
import org.opensourcephysics.display.∗;

/∗∗
∗ PolynomialApp test the Polynomial class.
∗
∗ @author H. Gould, J. Tobochnik, W. Christian, J. Gould
∗ @version 1.0 revised 12/21/04 JT
∗/

public class PolynomialApp extends AbstractCalculation {
PlotFrame plotFrame = new PlotFrame(”x”,”f(x)”,”Polynomial Visualization”);
double xmin, xmax;
Polynomial p;

/∗∗
∗ Resets the default polynomial.
∗/

public void resetCalculation() {
control .setValue(” coefficients ” , ”−2,0,1”);
control .setValue(”xmin”, −10);



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 473

control .setValue(”xmax”, 10);
}

/∗∗
∗ Calculates and displays the polynomial.
∗/

public void calculate() {
xmin = control.getDouble(”xmin”);
xmax = control.getDouble(”xmax”);
String [] coefficients = control .getString(” coefficients ”). split (”,” );
p = new Polynomial(coefficients);
plotAndCalculateRoots();

}

void plotAndCalculateRoots(){
plotFrame.clearDrawables();
plotFrame.addDrawable(new FunctionDrawer(p));
double[] range = Util.getDomain(p,xmin,xmax,100);
plotFrame.setPreferredMinMax(xmin,xmax,range[0],range[1]);
plotFrame.repaint();
double[] roots = p.roots(0.001);
control .clearMessages();
control . println(”polynomial = ” + p);
for (int i = 0, n = roots.length ; i < n; i++){

control . println(”root = ”+roots[i ]);
}

}

public void derivative(){
p = p.derivative ();
plotAndCalculateRoots();

}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main(String[] args) {
CalculationControl control = CalculationControl.createApp(new PolynomialApp());
control .addButton(”derivative”, ”Derivative”,”The derivative of the polynomial.”);

}
}

Exercise 11.23. Taylor series
Use the PolynomialApp class to plot the first three nonzero terms of the Taylor series expansion
of the sin function. How accurate is this expansion in the interval −π/2 < x < π/2?

Exercise 11.24. Polynomials



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 474

Write a small program (main method only) to do the following:

a. Create a polynomial x4 − 5x3 + 5x2 + 5x − 6 and divide this polynomial by x − 2. Is x − 2 a
root of the original polynomial?

b. Find the roots of x5 − 6x4 + x3 − 7x2 − 7x + 12.

Problem 11.25. Chebyshev polynomials
Orthogonal polynomials can often be written in terms of simple recurrence relations. For example,
the Chebyshev polynomials of the first kind, Tn(x), can be written as

Tn(x) = 2xTn−1(x) − Tn−2(x), (11.84)

where T0(x) = 1 and T1(x) = x. Define and test a class that contains a static method which
creates the Chebyshev polynomials. To improve efficiency, your class should store the polynomials
as the are created during the recursion. These stored polynomials can later be returned if a user
later requests a polynomial of a lower order.

It is always possible to construct a polynomial that passes through a set of n data points
(xi, yi) by creating a Legendre interpolating polynomial as follows:

p(x) =
n∑

i=0

∏
i �=j(x − xj)∏
i �=j(x−xj)

yi . (11.85)

For example, three data points generate the second-degree polynomial:

p(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 +

(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

y1 +
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
y3 . (11.86)

Note that terms multiplying the y values will be zero at the sample points except for the term
multiplying the sample point’s abscissa yi. Various computational tricks can be used to speed the
evaluation of (11.85), but these will not be discussed here (see Besset or Press et al.). We have
implemented Newton’s polynomial interpolation formula using a generalized Horner expansion in
the LegendreInterpolator class in the numerics package. Listing 11.4 tests this class.

Listing 11.4: The LegendreInterpolatorApp class tests the LegendreInterpolator class by sam-
pling an arbitrary function and fitting the samples by a polynomial.

/∗
∗ The org.opensourcephysics.ch16 package contains examples
∗ for Chapter 11, Numerical and Monte Carlo Methods, of the
∗ book An Introduction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 475

import org.opensourcephysics.numerics.∗;
import org.opensourcephysics.display.∗;

/∗∗
∗ LegendreInterpolatorApp implements a visualization of Legendre interpolating polynomials.
∗
∗ @author H. Gould, J. Tobochnik, W. Christian, J. Gould
∗ @version 1.0 revised 12/21/04
∗/

public class LegendreInterpolatorApp extends AbstractCalculation {
PlotFrame plotFrame = new PlotFrame(”x”,”f(x)”,”Legendre Interpolation”);

/∗∗
∗ Resets the calculations ’ s parameters and does the calculation.
∗/

public void resetCalculation() {
control .setValue(”f(x)” , ”sin(x)”);
control .setValue(”sample start”, −2);
control .setValue(”sample stop”, 2);
control .setValue(”n” , 5);
control .setValue(”random y−error”, 0);
calculate ();

}

/∗∗
∗ Calculates and displays the Legendre interpolating polynomial.
∗/

public void calculate() {
String fstring = control .getString(”f(x)”);
double a = control.getDouble(”sample start”);
double b = control.getDouble(”sample stop”);
double err = control.getDouble(”random y−error”);
int n = control.getInt(”n”); // number of intervals
double[] xData = new double[n];
double[] yData = new double[n];
double dx = (n>1)? (b − a)/(n−1):0;
Function f;
try {

f = new ParsedFunction(fstring);
}
catch (ParserException ex) {

control . println(ex.getMessage());
return;

}
plotFrame.clearData();
double[] range = Util.getDomain(f,a,b,100);
plotFrame.setPreferredMinMax(a−(b−a)/4,b+(b−a)/4,range[0],range[1]);
FunctionDrawer func = new FunctionDrawer(f);



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 476

func. color = java.awt.Color.RED;
plotFrame.addDrawable(func);
double x = a;
for (int i = 0; i < n; i++) {

xData[i] = x;
yData[i] = f .evaluate(x)∗(1+err∗(−0.5+Math.random()));
plotFrame.append(0,xData[i],yData[i]);
x += dx;

}
LegendreInterpolator interpolator = new LegendreInterpolator(xData,yData);
plotFrame.addDrawable(new FunctionDrawer(interpolator));
double[] coef=interpolator. getCoefficients ();
for (int i = 0; i < coef.length ; i++) {

control . println(”c[” + i + ”]=” + coef[i ]);
}

}

/∗∗
∗ Starts the Java applicaiton .
∗ @param args String[] command line parameters
∗/

public static void main(String[] args) {
CalculationControl.createApp(new LegendreInterpolatorApp());

}
}

Problem 11.26. Legendre interpolation
Use the LegendreInterpolatorApp class to sample various functions.

a. How do the interpolating polynomial’s coefficients compare to the series expansion coefficients
when sampling the sine and exponential functions?

b. How well does an interpolating polynomial match a unit step function?

c. Do your answers depend on the number of sample points?

d. Add random error to the sample. How sensitive is the fit to random error?

Legendre polynomials should be used cautiously. If the degree of the polynomial is high, if the
distance between points is large, or if the points are subject to experimental error, the resulting
polynomial can oscillate wildly. Press et al. recommend that interpolating polynomials be small.
If the the data table is accurate but large, we often use a polynomial constructed from a small
number of nearest neighbors. Cubic spline interpolation uses polynomials in this way.

A cubic spline is a third-order polynomial that is required to have a continuous second deriva-
tive with neighboring splines at its end points. Because it would be inefficient to store a large
number of Polynomial objects, the CubicSpline class in the numerics package stores the coeffi-
cients for the multiple polynomials needed to fit a data set in a single array. The CubicSplineApp
program tests this class but it is not shown here because it is similar to LegendreInterpolatorApp.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 477

Exercise 11.27. Cubic splines
Compare the cubic spline interpolating function to the Legendre polynomial interpolating function
using the same samples as were used in Exercise 11.24.

If the sample data is inaccurate, we often compute the coefficients for a polynomial of lower
degree that passes as close as possible to the sample points. This fitting procedure often is used to
construct an ad hoc function that describes experimental data. The PolynomialLeastSquareFit
class in the numerics package implements such a fitting algorithm (see Besset) and the Polynomial-
FitApp program tests this class. It is not shown because it is similar to LegendreInterpolatorApp.

Exercise 11.28. Polynomial fitting
The PolynomialFitApp simulates experimental data from a particle trajectory near Earth. How
large a relative error in the y-values can be tolerated if we wish to determine the acceleration of
gravity to within ten percent? How does this answer change if the number of samples is increased
by a factor of two? Four? Discuss the effects of changing the the degree of the fitting polynomial.

Suppose you are given a table of yi = f(xi) and are asked to determine the value of x that
corresponds to a given y. In other words, how do we find the inverse function x = f−1(x)? An
interpolation routine that does not require evenly spaced ordinates, such as the CubicSpline class,
provides an easy and effective solution. The following code uses this technique to define an arcsin
function.

Listing 11.5: The Arcsin class demonstrates how to use interpolation to define an inverse function.
/∗
∗ The org.opensourcephysics.ch16 package contains examples
∗ for Chapter 11, Numerical and Monte Carlo Methods, of the
∗ book An Introduction to Computer Simulation Methods Third Edition.
∗ Copyright (c) 2005 H. Gould, J. Tobochnik, and W. Christian.
∗
∗/

package org.opensourcephysics.sip.ch11;
import org.opensourcephysics.numerics.∗;

/∗∗
∗
∗ Arcsin demonstrates how to use interpolation to define an inverse function.
∗
∗ @author H. Gould, J. Tobochnik, W. Christian, J. Gould
∗ @version 1.0
∗/

public class Arcsin {
static Function arcsin;

private Arcsin() {} // probibit instantiation because all methods are static

/∗∗
∗ Evaluates the arcsin function.



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 478

∗
∗ @param x double
∗ @return double the angle
∗/
static public double evaluate(double x) {

if (x<−1 || x>1) return Double.NaN;
else return arcsin.evaluate(x);

}

static { // creates a static function.
int n = 10;
double[] xd = new double[n];
double[] yd = new double[n];
double x = −Math.PI/2, dx = Math.PI/(n−1);
for (int i = 0; i < n; i++) {

xd[i ] = x;
yd[i ] = Math.sin(x);
x += dx;

}
arcsin = new CubicSpline(yd,xd);

}
}

Problem 11.29. Inverse functions

a. How accurate is the arcsin x function shown in Listing 11.5 in the interval −0.5 < x < 0.5?

b. Compare the number of tabulated points need to produce relative accuracies of 1 : 102, 1 : 103,
and 1 : 104 in the interval −0.5 < x < 0.5.

c. Is polynomial interpolation more or less efficient than spline interpolation for evaluating inverse
functions?

d. Discuss the accuracy of the inverse interpolation of sinx if the interval is extended to −1 ≤ x ≤ 1.

References and Suggestions for Further Reading

Forman S. Acton, Numerical Methods That Work, Harper & Row (1970); corrected edition, Math-
ematical Association of America (1990). A delightful book on numerical methods.

Didier H. Besset, Object-Oriented Implementation of Numerical Methods, Morgan Kaufmann (2001).

Isabel Beichl and Francis Sullivan, “The importance of importance sampling,” Computing in
Science and Engineering 1 (#2), 71–73 (1999).

Bradley Efron and Robert J. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall
(1993).



CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 479

Julio Fernández and Carlos Criado, “Algorithm for normal random numbers,” Phys. Rev. E 60,
3361 (1999).

Steven E. Koonin and Dawn C. Meredith, Computational Physics, Addison-Wesley (1990). Chap-
ter 8 covers much of the same material on Monte Carlo methods as discussed in this chapter.

Malvin H. Kalos and Paula A. Whitlock, Monte Carlo Methods, Vol. 1: Basics, John Wiley &
Sons (1986). The authors are well known experts on Monte Carlo methods.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes, second edition, Cambridge University Press (1992).

Reuven Y. Rubinstein, Simulation and the Monte Carlo Method, John Wiley & Sons (1981). An
advanced, but clearly written treatment of Monte Carlo methods.

I. M. Sobol, The Monte Carlo Method, Mir Publishing (1975). A very readable short text with
excellent sections on nonuniform probability densities and the neutron transport problem.


	The Chaotic Motion of Dynamical Systems
	Introduction
	A Simple One-Dimensional Map
	Period-Doubling
	Universal Properties and Self-Similarity
	Measuring Chaos
	*Controlling Chaos
	*Higher-Dimensional Models
	Forced Damped Pendulum
	*Hamiltonian Chaos
	Perspective
	Projects


