
Chapter 12

Percolation

c©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
5 April 2005

We introduce several geometrical concepts associated with percolation, including the percolation
threshold, clusters, and cluster finding algorithms. We also introduce the ideas of critical phenom-
ena in the context of the percolation transition, including critical exponents, scaling relations, and
the renormalization group.

12.1 Introduction

If a container is filled with small glass beads and a battery is connected to the ends of the container,
no current would pass and the system would be an insulator. Suppose that we choose a glass bead
at random and replace it by a small steel ball. Clearly, the system would still be an insulator. If we
continue randomly replacing glass beads with steel balls, eventually a current would pass. What
percentage of steel balls would be needed to make the container into a conductor? The change
from the insulating to the conducting state that occurs as the percentage of steel balls is increased
is an example of a percolation phase transition.

Although the term percolation might be familiar to you in the context of brewing coffee, our
use of the term has little to do with it. Instead, we consider another example from the kitchen and
imagine a large metal sheet on which we randomly place drops of cookie dough. Assume that each
drop of cookie dough will spread while the cookies are baking in an oven. If two cookies touch,
they coalesce to form one cookie. If we are not careful, we might find a very large cookie that spans
from one edge of the sheet to the opposite edge (see Figure 12.1). If such a spanning cookie exists,
we say that there has been a percolation transition. As we will discuss in more detail, percolation
has to do with connectivity. There is no percolation transition for ground coffee, because the water
dissolves some of the ground coffee beans and flows, regardless of the density of the ground coffee.

Our discussion of percolation will require little background in physics, for example, no classical
or quantum mechanics, and little statistical physics. All that is required is some understanding of
geometry and probability. Much of the appeal of percolation is its game-like aspects and intuitive

477

CHAPTER 12. PERCOLATION 478

Figure 12.1: Cookies (circles) placed at random on a large sheet. Note that in this case there is a
path of overlapping circles that connects the bottom and top edges of the cookie sheet. If such a
path exists, we say that the cookies percolate, and there is a spanning path. See Problem 12.4e
for a discussion of the algorithm used to generate this configuration.

simplicity. Of course, if you have a background in physics, this chapter will be more meaningful,
and can serve as an introduction to phase transitions and to important ideas such as scaling
relations, critical exponents, and the renormalization group.

Let us model the cookie example in a simple way to make the concept of percolation more
explicit. We represent the cookie sheet by a lattice where each site can be in one of two states,
occupied or empty. Each site is occupied independently of its neighbors with probability p. This
model of percolation is called site percolation. The occupied sites form clusters, which are groups
of occupied nearest neighbor lattice sites (see Figure 12.2).

An easy way to study site percolation is to generate a random number r in the unit interval
0 < r ≤ 1 for each site in the lattice. A site is occupied if its random number satisfies the condition
r ≤ p. If p is small, we expect that only small isolated clusters will be present (see Figure 12.3a).
If p is near unity, we expect that most of the lattice will be occupied, and the occupied sites will
form a large cluster that extends from one end of the lattice to the other (see Figure 12.3c). Such
a cluster is said to be a spanning cluster. Because there is no spanning cluster for small p and
there is a spanning cluster for p near unity, there must be an intermediate value of p at which a
spanning cluster first exists (see Figure 12.3b). We shall see that in the limit of an infinite lattice,
there exists a well defined threshold probability pc such that:

For p < pc, no spanning cluster exists and all clusters are finite.

For p ≥ pc, a spanning cluster exists.

CHAPTER 12. PERCOLATION 479

(a) (b)

Figure 12.2: Example of a site percolation cluster on a square lattice of linear dimension L = 2.
The two nearest neighbor occupied sites (shaded) in (a) are part of the same cluster of size two;
the two occupied sites in (b) are not nearest neighbor sites and do not belong to the same cluster;
each occupied site is a cluster of size one.

p = 0.2 p = 0.59 p = 0.8

Figure 12.3: Examples of site percolation clusters on a square lattice of linear dimension L = 16
for p = 0.2, 0.59, and 0.8. On average, the fraction of occupied sites (shaded squares) is equal to p.
Note that in this example, there exists a cluster that spans the lattice horizontally and vertically
for p = 0.59.

We emphasize that the defining characteristic of percolation is connectedness. Because the con-
nectedness exhibits a qualitative change at a well defined value of a continuous parameter, we shall
see that the transition from a state with no spanning cluster to a state with one spanning cluster
is an example of a phase transition.

An example of percolation that can easily be observed in the laboratory has been done with
a wire mesh. Watson and Leath measured the electrical conductivity of a uniform metallic screen
as a function of the fraction of the nodes. The coordinates of the nodes to be removed were
determined by a random number generator. The measured electrical conductivity is a rapidly
decreasing function of the fraction of nodes p that are still present and vanishes below a critical
threshold. A related conductivity measurement on a sheet of conducting paper with random holes
has been performed (see Mehr et al.).

The applications of percolation phenomena go beyond metal-insulator transitions and the
conductivity of wire mesh, and include the spread of disease in a population, the behavior of

CHAPTER 12. PERCOLATION 480

magnets diluted by nonmagnetic impurities, the flow of oil through porous rock, the microstructure
of fiber-reinforced concrete, and the characterization of gels. Percolation ideas also have been
used to understand clusters in such diverse systems as granular matter and social networks. We
concentrate on understanding several simple models of percolation that have an intuitive appeal
of their own. Some of the applications of percolation phenomena are discussed in the references.

12.2 The Percolation Threshold

Consider a square lattice of linear dimension L and unit lattice spacing, and associate a random
number between zero and one with each site in the lattice. A site is occupied if its random num-
ber is less than p. Class PercolationApp generates site percolation configurations and shows the
occupied sites as filled squares of unit area. The array siteValues stores the random number as-
sociated with each lattice site. The state of each site is stored in LatticeFrame, which contains the
data for the frame as well as methods to display the lattice. The method LatticeFrame.setAll
is used to initialize the lattice to the desired size, and LatticeFrame.setValue(i,j,value) sets
the value at lattice site (i, j). An unoccupied site has the value 0, and an occupied but uncol-
ored site has the value 1. The values 2–8 are used to color the clusters. The class uses the
InteractiveMouseHandler interface to allow the user to click on an occupied site. Then the
colorCluster method recursively colors all the sites in this cluster. To create a new configura-
tion, press the new lattice button. The lattice is displayed whenever the calculate button is
pressed.

Listing 12.1: The PercolationApp class.
package org.opensourcephysics.sip.ch12;
import java.awt.∗;
import java.awt.event.∗;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;

/∗∗
∗ PercolationApp displays site percolation clusters .
∗
∗ Click on a cluster to select and change its color .
∗
∗ @author Jan Tobochnik, Wolfgang Christian, Harvey Gould
∗ @version 1.0 revised 04/04/05
∗/

public class PercolationApp extends AbstractCalculation implements InteractiveMouseHandler {
long seed = 0;
java. util .Random random = new java.util.Random(seed);
LatticeFrame frame = new LatticeFrame(”Percolation”);
int L;
byte clusterNumber; // used to color clusters

/∗∗
∗ Creates the PercolationApp and sets the colors for lattice .

CHAPTER 12. PERCOLATION 481

∗/
public PercolationApp() {

frame.setInteractiveMouseHandler(this);
frame.setIndexedColor(0, Color.BLACK); // unoccupied sites
frame.setIndexedColor(1, Color.RED); // occupied sites that are not cluster colored
frame.setIndexedColor(2, Color.GREEN);
frame.setIndexedColor(3, Color.BLUE);
frame.setIndexedColor(4, Color.YELLOW);
frame.setIndexedColor(5, Color.MAGENTA);
frame.setIndexedColor(6, Color.CYAN);
frame.setIndexedColor(7, Color.ORANGE);
frame.setIndexedColor(8, Color.PINK);

}

/∗∗
∗ Sets a new random seed.
∗/

public void newSeed() {
seed = random.nextLong();
calculate ();
frame.repaint ();

}

/∗∗
∗ Hadles mouse actions by coloring clusters .
∗ @param panel InteractivePanel
∗ @param evt MouseEvent
∗/

public void handleMouseAction(InteractivePanel panel, MouseEvent evt) {
panel.handleMouseAction(panel, evt);
switch(panel.getMouseAction()) {

case InteractivePanel.MOUSE PRESSED :
int index = frame.indexFromPoint(panel.getMouseX(), panel.getMouseY());
if (index<0) {

return;
}
if (frame.getAtIndex(index)==1) {

clusterNumber++;
if (clusterNumber>8) { // use up to 7 different colors for clusters

clusterNumber = 2;
}
// convert index from row−major order to ix and iy
int ix = index%L;
int iy = index/L;
colorCluster(ix , iy);
frame.repaint ();

}
break;

}
}

CHAPTER 12. PERCOLATION 482

/∗∗
∗ Calculates the percolation cluster .
∗/

public void calculate() {
L = control.getInt(”Lattice size”);
frame.setAll(new byte[L][L], 0, L , 0, L); // zeros the lattice
clusterNumber = 1;
random.setSeed(seed); // resetting the seed will generate the same set of random numbers
double p = control.getDouble(”p”);
for(int i = 0; i<L; i++) {

for(int j = 0; j<L; j++) {
if (random.nextDouble()<p) {

frame.setValue(i , j , 1);
}

}
}

}

void colorCluster(int i , int j) {
frame.setValue(i , j , clusterNumber);
int sitesToTest = 1;
int x[] = new int[L∗L];
int y[] = new int[L∗L];
x[0] = i ;
y[0] = j ;
// find neighbors of site in cluster to see if occupied
while(sitesToTest>0) {

sitesToTest−−;
i = x[sitesToTest];
j = y[sitesToTest];
int ip = i+1;
int im = i−1;
int jp = j+1;
int jm = j−1;
if ((ip<L)&&(frame.getValue(ip, j)==1)) {

sitesToTest = addList(x, y, sitesToTest , ip , j);
}
if ((im>−1)&&(frame.getValue(im, j)==1)) {

sitesToTest = addList(x, y, sitesToTest , im, j);
}
if ((jp<L)&&(frame.getValue(i, jp)==1)) {

sitesToTest = addList(x, y, sitesToTest , i , jp);
}
if ((jm>−1)&&(frame.getValue(i, jm)==1)) {

sitesToTest = addList(x, y, sitesToTest , i , jm);
}

}
}

CHAPTER 12. PERCOLATION 483

int addList(int x [], int y [], int sitesToTest , int i , int j) {
frame.setValue(i , j , clusterNumber); // color site
x[sitesToTest] = i ; // add to list to test neighbors
y[sitesToTest] = j ;
sitesToTest++;
return sitesToTest;

}

public void reset() {
control .setValue(”Lattice size” , 32);
control .setValue(”p” , 0.2);
seed = 0; // always start with the same random numbers
random.setSeed(seed);
calculate ();

}

public static void main(String args[]) {
CalculationControl control = CalculationControl.createApp(new PercolationApp());
control .addButton(”newSeed”, ”New Seed”);

}
}

The percolation threshold pc is defined as the probability p at which a spanning cluster first
appears in an infinite lattice. However, for the finite lattices of linear dimension L that we can
simulate on a computer, there is a nonzero probability of a spanning cluster connecting one side
of the lattice to the opposite side for any value of p > 0. For small p, this probability is order pL

(see Figure 12.4), and the probability of spanning goes to zero as L becomes large, and hence for
small p and sufficiently large L, only finite clusters exist.

For a finite lattice, the definition of spanning is arbitrary. For example, we can define a
spanning cluster as one that (i) spans the lattice either horizontally or vertically; (ii) spans the
lattice in a fixed direction, for example, vertically; or (iii) spans the lattice both horizontally and
vertically. In addition, the criteria for defining pc(L) for a finite lattice are somewhat arbitrary.
One possibility is to define pc(L) as the average value of p at which a spanning cluster first appears.
Another possibility is to define pc(L) as the value of p for which half of the configurations generated
at random span the lattice. These criteria will lead to the same extrapolated value for pc in the limit
L → ∞. These spanning rules are based on open boundary conditions, which we will use because
the resulting clusters are easier to visualize. In Problem 12.1 we will find an estimated value for
pc(L) that is accurate to about 10%. A more sophisticated analysis discussed in Project 12.14
allows us to extrapolate our results for pc(L) to L → ∞. In Project 12.17 we will discuss the use
of periodic boundary conditions to define the clusters.

Problem 12.1. Site percolation on the square lattice

a. Use PercolationApp to generate random site configurations on a square lattice. Estimate pc(L)
by finding the average value of p at which a spanning cluster is first attained. Choose a spanning
rule, take L = 4, and begin at a value of p for which a spanning cluster is unlikely to be present.
Then increase p in increments of 0.01 and record the value of p at which spanning first occurs.

CHAPTER 12. PERCOLATION 484

Figure 12.4: An example of a spanning cluster of probability pL on a L = 8 lattice. In comparison,
how many other ways are there of realizing a spanning cluster of L sites?

Repeat this process for a total of ten configurations and find the average value of pc(L). (Each
configuration corresponds to a different set of random numbers.

b. Repeat part (a) for L = 16 and 32. Is pc(L) better defined for larger L, that is, are the values
of pc(L) spread over a smaller range of values? How quickly can you visually determine the
existence of a spanning cluster? Describe your visual “algorithm” for determining if a spanning
cluster exists.

The value of pc depends on the symmetry of the lattice and on its dimension. In addition to
the square lattice, the most common two-dimensional lattice is the triangular lattice. As discussed
in Chapter 8, the essential difference between the square and triangular lattices is the number of
nearest neighbors.

∗Problem 12.2. Site percolation on the triangular lattice
Modify the PercolationApp class to simulate random site percolation on a triangular lattice.
Assume that a connected path connects the top and bottom sides of the lattice (see Figure 12.5).
Do you expect pc for the triangular lattice to be smaller or larger than the value of pc for the
square lattice? Estimate pc(L) for L = 4, 16, and 32. Are your results for pc consistent with your
expectations?

In bond percolation each lattice site is occupied, but only a fraction of the sites have con-
nections or bonds between them and their nearest neighbor sites (see Figure 12.6). Each bond
either is occupied with probability p or not occupied with probability 1 − p. A cluster is a group
of sites connected by occupied bonds. The wire mesh described in Section 12.1 is an example of
bond percolation if we imagine cutting the bonds between the nodes rather than removing the
nodes themselves. An application of bond percolation to the description of gelation is discussed in
Problem 12.3.

∗Problem 12.3. Bond percolation on a square lattice
Suppose that all the lattice sites of a square lattice are occupied by monomers, each with func-
tionality four, that is, each monomer can react to form a maximum of four bonds. This model is

CHAPTER 12. PERCOLATION 485

Figure 12.5: Example of a spanning cluster on a L = 4 triangular lattice. The bonds between the
occupied sites (filled circles) are drawn to clarify the symmetry of the lattice.

Figure 12.6: Two examples of bond clusters. The occupied bonds are shown as bold lines.

equivalent to bond percolation on a square lattice. Also assume that the presence or absence of a
bond between a given pair of monomers is random and is characterized by the probability p. For
small p, the system consists of only finite polymers (groups of monomers) and the system is in
the sol phase. For some threshold value pc, there will be a single polymer that spans the lattice.
We say that for p ≥ pc, the system is in the gel phase. How does a bowl of jello, an example of
a gel, differ from a bowl of broth? Write a class to simulate bond percolation on a square lattice
and determine the bond percolation threshold. Are your results consistent with the exact result,
pc = 1/2?

We also can consider continuum percolation models. For example, we can place disks at
random into a two-dimensional box. Two disks are in the same cluster if they touch or overlap. A
typical continuum (off-lattice) percolation configuration is depicted in Figure 12.7. One quantity
of interest is the quantity φ, the fraction of the area (volume in three dimensions) in the system
that is covered by disks. In the limit of an infinite size box, it can be shown that

φ = 1 − e−ρπr2
, (12.1)

where ρ is the number of disks per unit area, and r is the radius of a disk (see Xia and Thorpe).
Equation (12.1) is not accurate for small boxes because disks located near the edge of the box
might have a significant fraction of their area located outside of the box.

Problem 12.4. Continuum percolation

CHAPTER 12. PERCOLATION 486

Figure 12.7: A model of continuum (off-lattice) percolation realized by placing disks of unit diam-
eter at random into a square box of linear dimension L. If we concentrate on the voids between
the disks rather than the disks, then this model of continuum percolation is known as the Swiss
cheese model.

a. Suppose that disks of unit diameter are placed at random on the sites of a square lattice with
unit lattice spacing. Define φ as the area fraction covered by the disks. Convince yourself that
φc = πpc/4.

b. Modify PercolationApp to simulate continuum percolation. Instead of placing the disks on
regular lattice sites, place their centers at random in a square box of area L2. The relevant
parameter is the density ρ, the number of disks per unit area, instead of the probability p.
We can no longer use the LatticeFrame class. Instead two arrays are needed to store the x
and y locations of the disks. When the mouse is clicked on a disk, your program will need to
determine which disk is at the location of the mouse, and then check all the other disks to see if
they overlap with the disk you have chosen. This check needs to be recursively continued for all
overlapping disks. To color the disks as in PercolationApp, it is useful to have an array that
keeps track of the clusterNumber for each disk. Then only disks that have not been assigned
a cluster number need to be checked for overlaps.

c. Estimate the value of the percolation threshold ρc. Given this value of ρc, use a Monte Carlo
method to estimate the corresponding area fraction φc (see Section 11.3). The procedure is to
choose points at random in the box and compute the fraction of points that are within any
disk.) Compare the value of φc for site and continuum percolation. Explain why φc is larger
for continuum percolation than for site percolation. Compare your direct Monte Carlo estimate

CHAPTER 12. PERCOLATION 487

of φc with the indirect value of φc obtained from (12.1) using the value of ρc. Explain any
discrepancy.

d. Consider the simple model of the cookie problem discussed in Section 12.1. Write a class that
places disks at random into a square box and chooses their diameter randomly between 0 and
1. Estimate the value of ρc at which a spanning cluster first appears. How is the value of ρc

changed from your estimate found in part (c)? Is your value for φc more or less than what was
found in part (c)?

e. A more realistic model of the cookie problem is to place disks with unit diameter at random
in a square box with the constraint that the disks do not overlap. Continue to add disks until
the probability of placing an additional disk becomes less than 1%, that is, when one hundred
successive attempts at adding a disk are not successful. Then increase the diameters of all the
disks at a constant rate (in analogy to the baking of the cookies) until a spanning cluster is
attained. How does φc for this model compare with φc found in part (d)?

A continuum model that is applicable to random porous media is known as the Swiss cheese
model. In this model the relevant quantity (the cheese) is the space between the disks. For the
Swiss cheese model in two dimensions, the cheese area fraction at the percolation threshold, ψc, is
given by ψc = 1 − φc, where φc is the disk area fraction at the percolation threshold of the disks.
Does such a relation hold in three dimensions (see Project 12.15)?

Our discussion of percolation has emphasized the existence of the percolation threshold pc

and the appearance of a spanning cluster or path for p ≥ pc. Another quantity that characterizes
percolation is P∞(p), the probability that an occupied site belongs to the spanning cluster. The
probability P∞ is defined as

P∞ =
the number of sites in the spanning cluster

the total number of occupied sites
. (12.2)

As an example, P∞(p = 0.59) = 140/154 for the single configuration shown in Figure 12.3b. A
realistic calculation of P∞ involves an average over many configurations for a given value of p. For
an infinite lattice, P∞(p) = 0 for p < pc and P∞(p) = 1 for p = 1. Between pc and 1, P∞(p)
increases monotonically.

More information can be obtained from the mean cluster size distribution ns(p) defined as

ns(p) =
the average number of clusters of size s

the total number of lattice sites
. (12.3)

For p ≥ pc, the spanning cluster is excluded from ns. (For historical reasons, the size of a cluster
refers to the number of sites in the cluster rather than to its spatial extent.) As an example, we
see from Figure 12.3a that ns(1) = 20, ns(2) = 4, ns(3) = 5, and ns(7) = 1 for p = 0.2 and is zero
otherwise.

Because N
∑

s sns is the total number of occupied sites (N is the total number of lattice sites),
and Nsns is the number of occupied sites in clusters of size s, the quantity

ws =
sns∑
s sns

(12.4)

CHAPTER 12. PERCOLATION 488

is the probability that an occupied site chosen at random is part of an s-site cluster. Hence, the
mean cluster size S is given by

S =
∑

s

sws =
∑

s s2ns∑
s sns

. (12.5)

The sum in (12.5) is over the finite clusters only. As an example, the weights corresponding to the
clusters in Figure 12.3a are ws(1) = 20/50, ws(2) = 8/50, ws(3) = 15/50, and ws(7) = 7/50, and
hence S = 130/50.

Problem 12.5. Qualitative behavior of ns(p), S(p), and P∞(p)

a. Visually determine the cluster size distribution ns(p) for a square lattice with L = 16 and
p = 0.4, p = pc, and p = 0.8. Take pc = 0.5927. Consider at least five configurations for
each value of p and average ns(p) over the configurations. Because the lattice is finite, more
consistent results can be obtained by discarding those configurations that have a spanning
cluster for p < pc and those that do not have a spanning cluster for p ≥ pc. For each value of
p, plot ns as a function of s and describe the observed s-dependence. Does ns decrease more
rapidly with s for p = pc or for p �= pc? Better results for ns can be found if periodic boundary
conditions are used (see Project 12.17.)

b. Use the same configurations considered in part (a) to compute the mean cluster size S as a
function of p. Remember that for p > pc, the spanning cluster is excluded.

c. Similarly, compute P∞(p) for L = 16, and for various values of p ≥ pc. Plot P (p) as a function
of p and discuss its qualitative behavior.

d. Verify that
∑

s s ns(p) = p for p < pc and explain this relation. How is this relation modified
for p ≥ pc?

12.3 Cluster Labeling

Your visual algorithm for determining the existence of a connected path is probably very sophisti-
cated. Although PercolationApp helps us to estimate various quantities for a single configuration,
we need to average over many configurations to obtain quantitative results. Hence, we need to
develop an algorithm that finds the clusters quickly. In the following, we will find that this task
is not straightforward because the assignment of a site to a cluster is a global rather than a local
property of the site.

We first consider the cluster labeling algorithm of Hoshen and Kopelman. The algorithm can
best be described by an example. Consider the configuration shown in Figure 12.8. The array
site stores the occupancy of the sites; an occupied site initially is assigned the value −1 and an
unoccupied site is assigned the value −2. The array site is a one-dimensional array even though
the lattice is two dimensional so that we can refer to each site by a single index to make the coding
easier. The site index at (x,y) is x + L*y.

We assign cluster labels to sites beginning at the lower left corner and continue from left to
right. Because the lower left hand corner site in Figure 12.8 is occupied, we assign to it cluster

CHAPTER 12. PERCOLATION 489

00

1

22

22

22

2

22

22

22

2

2

3

3

44

4

5

55

66 8

(a)

00

1

22

22

22

2

22

22

22

2

2

2

2

22

2

2

22

66 3

(b)

0 1

6 7

0 1

26

Figure 12.8: A percolation configuration on a square lattice with L = 7. Site coordinates are
measured from the origin at the lower left corner (0, 0). Part (a) shows the improper cluster labels
initially assigned to the sites using the Hoshen-Kopelman algorithm. Part (b) shows the proper
cluster labels.

label 0, the first cluster label. The next site is empty, and hence is not labeled. The next occupied
site in the first row is at x = 2. Because its left neighbor is unoccupied, we assign to it the next
available cluster label, label 1. The assignment of cluster labels to the sites in the remainder of
the row is straightforward, and we proceed to the first site of the second row. Because this site is
occupied and its nearest neighbor in the preceding row is labeled 0, we assign label 0 to site[7].
We continue from left to right along the second row checking the occupancy of each site. If a site
is occupied, we check the occupancy of its nearest neighbors in the previous row and column. If
neither neighbor is occupied, we assign the next available cluster label. If only one nearest neighbor
site is occupied, the site is assigned the label of its occupied neighbor. For example, site[8] at
(1,1) is assigned label 0 because its occupied neighbor, site[7] has label 0.

The initial difficulty arises when we come to an occupied site at which two clusters coalesce
and cluster labels need to be reassigned. This case first occurs at site[12] at (x, y) = (5, 1);
its two neighbors in the previous row and column have labels 2 and 3, respectively. We define
the proper cluster label assignment at site[12] to be the smaller of labels 2 and 3. Hence
site[12] is assigned cluster label 2 and label 3 should be reassigned to label 2. It is inefficient to
continually relabel the clusters, because there likely will be further reassignments. Hence, we delay
the reassignment of cluster labels until the entire lattice is surveyed, and instead, keep track of the
connections of the labels through a label tree. We introduce the array properLabel to distinguish
proper and improper labels and provide their connections. Again, it is easier to explain the use
of this array by considering the configuration shown in Figure 12.8. Before we came to site[12],
labels 0 through 3 were proper labels, and we set

properLabel[0] = 0, properLabel[1] = 1, properLabel[2] = 2, properLabel[3] = 3. (12.6)

At site[12] where labels 2 and 3 are linked, we set properLabel[3] = 2. This reassignment of
properLabel[3] tells us that label 3 is improper, and the value of properLabel[3] tells us that
label 3 is linked to label 2. Note that the argument i of properLabel[i] is always greater than
or equal to the value of properLabel[i].

This procedure is still not complete. What should we do when we come to a site with two

CHAPTER 12. PERCOLATION 490

previously labeled neighbors one or both of which are improper? For example, consider site[25]
at (4,3) which has two occupied neighbors with labels 4 and 3. We might be tempted to assign
site[25] the label 3 and set properLabel[4] = 3. However, instead of assigning to a site the
minimum label of its two neighbors, we should assign to it the minimum of the proper labels of the
two neighboring sites. In addition, if the two neighboring sites have different proper labels, then
we should set properLabel of the maximum proper label equal to the minimum proper label. In
this example, we have properLabel[5] = 2.

This version of the Hoshen-Kopelman cluster algorithm is implemented in class Clusters.
There are five important arrays. Each element of site is initially either −1 or −2 indicating
whether the site is occupied or not. Later site[i] will hold the cluster label for site i. Given
the site i we can calculate x and y by x = i % L and y = i/L. The array elements nn[i][0] and
nn[i][1] give the left and down neighbors of site i, respectively. Because there are no sites to the
left of the first column and below the first row, these neighbors are assigned the value N which is
one greater than the largest value of i, and site[N] is assigned the value −2 which indicates an
unoccupied site. The array element next[i] is the next site after i in the cluster containing i. If
next[i] == i, then there are no more sites in this cluster. The ordering of the sites in a cluster
is determined by the order used in labeling the sites. The array first is indexed by cluster labels
and gives the first site in a cluster. The array properLabel gives the proper label for any label.

Listing 12.2: The Clusters class which implements the Hoshen-Kopelman algorithm.
/∗ Uses Hoshen−Kopelman algorithm for cluster labeling ∗/
package org.opensourcephysics.sip.ch12;
import org.opensourcephysics.controls.Control;
import org.opensourcephysics.frames.PlotFrame;

public class Clusters {
int [] site , next;
int [][] nn;
int L, N;
int [] properLabel, first ;
int clusterNumber = 0;
double p;
double pInfinity = 0;
double connectednessLength = 0;
double spanProbability = 0;
double meanSize = 0;
double clusterDistribution [];
int numberOccupied = 0;
int numberOfTrials = 0;
public void initialize () {

N = L∗L;
setNeighborTable();
reset ();

}

public void setNeighborTable() {
nn = new int[N][2];
for(int i = 0;i<N;i++) {

CHAPTER 12. PERCOLATION 491

nn[i][0] = i−1; // left neighbor
nn[i][1] = i−L; // down neighbor

}
for(int j = 0;j<L;j++) { // correct for fixed B.C.

nn[j∗L][0] = N; // N indicates a site outside lattice
nn[j][1] = N;

}
}

public void newLattice() {
numberOfTrials++;
clusterNumber = 0;
numberOccupied = 0;
site = new int[N+1];
next = new int[N]; // index of next is a site number
site [N] = −2; // indicates a site not in the lattice
properLabel = new int[N];
first = new int[N]; // index of first is a cluster number
for(int i = 0;i<N;i++) {

if (Math.random()<p) {
site [i] = −1;
numberOccupied++;

} else {
site [i] = −2; // not occupied

}
first [i] = −1;

}
assignLabels ();
accumulateAverages();

}

public void assignLabels() {
for(int i = 0;i<N;i++) {

if (site [i]==−1) {
if (site [nn[i][0]]+ site [nn[i][1]]==−4) { // new cluster, left and down site not occupied

site [i] = clusterNumber;
properLabel[clusterNumber] = clusterNumber;
clusterNumber++;

} else {
merge(i);

}
}

}
for(int i = 0;i<N;i++) {

if (site [i]>=0) {
int properLabel = findProperLabel(site[i]); // assign proper labels
site [i] = properLabel;
if (first [properLabel]==−1) { // first site in this cluster

first [properLabel] = i;
next[i] = i ; // no next site

CHAPTER 12. PERCOLATION 492

} else {
int temp = first[properLabel];
first [properLabel] = i;
next[i] = temp;

}
}

}
}

public void merge(int i) {
if ((site [nn[i][0]]>=0)&&(site[nn[i][1]]>=0)) { // both left and lower neighbors occupied and labeled

minimumLabel(i);
} else if (site [nn[i][0]]>=0) {

site [i] = site [nn[i][0]];
} else {

site [i] = site [nn[i][1]];
}

}

public void minimumLabel(int i) { // both neighbors occupied
if (site [nn[i][0]]==site [nn[i][1]]) {

site [i] = site [nn[i][1]];
} else { // find minimum cluster label

int leftProper = findProperLabel(site[nn[i][0]]);
int downProper = findProperLabel(site[nn[i][1]]);
int maxLabel = Math.max(leftProper, downProper);
int minLabel = Math.min(leftProper, downProper);
site [i] = minLabel;
if (minLabel!=maxLabel) {

properLabel[maxLabel] = minLabel;
}

}
}

public int findProperLabel(int label) { // recursive method
if (properLabel[label]==label) {

return label;
} else {

return findProperLabel(properLabel[label]);
}

}

public void accumulateAverages() {
double s2sum = 0;
double ssum = 0;
double xi2 = 0;
boolean span = false;
for(int label = 0;label<clusterNumber;label++) {

if (first [label]>=0) { // cluster exists with this label
boolean left = false;

CHAPTER 12. PERCOLATION 493

boolean right = false;
double xbar = 0;
double ybar = 0;
int size = 0;
int j = first [label];
int i ;
do {

i = j ;
int x = i%L;
int y = i/L;
if (x==0) {

left = true;
} else if (x==L−1) {

right = true;
}
xbar += x; // find center of mass
ybar += y;
size++;
j = next[i];

} while(i!=j);
if (left &&right) { //cluster spans horizontally

if (! span) {
spanProbability++;
span = true;

}
pInfinity += (1.0∗size)/numberOccupied;

} else {
clusterDistribution [size]++;
s2sum += 1.0∗(size∗size);
ssum += 1.0∗size;
xbar = xbar/size;
ybar = ybar/size;
double r2sum = 0;
j = first [label];
do {

i = j ;
r2sum += Math.pow(i%L−xbar, 2)+Math.pow(i/L−ybar, 2);
j = next[i];

} while(i!=j);
xi2 += r2sum∗size;

}
} // end sum over clusters

}
connectednessLength += Math.sqrt(xi2/s2sum);
meanSize += s2sum/ssum;

}

public void reset() {
pInfinity = 0;
connectednessLength = 0;

CHAPTER 12. PERCOLATION 494

spanProbability = 0;
meanSize = 0;
numberOccupied = 0;
numberOfTrials = 0;
clusterDistribution = new double[N];

}

public void computeAverages(Control control) {
control . println(”\n”+”p = ”+p+” L = ”+L);
control . println(”Number of trials = ”+numberOfTrials);
control . println(”Spanning probability = ”+spanProbability/numberOfTrials);
control . println(”Probability of being in spanning cluster = ”+pInfinity/numberOfTrials);
control . println(”Mean size = ”+meanSize/numberOfTrials);
control . println(”Connecteness Length = ”+connectednessLength/numberOfTrials);

}

public void distribution(PlotFrame plotFrame) {
plotFrame.clearData();
for(int size = 1; size<L∗L;size++) {

if (clusterDistribution [size]>0) {
plotFrame.append(0, Math.log(size), Math.log(clusterDistribution[size]/(numberOfTrials∗L∗L)));

}
}
plotFrame.setVisible(true);

}
}

A more efficient version of the Hoshen-Kopelman algorithm written has been given by Stauffer and
Aharony.

Problem 12.6. Test of the cluster labeling algorithm
Write a target class for Clusters and add a method to Clusters to display the site labels for a
8 × 8 lattice. Call this method before the labels are assigned; in method assignLabels after the
labels have been assigned, but before each site is assigned the proper label; and after each site
is assigned a proper label. Run your application and check that it is working correctly and you
understand the Hoshen-Kopelman algorithm.

After the clusters are labeled, we can obtain a number of geometrical quantities of interest.
The Clusters class includes a method to calculate the spanning probability P∞, the mean cluster
size S, the mean connectedness length ξ, and the cluster size distribution, ns. The mean cluster
size S is computed from the relation

S =
∑

i m2(i)∑
i m(i)

. (12.7)

where m(i) is the number of sites in cluster i. Convince yourself that (12.7) is equivalent to the
definition (12.5) of S. Note that the spanning cluster is not included in the sums in (12.7).

It is convenient to associate a characteristic linear dimension or connectedness length ξ(p) with
the clusters. One way to do so is to define the radius of gyration Rs of a single cluster of s particles

CHAPTER 12. PERCOLATION 495

as

R2
s =

1
s

s∑
i=1

(ri − r)2, (12.8)

where

r =
1
s

s∑
i=1

ri, (12.9)

and ri is the position of the ith site in the same cluster. The quantity r is the familiar definition
of the center of mass of the cluster. From (12.8), we see that Rs is the root mean square radius of
the cluster measured from its center of mass.

The connectedness length ξ can be defined as an average over the radii of gyration of all the
finite clusters. To find the appropriate average for ξ, consider a site on a cluster of s sites. The site
is connected to s−1 other sites and the mean square distance to these sites is R2

s. The probability
that a site belongs to a cluster of site s is ws = sns. These considerations suggest that a reasonable
definition of ξ is

ξ2 =
∑

s(s − 1)wsR
2
s∑

s(s − 1)ws
. (12.10)

To simplify the expression for ξ, we write s instead of s − 1, and let ws = sns:

ξ2 =
∑

s s2 nsR
2
s∑

s s2 ns
(12.11)

As before, the sum in (12.11) is over only nonspanning clusters.
In Problem 12.7 we apply the Hoshen-Kopelman cluster algorithm to a more systematic study

of site percolation.

Problem 12.7. Applications of the cluster labeling algorithm

a. Modify your target class from Problem 12.6 to display the results from the Clusters class. Add
code to your classes to determine if a spanning cluster exists. Assume that a spanning cluster
spans the lattice both horizontally and vertically. Collect data for P∞, S, and ξ for p = 0.55 to
p = 0.65 for L = 8, 32, and 128. Also compute Pspan(p), the probability that a configuration
spans. Average over at least 100 configurations.

b. How does the qualitative behavior of Pspan(p) change with increasing L? At what value of p is
Pspan ≈ 0.5 for each value of L? Call this value pc(L). How strongly does pc(L) depend on L?

c. Compute P∞ for p = pc. Use either the estimated value of pc(L) determined in part (b) or
the known value pc ≈ 0.5927. What is the qualitative dependence of P∞(p)? Is P∞(p = pc)
an increasing or decreasing function of L? (Discard those configurations that do not have a
spanning cluster.)

d. What is the qualitative p-dependence of S(p)? How does S(p = pc) depend on L?

CHAPTER 12. PERCOLATION 496

e. Plot ξ(p) and discuss its qualitative dependence on p. Is ξ(p) a monotonically increasing or
decreasing function of p for p < pc and p > pc? Modify your code to also display the results for
ξ(p) when the largest nonspanning cluster is not included. Does the largest nonspanning cluster
make the dominant contribution to the sum? Determine its contribution for a few values of p
near pc.

f. Modify your calculation of the averages so that for p < pc your program discards those configu-
rations that contain a spanning cluster, and for p > pc it discards those configurations that do
not have a spanning cluster. Then repeat parts (d) and (e). Do any of your conclusions change?

g. Consider the cluster distribution, ns(p). Consider p = pc and p = pc ± 0.1 for L = 8, 32, and
128 and average over at least 100 configurations. Why is ns a decreasing function of s? Does
ns decrease more quickly for p = pc or for p �= pc?

12.4 Algorithm of Newman and Ziff

We now discuss a modification of the Hoshen-Kopelman algorithm based on work by Newman
and Ziff. In the Hoshen-Kopelman algorithm the clusters for a given configuration at a particular
value of p are determined. At each value of p the analysis must be repeated. In the Newman-Ziff
algorithm the clusters are labeled continuously as we randomly occupy a new site on the lattice.
Because p = n/L2, where n is the number of occupied sites, p increases by 1/L2 each time we
occupy a new site. As each site is occupied, we determine whether it becomes a new cluster, a
neighbor of an existing cluster, or whether it bridges two or more clusters, thus leading to new
cluster labels. The procedure is similar to that of the Hoshen-Kopelman algorithm except that we
must consider all four neighbors, and need to be prepared to merge more than two clusters. Because
it would be inefficient to relabel all the sites by the proper labels after each site is added, we keep
track of the clusters as we occupy each new site. To do so we update the first and next arrays
continuously and introduce another array, last which returns the last site in a cluster. When two
clusters merge, we set next[last[minLabel]] equal to first[maxLabel] and [last[minLabel]
equal to last[maxLabel]. We also set textttfirst[maxLabel] equal to −1 to indicate that maxLabel
is no longer a proper label.

As an example, suppose two clusters contain the following sites: A = {7, 3, 17, 22, 14} and
B = {30, 31, 8} and the proper label for A is 20 and the proper label for B is 10. Thus, minLabel
= 10 and maxLabel = 20, which leads to last[10] = 8, [last[20] = 14, and [first[20] = 7.
We want the combined cluster to be {30, 31, 8, 7, 3, 17, 22, 14} with a proper label of 10. Thus,
we set next[last[minLabel]] = next[last[10]] = next[8] equal to 7; [last[minLabel] =
last[10] equal to last[maxLabel] = last[20] = 14; and first[maxLabel] = first[20] equal
to −1. If there is a third cluster connected by the new occupation of a site, then this procedure
must be repeated with the just combined cluster and the third cluster. This procedure would be
repeated again if a fourth cluster is involved.

Because we wish to compute averages at many values of p, the accumulated data should
be stored in arrays. The variable index can be used to index the arrays so that the array ele-
ment valueOfP[index] is the value of p corresponding to index. Also because we do not want
to compute averages for the entire range of p, the program is written so that it computes aver-
ages from pMin to pMax at intervals of p separated by dp. Two classes, FastPercolation and

CHAPTER 12. PERCOLATION 497

FastPercolationApp, which implement the Newman-Ziff algorithm can be downloaded from the
text website.

Problem 12.8. Applications of the Newman-Ziff cluster labeling algorithm

a. Determine the physical quantities discussed in Problem 12.7 using the Newman-Ziff algorithm.
How does the speed of the Newman-Ziff algorithm compare to that of the Hoshen-Kopelman
algorithm?

b. Compute the standard error of the mean for each quantity computed and estimate how many
configurations need to be be used to obtain 5% accuracy. Do you need more configurations near
pc?

12.5 Critical Exponents and Finite Size Scaling

We are familiar with different phases of matter from our everyday experience. The most familiar
example is water which can exist as a gas, liquid, or solid. It is well known that water changes from
one phase to another at a well defined temperature and pressure, for example, the transition from
ice to liquid water occurs at 0 ◦C at atmospheric pressure. Such a change of phase is an example
of a thermodynamic phase transition. Most substances also exhibit a critical point. For example,
beyond a particular temperature and pressure, it is not possible to distinguish between the liquid
and gaseous phases and the phase boundary terminates.

Another example of a critical point occurs in magnetic systems at the Curie temperature Tc

and zero magnetic field. We know that at low temperatures some substances such as iron exhibit
ferromagnetism, a spontaneous magnetization in the absence of an external magnetic field. If we
raise the temperature of a ferromagnet, the spontaneous magnetization decreases and vanishes
continuously at a critical temperature Tc. For T > Tc, the system is a paramagnet. In Chapter 15
we will use Monte Carlo methods to investigate the behavior of a magnetic system near the magnetic
critical point.

In the following, we will find that the properties of the geometrical phase transition in perco-
lation are qualitatively similar to the properties of the critical point in thermodynamic transitions.
We will see that in the vicinity of a critical point, the qualitative behavior of the system is governed
by the occurrence of long-range correlations.

We have found that the essential physics near the percolation threshold is associated with the
existence of large but finite clusters. For example, for p �= pc, we found in Problem 12.7d that ns

decays rapidly with s. However for p = pc, the s-dependence of ns is qualitatively different, and
ns decreases much more slowly. This different behavior of ns at p = pc is due to the presence of
clusters of all length scales, for example, the “infinite” spanning cluster and the finite clusters of
all sizes. We also found (see Problem 12.7e) that the mean connectedness length ξ(p) is finite, and
an increasing function of p for p < pc and a decreasing function of p for p > pc (see Figure 12.9).
Moreover, we know that ξ(p = pc) is approximately equal to L and hence diverges as L → ∞.
These qualitative considerations lead us to conjecture that in the limit L → ∞, ξ(p) grows rapidly

CHAPTER 12. PERCOLATION 498

p
0.0 0.1 0.4 0.6 0.8 1.0

ξ(p)

Figure 12.9: Qualitative p-dependence of the connectedness length ξ(p). The divergent behavior
of ξ(p) in the critical region is characterized by the exponent ν (see (12.12)).

in the critical region, |p− pc| � 1. We can describe the quantitative behavior of ξ(p) for p near pc

by introducing the critical exponent ν, defined by the relation

ξ(p) ∼ |p − pc|−ν . (12.12)

Of course, there is no a priori reason why the divergence of ξ(p) can be characterized by a simple
power law. Note that the exponent ν is assumed to be the same above and below pc.

How do the other quantities that we have considered behave in the critical region in the limit
L → ∞? According to the definition (12.2) of P∞, P∞ = 0 for p < pc and is an increasing function
of p for p > pc. We conjecture that in the critical region, the increase of P∞ with increasing p is
characterized by the exponent β defined by the relation

P∞(p) ∼ (p − pc)β . (12.13)

Note that P∞ is assumed to approach zero continuously as p approaches pc from above, that is, the
percolation transition is an example of a continuous phase transition. In the language of critical
phenomena, P∞ is an example of an order parameter . We see that P∞ is nonzero in the ordered
phase, p ≥ pc and zero in the disordered phase, p < pc.

The mean number of sites in the finite clusters, S(p), also diverges in the critical region. Its
critical behavior is written as

S(p) ∼ |p − pc|−γ , (12.14)

which defines the critical exponent γ. The common critical exponents for percolation are summa-
rized in Table 12.1. The analogous critical exponents of a magnetic critical point also are shown.

CHAPTER 12. PERCOLATION 499

Quantity Functional form Exponent d = 2 d = 3
Percolation
order parameter P∞ ∼ (p − pc)β β 5/36 0.4
mean size of finite clusters S(p) ∼ |p − pc|−γ γ 43/18 1.8
connectedness length ξ(p) ∼ |p − pc|−ν ν 4/3 0.9
cluster numbers ns ∼ s−τ (p = pc) τ 187/91 2.2
Ising model
order parameter M(T) ∼ (Tc − T)β β 1/8 0.32
susceptibility χ(T) ∼ |T − Tc|−γ γ 7/4 1.24
correlation length ξ(T) ∼ |T − Tc|−ν ν 1 0.63

Table 12.1: Several of the critical exponents for the percolation and magnetism phase transitions
in d = 2 and d = 3 dimensions. Ratios of integers correspond to known exact results. The critical
exponents for the Ising model are discussed in Chapter 15.

Because we can simulate only finite lattices, a direct fit of the measured quantities ξ, P∞, and
S(p) to their assumed critical behavior for an infinite lattice would not yield good estimates for
the corresponding exponents ν, β, and γ (see Problem 12.9a). The problem is that if p is close
to pc, the connectedness length of the largest cluster becomes comparable to L, and the nature
of the clusters is affected by the finite size of the system. In contrast, for p far from pc, ξ(p) is
small in comparison to L, and the measured values of ξ, and hence the values of other physical
quantities, are not appreciably affected by the finite size of the lattice. Hence for p � pc and
p
 pc, the properties of the system are indistinguishable from the corresponding properties of a
truly macroscopic system (L → ∞). However, if p is close to pc, ξ(p) is comparable to L and the
nature of the system differs from that of an infinite system. In particular, a finite lattice cannot
exhibit a true phase transition characterized by divergent physical quantities. Instead, ξ reaches a
finite maximum at p = pc(L).

The effects of the finite system size can be made more quantitative by the following argument.
Consider for example, the critical behavior (12.13) of P∞. If ξ >> 1, but is much less than L,
the power law behavior given by (12.13) is expected to hold. However, if ξ is comparable to L,
ξ cannot change appreciably and (12.13) is no longer applicable. This qualitative change in the
behavior of P∞ and other physical quantities occurs for

ξ(p) ∼ L ∼ |p − pc|−ν . (12.15)

We invert (12.15) and write

|p − pc| ∼ L−1/ν . (12.16)

The difference |p − pc| in (12.16) is the “distance” from the percolation threshold point at which
finite size effects occur. Hence, if ξ and L are approximately the same size, we can replace (12.13)
by the relation

P∞(p = pc) ∼ L−β/ν . (L → ∞) (12.17)

The relation (12.17) between P∞ and L at p = pc is consistent with the fact that a phase transition
is defined only for infinite systems.

CHAPTER 12. PERCOLATION 500

One implication of (12.17) is that we can use it to determine the critical exponents. This
method of analysis is known as finite size scaling . Suppose that we generate percolation configu-
rations at p = pc for different values of L and analyze P∞ as a function of L. If our values of L are
sufficiently large, we can use the asymptotic relation (12.17) to estimate the ratio β/ν. A similar
analysis can be used for S(p) and other quantities of interest. We use this method in Problem 12.9.

Problem 12.9. Finite size scaling analysis of critical exponents

a. Compute P∞ at p = pc for at least 100 configurations for L = 10, 20, 40, and 80. Include in
your average only those configurations that have a spanning cluster. Best results are obtained
using the value of pc for the infinite square lattice, pc ≈ 0.5927. Plot lnP∞ versus lnL and
estimate the ratio β/ν.

b. Use finite size scaling arguments to determine the dependence of the mean cluster size S on L
at p = pc. Average S over the same configurations as considered in part (a). Remember that S
is the mean number of sites in the nonspanning clusters.

c. Find the mass (number of particles) M in the spanning cluster at p = pc as a function of L. Use
the same configurations as in part (a). Determine an exponent from a plot of lnM versus lnL.
This exponent is called the fractal dimension of the cluster and is discussed in Chapter 13.

We found in Section 12.2 that the numerical value of the percolation threshold pc depends on
the symmetry and dimension of the lattice, for example, pc ≈ 0.5927 for the square lattice and
pc = 1/2 for the triangular lattice. A remarkable feature of the power law dependencies summarized
in Table 12.1 is that the values of the critical exponents do not depend on the symmetry of the
lattice and are independent of the existence of the lattice itself, for example, they are identical
for the continuum percolation model discussed in Problem 12.4. Moreover, it is not necessary to
distinguish between the exponents for site and bond percolation. In the vocabulary of critical
phenomena, we say that site, bond, and continuum percolation all belong to the same universality
class and that their critical exponents are identical for the same spatial dimension.

Another important idea in critical phenomena is the existence of relations between the critical
exponents. An example of such a scaling law is

2β + γ = νd, (12.18)

where d is the spatial dimension of the lattice. The scaling law (12.18) indicates that the univer-
sality class depends on the spatial dimension. A more detailed discussion of finite size scaling and
the scaling laws can be found in Chapter 15 and in the references.

12.6 The Renormalization Group

In Section 12.5, we studied the properties of various quantities on different length scales to deter-
mine the values of the critical exponents. The idea of examining physical quantities near the critical
point on different length scales can be extended beyond finite size scaling and is the basis of the
renormalization group method, probably the most important new method developed in theoretical
physics in the last several decades. Kenneth Wilson was honored with the Nobel prize in physics

CHAPTER 12. PERCOLATION 501

in 1981 for his contributions to the development of the renormalization group method. Although
the method was first applied to thermodynamic critical points, it is simpler to understand the
method in the context of the percolation transition. We will find that the renormalization group
method yields the critical exponents directly, and in combination with Monte Carlo methods, is
more powerful than Monte Carlo methods alone.

To introduce the method, consider a photograph of a percolation configuration generated at
p = p0 < pc. If we view the photograph from further and further distances, what would we see?
Convince yourself that when you are far from the photograph, you would not be able to distinguish
occupied sites that are adjacent to each other and would not be able to observe single site clusters.
In addition, branches emanating from larger clusters and narrow bridges connecting large “blobs”
of occupied sites would be lost in your distant view of the photograph. Hence for p0 < pc, the
distant photograph looks like a percolation configuration generated at a value of p = p1 less than
p0. In addition, the connectedness length ξ(p1) of the remaining clusters is smaller than ξ(p0). If we
took a snapshot of the distant photograph, enlarge it so that it is the same size as the original, and
then view the new photograph from afar, it would look like a percolation configuration generated
at a value of p = p2 less than p1. If we were to continue this process, we eventually would be
unable to distinguish any clusters, and the photograph would appear as if the configurations were
generated at the trivial fixed point p = 0.

What would we observe as we move away from the photograph for p0 > pc? The same
reasoning implies that we would begin to have difficulty seeing small regions of unoccupied sites
as we move further away from the photograph. These regions of unoccupied sites become less
discernible and the configuration would look as though a larger percentage of the lattice were
occupied. Hence, the photograph would look like a configuration generated at a value of p = p1

greater than p0 with ξ(p1) < ξ(p0). Similar reasoning suggests that if we continue this process,
the configurations in the new photographs would eventually appear to be at the other trivial fixed
point p = 1.

What would we observe at p0 = pc? At the percolation threshold, all length scales are present,
and it does not matter which length scale we use to observe the system. Hence, the configurations
would appear to be similar regardless of the distance at which we observe the photograph. In this
sense, pc is a special, nontrivial fixed point.

We now consider a way of using a computer to change the configurations in a way that is similar
to the procedure that we have just described. Consider a square lattice that is partitioned into
cells or blocks that cover the lattice (see Figure 12.10). If we view the lattice from the perspective
in which the sites in a cell merge to become a new supersite or renormalized site, then the new
lattice has the same symmetry as the original lattice. However, the replacement of cells by the
new sites has changed the length scale — all distances are now smaller by a factor of b, where b is
the linear dimension of the cell. Hence, the effect of a “renormalization” is to replace each group
of sites by a single renormalized site and to rescale the connectedness length for the renormalized
lattice by a factor of b.

How can we decide whether the renormalized site is occupied or not? Because we want to
preserve the main features of the original lattice and hence its connectedness (and its symmetry),
we assume that a renormalized site is occupied if the original group of sites spans the cell. For
simplicity, we adopt the vertical spanning criterion. The effect of performing a renormalization
transformation on typical percolation configurations for p above and below pc is illustrated in

CHAPTER 12. PERCOLATION 502

Figure 12.10: An example of a b = 4 cell used on the square lattice. The cell contains b2 sites
which are rescaled to a single supersite after a renormalization group transformation.

Figures 12.11 and 12.12 respectively. In both cases, the effect of the successive transformations is
to move the system away from pc. We see that for p = 0.7, the effect of the transformations is to
drive the system toward p = 1. For p = 0.5, the trend is to drive the system toward p = 0. Because
we began with a finite lattice, we cannot continue the renormalization transformation indefinitely.

The class RGApp implements a visual interpretation of the renormalization group. This class
creates four windows with the original lattice in the first window and three renormalized lattices
in the other three windows.

Listing 12.3: The visual renormalization class.
package org.opensourcephysics.sip.ch12;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;
import java.awt.Color;

public class RGApp extends AbstractCalculation {
LatticeFrame originalLattice = new LatticeFrame(”Original Lattice”);
LatticeFrame block1 = new LatticeFrame(”First Blocked Lattice”);
LatticeFrame block2 = new LatticeFrame(”Second Blocked Lattice”);
LatticeFrame block3 = new LatticeFrame(”Third Blocked Lattice”);
public RGApp() {

setLatticeColors(originalLattice);
setLatticeColors(block1);
setLatticeColors(block2);
setLatticeColors(block3);

}

public void calculate() {
int L = control.getInt(”L”);
double p = control.getDouble(”p”);
newLattice(L, p, originalLattice);
block(originalLattice , block1, L/2); // block original lattice
block(block1, block2, L/4); // next blocking
block(block2, block3, L/8); // final blocking
originalLattice . setVisible (true);
block1. setVisible (true);
block2. setVisible (true);

CHAPTER 12. PERCOLATION 503

L = 16 L' = 8

L' = 4 L' = 2

Figure 12.11: A percolation configuration generated at p = 0.7. The original configuration has
been renormalized three times by transforming cells of four sites into one new supersite. What
would be the effect of an additional transformation?

block3. setVisible (true);
}

public void reset() {
control .setValue(”L”, 64);
control .setValue(”p” , 0.6);

}

public void newLattice(int L, double p, LatticeFrame lattice) { // new lattice
lattice . resizeLattice (L, L);
for(int i = 0;i<L;i++) {

for(int j = 0;j<L;j++) {
if (Math.random()<p) {

lattice .setValue(i , j , 1);
}

}
}

}

CHAPTER 12. PERCOLATION 504

L =16

L' = 4 L' = 2

L' = 8

Figure 12.12: A percolation configuration generated at p = 0.5. The original configuration has
been renormalized three times by transforming blocks of four sites into one new site. What would
be the effect of an additional transformation?

public void block(LatticeFrame lattice, LatticeFrame blockedLattice, int Lb) {
blockedLattice. resizeLattice (Lb, Lb);
for(int ib = 0;ib<Lb;ib++) {

for(int jb = 0;jb<Lb;jb++) {
int leftCellsProduct = lattice .getValue(2∗ib, 2∗jb)∗ lattice .getValue(2∗ib, 2∗jb+1);
int rightCellsProduct = lattice .getValue(2∗ib+1, 2∗jb)∗lattice .getValue(2∗ib+1, 2∗jb+1);
if (leftCellsProduct==1||rightCellsProduct==1) {

blockedLattice.setValue(ib , jb , 1); // vertical spanning rule
}

}
}

}

public void setLatticeColors(LatticeFrame lattice) {
lattice .setIndexedColor(0, Color.WHITE);
lattice .setIndexedColor(1, Color.BLUE);

}

CHAPTER 12. PERCOLATION 505

Figure 12.13: The seven (vertically) spanning configurations on a b = 2 cell.

public static void main(String[] args) {
CalculationControl.createApp(new RGApp());

}
}

Problem 12.10. Visual renormalization group
Use RGApp with L = 64 to estimate the value of the percolation threshold. For example, confirm
that for small p, for example, p = 0.4, the renormalized lattice almost always renormalizes to
a nonspanning cluster. What happens for p = 0.8? How can you use the properties of the
renormalized lattices to estimate pc?

Although a visual implementation of the renormalization group allows us to estimate pc, it
does not allow us to estimate the critical exponents. In the following, we present a renormaliza-
tion group method that allows us to obtain pc and the critical exponent ν associated with the
connectedness length. This analysis follows closely the method presented by Reynolds et al.

We adopt the same procedure as before, that is, we replace the bd sites within a cell of linear
dimension b by a single site that represents whether or not the original lattice sites span the cell.
The second step is to determine the parameters that specify the new renormalized configuration.
We make the simple approximation that each cell is independent of all the other cells and is
characterized only by the probability p′ that the cell is occupied. The relation between p and
p′ (the renormalization transformation) reflects the fact that the basic physics of percolation is
connectedness, because we define a cell to be occupied only if it contains a set of sites that span
the cell. If the sites are occupied with probability p, then the cells are occupied with probability
p′, where p′ is given by a renormalization transformation or a recursion relation of the form

p′ = R(p). (12.19)

The quantity R(p) is the total probability that the sites form a spanning path.
An example will make the formal relation (12.19) more clear. In Figure 12.13, we show the

seven vertically spanning site configurations for a b = 2 cell. The probability p′ that the renormal-

CHAPTER 12. PERCOLATION 506

ized site is occupied is given by the sum of the probabilities of all the spanning configurations:

p′ = R(p) = p4 + 4p3(1 − p) + 2p2(1 − p)2. (12.20)

In general, the probability p′ of the occupied renormalized sites is different than the occupation
probability p of the original sites. For example, suppose that we begin with p = p0 = 0.5. After a
single renormalization transformation, the value of p′ from (12.20) is p1 = p′ = R(p0 = 0.5) = 0.44.
If we perform a second renormalization transformation, we have p2 = R(p1) = 0.35. It is easy to
see that further transformations drive the system to the fixed point p = 0. Similarly, if we begin
with p = p0 = 0.7, we find that successive transformations drive the system to the fixed point
p = 1. This behavior is qualitatively similar to what we observed in the visual renormalization
group.

To find the nontrivial fixed point associated with the critical threshold pc, we need to find the
special value of p such that

p∗ = R(p∗). (12.21)

For the recursion relation (12.20), we find that the solution of the fourth degree equation for p∗

yields the two trivial fixed points, p∗ = 0 and p∗ = 1, and the nontrivial fixed point p∗ = 0.61804
which we associate with pc. This calculated value of p∗ for b = 2 should be compared with
pc ≈ 0.5927.

To calculate the critical exponent ν, we recall that all lengths are reduced on the renormalized
lattice by a factor of b in comparison to the lengths in the original system. Hence the connectedness
length transforms as

ξ′ = ξ/b. (12.22)

Because ξ(p) = A|p − pc|−ν for p near pc, where A is a constant, we have

|p′ − p∗|−ν = b−1|p − p∗|−ν , (12.23)

where we have identified pc with p∗. To find the relation between p′ and p near pc, we expand
the renormalization transformation (12.19) in a Taylor series about p∗ and obtain to first order in
(p − p∗):

p′ − p∗ = R(p) − R(p∗) ≈ λ (p − p∗), (12.24)

where

λ =
dR(p = p∗)

dp
. (12.25)

We need to do a little algebra to obtain an explicit expression for ν. We first raise both sides of
(12.24) to the νth power and write

|p′ − p∗|ν = λν(p − p∗)ν . (12.26)

We then compare (12.26) and (12.23) and obtain

b = λν . (12.27)

CHAPTER 12. PERCOLATION 507

Figure 12.14: Example of the interface problem between cells. Two cells that are not connected
at the original site level, but that are connected at the cell level.

Finally, we take the logarithm of both sides of (12.27) and obtain the desired relation for the
critical exponent ν:

ν =
log b

log λ
. (12.28)

As an example, let us calculate λ for a square lattice with b = 2. We write (12.20) in the form
R(p) = − p4 + 2p2. The derivative of R(p) with respect to p yields λ = 4p(1 − p2) = 1.5279 at
p = p∗ = 0.61804. We then use the relation (12.28) to obtain

ν =
log 2
log 1.5279

≈ 1.635. (12.29)

A comparison of (12.29) with the exact result ν = 4/3 (see Table 12.1) in two dimensions shows
remarkable agreement for such a simple calculation. (What would we be able to conclude if we
were to measure ξ(p) directly on a 2 × 2 lattice?) However, the accuracy of our calculation of
ν is not known. What is the nature of our approximations? Our major assumption has been
that the occupancy of each cell is independent of all other cells. This assumption is correct for the
original sites, but after one renormalization, we lose some of the original connecting paths and gain
connecting paths that are not present in the original lattice. An example of this interface problem
is shown in Figure 12.14. Because this surface effect becomes less important with increasing cell
size, one way to improve the renormalization group calculation is to consider larger cells. In
Project 12.14 we combine the renormalization group method with a Monte Carlo approach to
treat still larger cells. In Project 12.13 we consider a cell-to-cell method that does not require large
cells and yields comparable accuracy.

Problem 12.11. Renormalization group method for small cells

a. Enumerate the spanning configurations for a b = 2 cell assuming that a cell is occupied if a
spanning path exists in either the vertical or the horizontal directions. Obtain the recursion
relation and solve for the fixed point p∗. Use either a root finding algorithm or simple trial and
error to find the value of p = p∗ such that R(p) − p is zero. How do p∗ and ν compare to their
values using the vertical spanning criterion?

b. Repeat the simple renormalization group calculation in part (a) using the criterion that a cell
is occupied only if a spanning path exists in both directions.

CHAPTER 12. PERCOLATION 508

c.∗ The association of pc with p∗ is not the only possible one. Two alternatives involve the
derivative R′(p) = dR/dp. For example, we could let pc =

∫ 1

0
pR′(p) dp. Alternatively, we

could choose pc = pmax, where pmax is the value of p at which R′(p) has its maximum value.
Compute pc using these two alternative definitions and the various spanning criteria. In the
limit of large cells, all three definitions should lead to the same values of pc.

d.∗ Enumerate the possible spanning configurations of a b = 3 cell, assuming that a cell is occupied
if a cluster spans the cell vertically. Determine the probability of each configuration, and verify
the renormalization transformation R(p) = p9+9p8q+36p7q2+67p6q3+59p5q4+22p4q5+3p3q6.
Solve the recursion relation (12.21) for p∗. Use this value of p∗ to find the slope λ and the
exponent ν. Then assume a cell is occupied if a cluster spans the cell both vertically and
horizontally and obtain R(p). Determine p∗(b = 3) and ν(b = 3) for the two spanning criteria.
Are your results for p∗ and ν closer to their known values than for b = 2 for the same spanning
criteria?

Problem 12.12. Renormalization group method for triangular lattice

a. There are some difficulties with the renormalization group method we have discussed in the
infinite cell limit, if a cell is said to span when there is a path in one fixed direction (see Ziff). This
problem is absent for the triangular lattice. For this symmetry a cell can be formed by grouping
three sites that form a triangle into one renormalized site. The only reasonable spanning
criterion is that the cell spans if any two sites are occupied. Verify that R(p) = p3 + 3p2(1− p)
and find pc = p∗. How does p∗ compare to the exact result pc = 1/2?

b. Calculate the critical exponent ν and compare its value with the exact result. Explain why b is
given by b2 = 3. Give a qualitative argument why the renormalization group argument might
work better for small cells on a triangular lattice than on a square lattice.

It is possible to improve our renormalization group results for pc and ν by enumerating the
spanning clusters for larger b. However, because the 2b2 possible configurations for a b × b cell
increase rapidly with b, exact enumeration is not practical for b > 7, and we must use Monte Carlo
methods if we wish to proceed further. Two Monte Carlo approaches are discussed in Project 12.14.
The combination of Monte Carlo and renormalization group methods provides a powerful tool for
obtaining information on phase transitions and other properties of materials.

As summarized in Table 12.1, the various critical exponents for percolation in two-dimensions
are known exactly. For example, the exponent ν, corresponding to the divergence of the con-
nectedness length, is ν = 4/3. It is interesting that the argument for this result is algebraic,
even though percolation is a geometrical phenomena. The percolation threshold is known exactly
for the triangular lattice (pc = 1/2). The most accurate estimate of pc for the square lattice is
pc = 0.59274621(13).

12.7 Projects

Most of the following projects require larger systems and more computer resources than the prob-
lems in this chapter, but they are not much more difficult conceptually. More ideas for projects
can be obtained from the references.

CHAPTER 12. PERCOLATION 509

Project 12.13. Cell-to-cell renormalization group method
In Section 12.6 we discussed the cell-to-site renormalization group transformation for a system of
cells of linear dimension b. An alternative transformation is to go from cells of linear dimension b1

to cells of linear dimension b2. For this cell-to-cell transformation, the rescaling length b1/b2 can
be made close to unity. Many errors in a cell-to-cell renormalization group transformation cancel,
resulting in a transformation that is more accurate in the limit in which the change in length scale
is infinitesimal. We can use the fact that the connectedness lengths of the two systems are related
by ξ(p2) = (b1/b2)−1ξ(p1) to derive the relation

ν =
ln b1/b2

lnλ1/λ2
, (12.30)

where λi = dR(p∗, bi)/dp is evaluated at the solution to the fixed point equation, R(b2, p
∗) =

R(b1, p
∗). Note that (12.30) reduces to (12.28) for b2 = 1. Use the results you found in Prob-

lem 12.11d for one of the spanning criteria to estimate ν from a b1 = 3 to b2 = 2 transformation.
Then consider larger values of b2 and b1. Very accurate results for ν can be found for b1 = 5 and
b2 = 4.

Project 12.14. Monte Carlo renormalization group
One way to estimate R(p), the total probability of all the spanning clusters, can be understood

by writing R(p) in the form

R(p) =
N∑

n=1

S(n)PN (n, p), (12.31)

where

PN (n, p) =
(

N

n

)
pnq(N−n), (12.32)

and N = b2. The binomial coefficient
(
N
n

)
= N !/

[
(N − n)!n!

]
represents the number of possible

configurations of n occupied sites and N − n empty sites; PN (n, p) is the probability that n sites
out of N are occupied with probability p. The quantity S(n) is the probability that a random
configuration of n occupied sites spans the cell. A comparison of (12.20) and (12.31) shows that
for b = 2 and the vertical spanning criterion, S(1) = 0, S(2) = 2/6, S(3) = 1, and S(4) = 1. What
are the values of S(n) for b = 3?

We can estimate the probability S(n) by straightforward Monte Carlo methods. One way
to sample S(n) is to add a particle at random to an unoccupied site and check if a spanning
cluster exists. If a spanning cluster does not exist, add another particle at random to a previously
unoccupied site. If a spanning cluster exists after s particles are added, then let S(n) = S(n) + 1
for all n ≥ s and generate a new configuration. After a reasonable number of configurations,
the results for S(n) can be normalized. Of course, this procedure can be made more efficient by
checking for a spanning cluster only after the total number of particles added is near s ∼ p∗N .

a. Write a Monte Carlo program to sample S(n). Store the location of the unoccupied sites in a
separate array. To check your program, first sample S(n) for b = 2 and b = 3 and compare

CHAPTER 12. PERCOLATION 510

your results to the exact results for S(n). Consider larger values of b and determine S(n) for
b = 5, 8, 16, and 32. Because the number of sites in the lattice can become very large, the direct
evaluation of the binomial coefficients using factorials is not possible. One way to proceed is to
approximate the probability of a configuration of n occupied sites by a Gaussian:

PN (n, p) ≈
(

N

n

)
pnq(N−n) ≈ (2πNpq)−

1
2 e−(n−pN)2/2Npq. (12.33)

Because PN (n) is sharply peaked for large b, it is necessary to sample S(n) only near n = p∗N .

b. As pointed out by Newman and Ziff, the Gaussian approximation for PN (n, p) is not sufficiently
accurate for high precision studies. Instead, they used the following method. The binomial
distribution is a maximum for a given N and p when n = nmax = pN . Set this value to 1 for
the moment. Then compute PN (n) iteratively for all other n using

PN (n, p) =

{
PN (N, n − 1, p)N−n+1

n
p

1−p (n > nmax)
PN (N, n + 1, p) n+1

N−n
1−p

p . (n < nmax)
(12.34)

Then calculate the normalization coefficient C =
∑

n PN (n, p) and divide all the PN (n, p) by C
to normalize the probability distribution.

c. It is possible to extrapolate the results for the successive estimates pc(b) and ν(b) to the limit
b → ∞. Finite size scaling arguments (cf. Stauffer and Aharony) suggest that

ν(b) ≈ ν(∞) − c1/ ln b, (12.35a)

and
p∗(b) ≈ pc(∞) − a1 b−1/ν , (12.35b)

for b sufficiently large. The quantities a1 and c1 in (12.35) are fitting parameters. The re-
lation (12.35a) suggests that the sequence ν(b) should be plotted as a function of 1/ ln b and
the extrapolated result should be a straight line with an intercept of ν. The relation (12.35b)
suggests that we should plot pc(b) versus b−1/ν using the value of ν found from (12.35a). How
sensitive are your result for pc to on the assumed value of ν? It is necessary to consider large
cells and do a more sophisticated analysis of ν(b) and p∗(b), to obtain extrapolated values that
are consistent with the exact value ν = 4/3 and the estimate pc = 0.5927.

Project 12.15. Percolation in three dimensions

a. The value of pc for site percolation on the simple cubic lattice is approximately 0.311. Do a
simulation to verify this value. Compute φc, the volume fraction occupied at pc, if a sphere
with a diameter equal to the lattice spacing is placed at each occupied site.

b. Consider continuum percolation in three dimensions where spheres of unit diameter are placed
at random in a cubical box of linear dimension L. Two spheres that overlap are in the same
cluster. The volume fraction occupied by the spheres is given by

φ = 1 − e−ρ4πr3/3, (12.36)

CHAPTER 12. PERCOLATION 511

where ρ is the number density of the spheres, and r is their radius. Write a program to simulate
continuum percolation in three dimensions and find the percolation threshold ρc. Use the Monte
Carlo procedure discussed in Problem 12.4 to estimate φc and compare its value with the value
determined from (12.36). How does φc for continuum percolation compare with the value of φc

found for site percolation in part (a)? Which do you expect to be larger and why?

c. In the Swiss cheese model in three dimensions, we are concerned with the percolation of the space
between the spheres. This model is appropriate for porous rock with the spheres representing
solid material and the space between the spheres representing the pores. Because we need to
compute the connectivity properties of the space between the spheres, we superimpose a regular
grid with lattice spacing equal to 0.1r on the system, where r is the radius of the spheres. If
a point on the grid is not within any sphere, it is “occupied.” The use of the grid allows us to
determine the connectivity between different regions of the pore space. Use your cluster labeling
routine from part (a) to label the clusters, and determine φ̃c, the volume fraction occupied by
the pores at threshold. You might be surprised to find that φ̃c is relatively small. If time
permits, use a finer grid and repeat the calculation to improve the accuracy of your results.

d.∗ Use finite size scaling to estimate the critical percolation exponents for the three models pre-
sented in parts (a)–(c). Are they the same within the accuracy of your calculation?

Project 12.16. Fluctuations of the stock market
Although the fluctuations of the stock market are believed to be Gaussian for long time intervals.
they are not Gaussian for short time intervals. The model of Cont and Bouchaud assumes that
percolation clusters act as groups of traders who influence each other. The sites are occupied with
probability p as usual. Each occupied site is a trader, and clusters are groups of traders (agents)
who buy and sell together an amount proportional to the number s of traders in the cluster.
At each time step each cluster is independently active with probability 2pa and is inactive with
probability 1 − 2pa. If a cluster is active, it buys with probability pb and sells with probability
ps = 1− pb. In the simplest version of the model the change in the price of a stock is proportional
to the difference between supply and demand, that is,

R =
∑
buy

sns −
∑
sell

sns, (12.37)

where the constant of proportionality is taken to be one. If the probability pa is small, at most
one cluster trades at a time, and the distribution P (R) of relative price changes or “returns” scales
as ns(p). In contrast, for large pa, the relative price variation is the sum of many clusters (not
counting the spanning cluster), and the central limit theorem implies that P (R) converges to a
Gaussian for large systems (except at p = pc). Confirm these statements and find the shape of
P (R) for p = pc and pa = 0.25. Variations of the Cont-Bouchaud model can be found in the
references. The application of methods of statistical physics and simulations to economics and
finance is now an active area of research and is commonly known as econophysics.

Project 12.17. Spanning clusters and periodic boundary conditions
For simplicity, we have used open boundary conditions, partly for historical reasons, and partly
because these boundary conditions make it easier to define a spanning cluster. An alternative is
to use periodic boundary conditions and define a spanning cluster as one that wraps all the way

CHAPTER 12. PERCOLATION 512

around the lattice. The use of periodic boundary conditions gives better results for the percolation
threshold pc and the cluster size distribution ns for the same size lattice.

A clever method for detecting cluster wrapping has been employed by Machta et al. We
describe the method for bond percolation, although it is easily applied to site percolation. We
add to each site two integer variables giving the x and y displacements from that site to the site’s
parent in the appropriate tree. When we traverse the tree, we sum these displacements along the
path traversed to find the total displacement to the root site. (We also update all displacements
along the path when we carry out the path compression.) When an added bond connects together
two sites that belong to the same cluster, we compare the total displacements to the root site for
those two sites. If these displacements differ by just one lattice spacing, then cluster wrapping has
not occurred. If they differ by any other amount, cluster wrapping has occurred. [xx this problem
will be finish later xx]

Modify the Newman-Ziff algorithm for use with periodic boundary conditions to estimate pc

and ns and determine if periodic boundary conditions give better results than open boundary
conditions.

Project 12.18. Conductivity in a random resistor network

a. An important critical exponent for percolation is the conductivity exponent t defined by

σ ∼ (p − pc)t, (12.38)

where σ is the conductance (or inverse resistance) per unit length in two dimensions. Consider
bond percolation on a square lattice where each occupied bond between two neighboring sites
is a resistor of unit resistance. Unoccupied bonds have infinite resistance. Because the total
current into any node must equal zero by Kirchhoff’s law, the voltage at any site (node) is equal
to the average of the voltages of all nearest neighbor sites connected by resistors (occupied
bonds). Because this relation for the voltage is the same as the algorithm for solving Laplace’s
equation on a lattice, the voltage at each site can be computed using the relaxation method
discussed in Chapter 10. To compute the conductivity for a given L × L resistor network, we
fix the voltage V = 0 at sites for which x = 0 and fix V = 1 at sites for which x = L + 1. In
the y direction we use periodic boundary conditions. We then compute the voltage at all sites
using the relaxation method. The current through each resistor connected to a site at x = 0
is I = ∆V/R = (V − 0)/1 = V . The conductivity is the sum of the currents through all the
resistors connected to x = 0 divided by L. In a similar way, the conductivity can be computed
from the resistors attached to the x = L + 1 boundary. Write a program to implement the
relaxation method for the conductivity of a random resistor network on a square lattice. An
indirect, but easier way of computing the conductivity, is considered in Problem 13.8.

b. The bond percolation threshold on a square lattice is pc = 0.5. Use your program to compute
the conductivity for a L = 30 square lattice. Average over at least ten spanning configurations
for p = 0.51, 0.52, and 0.53. Note that you can eliminate all bonds that are not part of the
spanning cluster and all occupied bonds connected to only one other occupied bond. Why? If
possible, consider more values of p. Estimate the critical exponent t defined in (12.38).

c. Fix p at p = pc = 1/2 and use finite size scaling to estimate the conductivity exponent t.

CHAPTER 12. PERCOLATION 513

d.∗ Use larger lattices and the multigrid method (see Project 10.26) to improve your results. If you
have sufficient computing resources, compute t for a simple cubic lattice for which pc ≈ 0.247.
(In two dimensions t is the same for lattice and continuum percolation. However, in three
dimensions t can be different.)

References and Suggestions for Further Reading

Joan Adler, “Series expansions,” Computers in Physics 8, 287 (1994). The critical exponents and
the value of pc also can be determined by doing exact enumeration.

I. Balberg, “Recent developments in continuum percolation,” Phil. Mag. 56, 991 (1987). An
earlier paper on continuum percolation is by Edward T. Gawlinski and H. Eugene Stanley
“Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for
non-interacting discs,” J. Phys. A: Math. Gen. 14, L291 (1981). These workers divide the
system into cells and use the Poisson distribution to place the appropriate number of disks
in each cell.

Armin Bunde and Shlomo Havlin, editors, Fractals and Disordered Systems, revised edition,
Springer-Verlag (1996). Chapter 2 by the editors is on percolation.

R. Cont and J.-P. Bouchaud, “Herd behavior and aggregate fluctuations in financial markets,”
cond-mat/9712318.

P. M. C. deOliveira, R. A. Nobrega, and D. Stauffer, “Are the tails of percolation thresholds
Gaussians?,” J. Phys. A 37, 3743–3748 (2004). The authors compute the probability that
there is a spanning cluster at p = pc.

C. Domb, E. Stoll, and T. Schneider, “Percolation clusters,” Contemp. Phys. 21, 577 (1980). This
review paper discusses the nature of the percolation transition using illustrations from a film
of a Monte Carlo simulation of a percolation process.

J. W. Essam, “Percolation theory,” Reports on Progress in Physics 53, 833 (1980). A mathemat-
ically oriented review paper.

Jens Feder, Fractals, Plenum Press (1988). See Chapter 7 on percolation. We discuss the fractal
properties of the spanning cluster at the percolation threshold in Chapter 13.

J. P. Fitzpatrick, R. B. Malt, and F. Spaepen, “Percolation theory of the conductivity of random
close-packed mixtures of hard spheres,” Phys. Lett. A 47, 207 (1974). The authors describe
a demonstration experiment done in a first year physics course at Harvard.

J. Hoshen and R. Kopelman, “Percolation and cluster distribution. I. Cluster multiple labeling
technique and critical concentration algorithm,” Phys. Rev. B 14, 3438 (1976). The original
paper on an efficient cluster labeling algorithm.

Chin-Kun Hu, Chi-Ning Chen, and F. Y. Wu, “Histogram Monte Carlo position-space renormal-
ization group: applications to site percolation,” J. Stat. Phys. 82, 1199–1206 (1996). The
authors use a histogram Monte Carlo method that is similar to the method discussed in

CHAPTER 12. PERCOLATION 514

Project 12.14. A similar Monte Carlo method was used by M. Ahsan Khan, Harvey Gould,
and J. Chalupa, “Monte Carlo renormalization group study of bootstrap percolation,” J.
Phys. C 18, L223 (1985).

J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. M. Chayes, “Invaded cluster algorithm for
Potts models,” Phys. Rev. E 54, 1332–1345 (1996). The authors discuss the definition of a
spanning cluster for periodic boundary conditions.

P. H. L. Martins and J. A. Plascak, “Percolation on two- and three-dimensional lattices,” Phys.
Rev. E 67, 046119-1–6 (2003). The authors use the Newman-Ziff algorithm to compute
various quantities.

Ramit Mehr, Tal Grossman, N. Kristianpoller, and Yuval Gefen,“Simple percolation experiment
in two dimensions,” Am. J. Phys. 54, 271 (1986). A simple experiment for an undergraduate
physics laboratory is proposed.

M. E. J. Newman and R. M. Ziff, “Fast Monte Carlo algorithm for site or bond percolation,”
Phys. Rev. E 64, 016706 (2001).

Peter J. Reynolds, H. Eugene Stanley, and W. Klein, “Large-cell Monte Carlo renormalization
group for percolation,” Phys. Rev. B 21, 1223 (1980). An especially clearly written research
paper. Our discussion on the renormalization group in Section 12.6 is based upon this paper.

Muhammad Sahimi, Applications of Percolation Theory, Taylor & Francis (1994). The emphasis
is on modeling various phenomena in disordered media.

Jean-Philippe Bouchaud and Marc Potters, Theory of Financial Risk and Derivative Pricing:
From Statistical Physics to Risk Management, second edition, Cambridge University Press
92003); Rosario N. Mantegna and H. Eugene Stanley, An Introduction to Econophysics:
Correlations and Complexity in Finance, Cambridge University Press (2000); Johannes Voit,
The Statistical Mechanics of Financial Markets, second edition, Springer (2004). These texts
introduce the general field of econophysics.

Dietrich Stauffer, “Percolation models of financial market dynamics,” Advances in Complex Sys-
tems 4, 19–27 (2001).

D. Stauffer, “Percolation clusters as teaching aid for Monte Carlo simulation and critical expo-
nents,” Am. J. Phys. 45, 1001 (1977); D. Stauffer, “Scaling theory of percolation clusters,”
Physics Reports 54, 1 (1979).

Dietrich Stauffer and Amnon Aharony, Introduction to Percolation Theory, second edition, Taylor
& Francis (1994). A delightful book by two of the leading workers in the field. An efficient
Fortran implementation of the Hoshen-Kopelman algorithm is given in Appendix A.3.

B. P. Watson and P. L. Leath, “Conductivity in the two-dimensional-site percolation problem,”
Phys. Rev. B 9, 4893 (1974). A research paper on the conductivity of chicken wire.

John C. Wierman and Dora Passen Naor, “Criteria for evaluation of universal formulas for per-
colation thresholds,” Phys. Rev. E 71, 036143-1–7 (2005). Percolation theory was originally

CHAPTER 12. PERCOLATION 515

conceived by mathematicians Broadbent and Hammersley in 1957 and continues to be of in-
terest to mathematicians. Wierman and Naor evaluate several universal formulas that predict
approximate values for pc for various lattices.

Kenneth G. Wilson, “Problems in physics with many scales of length,” Sci. Am. 241, 158 (1979).
An accessible article on the renormalization group method and its applications in particle and
condensed matter physics. See also K. G. Wilson, “The renormalization group and critical
phenomena,” Rev. Mod. Phys. 55, 583 (1983). The latter article is the text of Wilson’s
lecture on the occasion of the presentation of the 1982 Nobel Prize in Physics. In this lecture
he claims that he “. . . found it very helpful to demand that a correctly formulated field
theory be soluble by computer, the same way an ordinary differential equation can be solved
on a computer . . . ”

W. Xia and M. F. Thorpe, “Percolation properties of random ellipses,” Phys. Rev. A 38, 2650
(1988). The authors consider continuum percolation and show that the area fraction remain-
ing after punching out holes at random is given by φ = e−Aρ, where A is the area of a hole,
and ρ is the number density of the holes. This relation does not depend on the shape of the
holes.

Richard Zallen, The Physics of Amorphous Solids, Wiley-Interscience (1983). Chapter 4 discusses
many of the applications of percolation concepts to realistic systems.

Robert M. Ziff, “Spanning probability in 2D percolation,” Phys. Rev. Lett. 69, 2670 (1992).

