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We compute the electric fields due to static and moving charges, describe methods for comput-
ing the electric potential in boundary value problems, and solve Maxwell’s equations numerically.

10.1 Static Charges

Suppose we want to know the electric field E(r) at the point r due to N point charges q1, q2, . . . , qN

at fixed positions r1, r2, . . . , rN . We know that E(r) satisfies a superposition principle and is given
by

E(r) = K

N∑
i

qi

|r − ri|3
(r − ri), (10.1)

where ri is the fixed location of the ith charge and K is a constant that depends on the choice of
units. One of the difficulties associated with electrodynamics is the competing systems of units.
In the SI (or rationalized MKS) system of units, the charge is measured in coulombs (C) and the
constant K is given by

K =
1

4πε0
≈ 9.0 × 109 N · m2/C2. (SI units) (10.2)

The constant ε0 is known as the electrical permittivity of free space. This choice of units is not
convenient for computer programs because K >> 1. Another popular system of units is the
Gaussian (cgs) system for which the constant K is absorbed into the unit of charge so that K = 1.
Charge is in electrostatic units or esu. One feature of Gaussian units is that the electric and
magnetic fields have the same units. For example, the (Lorentz) force on a particle of charge q and
velocity v in an electric field E and a magnetic field B has the form

F = q(E +
v
c
× B). (Gaussian units) (10.3)
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These virtues of the Gaussian system of units lead us to adopt this system for this chapter even
though SI units are used in introductory texts.

10.2 Electric Fields

The electric field is an example of a vector field because it defines a vector quantity at every point
in space. One way to visualize this field is to divide space into a discrete grid and to draw arrows
in the direction of E at the vertices of this grid. The length of the arrow can be chosen to be
proportional to the magnitude of the electric field. Another possibility is to use color or gray scale
to represent the magnitude. Because we have found that using an arrow’s color rather than its
length to represent field strength produces a more effective representation of vector fields over a
wider dynamic range, the Vector2DFrame class in the Open Source Physics frames package uses
the color representation. (See Appendix 10A.)

The ElectricFieldApp program computes the electric field from an arbitrary number of
point charges. The program works as follows. A charge is created using the control’s x, y, and q
parameters when the calculate button is pressed; the reset button removes all charges. Whenever
a charge is added or moved, the electric field is recomputed in the calculateField method.

Because the program’s drawing panel contains a list of all drawable objects, we do not need
to keep track of the number of charges as they are created by the user. Rather, we ask the panel
to return a list of charge objects currently being stored.

List chargeList = frame.getDrawables(Charge.class);
Iterator it = chargeList. iterator ();

The argument Charge.class tells the frame.getDrawables method to only return a list of objects
that can be cast to the Charge class. Thus, if other drawable objects are added to the frame they
will not be part of chargeList. List and Iterator are interfaces which are implemented by the
objects returned by frame.getDrawables and chargeList.iterator, respectively.

The list, chargeList, is used to compute the electric field at the grid points. Note that we use
an Iterator to access each charge as we sum vector components at each grid point. As the name
implies, an iterator is a convenient way to access a list without explicitly counting its elements.
You will modify ElectricFieldApp to include a moving test charge in Problem 10.1.

Listing 10.1: ElectricFieldApp computes and displays the electric field from a list of point
charges.

package org.opensourcephysics.sip.ch10;
import java.util .∗;
import java.awt.event.∗;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;

/∗∗
∗ ElectricFieldApp draws the vector field from point charges.
∗
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∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class ElectricFieldApp extends AbstractCalculation implements InteractiveMouseHandler {
int n = 20; // grid points on a side
double a = 10; // viewing side length
double [][][] data = new double[2][n][n]; // stores electric field
Vector2DFrame frame = new Vector2DFrame(”x”, ”y”, ”Electric Field”);

/∗∗
∗ The ElectricFieldApp constructor.
∗/

public ElectricFieldApp() {
frame.setPreferredMinMax(−a/2, a/2, −a/2, a/2);
frame.setZRange(false , 0, 2);
frame.setAll(data); // sets the vector field
frame.setInteractiveMouseHandler(this);

}

/∗∗
∗ Adds a new charge.
∗/

public void calculate() {
double x = control.getDouble(”x”);
double y = control.getDouble(”y”);
double q = control.getDouble(”q”);
Charge charge = new Charge(x, y, q);
frame.addDrawable(charge);
calculateField ();

}

/∗∗
∗ Removes charges and recalculates the field .
∗/

public void reset() {
control . println(”Calculate creates a new charge and updates the field.” );
control . println(”You can drag charges.”);
frame.clearDrawables(); // removes all charges
control .setValue(”x” , 0);
control .setValue(”y” , 0);
control .setValue(”q” , 1);
calculateField ();

}

/∗∗
∗ Calculates the field at the gridpoints
∗/

void calculateField() {
for(int ix = 0;ix<n;ix++) {

for(int iy = 0;iy<n;iy++) {
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data [0][ ix ][ iy] = data [1][ ix ][ iy ] = 0; // zeros field
}

}
// the charges in the frame
List chargeList = frame.getDrawables(Charge.class);
Iterator it = chargeList. iterator ();
while(it.hasNext()) {

Charge charge = (Charge) it.next();
double xs = charge.getX(), ys = charge.getY();
for(int ix = 0;ix<n;ix++) {

double x = frame.indexToX(ix);
double dx = (x−xs); // distance of charge to gridpoint
for(int iy = 0;iy<n;iy++) {

double y = frame.indexToY(iy);
double dy = (y−ys); // charge to gridpoint
double r2 = dx∗dx+dy∗dy; // distance squared
double r3 = Math.sqrt(r2)∗r2; // distance cubed
if (r3>0) {

data [0][ ix ][ iy] += charge.q∗dx/r3;
data [1][ ix ][ iy] += charge.q∗dy/r3;

}
}

}
}
frame.setAll(data);

}

/∗∗
∗ Handles mouse actions from the panel.
∗
∗ @param panel
∗ @param evt
∗/

public void handleMouseAction(InteractivePanel panel, MouseEvent evt) {
panel.handleMouseAction(panel, evt); // panel moves the charge
if (panel.getMouseAction()==InteractivePanel.MOUSE DRAGGED) {

calculateField (); // remove this line if user interface is slugish
panel.repaint ();

}
}

/∗∗
∗ The main method starts the Java application.
∗ @param args[] the input parameters
∗/

public static void main(String[] args) {
CalculationControl.createApp(new ElectricFieldApp());

}
}
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To make the program interactive, the ElectricFieldApp class implements Interactive-
MouseHandler to process mouse events when a charge is dragged. (See Section 5.7 for a discussion
of interactive panels and interactive mouse handlers.) The class registers its interest in handing
these events using the setInteractiveMouseHandler method. The handler passes the event to the
panel to move the charge and then recalculates the field. Note that the Charge class in Listing 10.2
inherits from the InteractiveCircle class.1

Listing 10.2: The Charge class extends the InteracticeCircle class and adds the charge property.
package org.opensourcephysics.sip.ch10;
import java.awt.∗;
import org.opensourcephysics.display.∗;

/∗∗
∗ A drawable charged particle.
∗
∗ This class is used by the ElectricFieldApp and FieldLineApp.
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class Charge extends InteractiveCircle {
double q = 0;
public double getQ() {

return q;
}

public Charge(double x, double y, double q) {
super( x, y);
q = q;
if (q>0) {

color = Color.red;
} else {

color = Color.blue;
}

}
}

Problem 10.1. Motion of a charged particle in an electric field

a. Test ElectricFieldApp by adding one charge at a time at various locations. Do the electric
field patterns look reasonable? For eaxmple, does the electric field tend to point away from
positive charges and toward negative charges? Is the magnitude of the electric field represented
well?

b. Modify ElectricFieldApp so that it uses an AbstractAnimation to compute the motion of
a test particle of mass m and charge q in the presence of the electric field created by a fixed
distribution of point charges. That is, create a drawable test charge that implements the ODE
interface and add it to the vector field frame. Use the same approach that was used for the
1Dragging may become sluggish if too many computations are performed within the mouse action method.
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orbit problems in Chapter 5. Use a higher-order algorithm to advance the position and velocity
of the particle. The acceleration of the charge is given by qE/m, where E is the electric field
due to the fixed point charges. (Ignore the effects of radiation due to accelerating charges.)

c. Assume that E is due to a charge q(1) = 1.5 fixed at the origin. Simulate the motion of
a charged particle of mass m = 0.1 and charge q = 1 initially at x = 1, y = 0. Consider
the following initial conditions for its velocity: (i) vx = 0, vy = 0; (ii) vx = 1, vy = 0; (iii)
vx = 0, vy = 1; and (iv) vx = −1, vy = 0. Is the trajectory of the particle tangent to the field
vectors? Explain.

d. Assume that the electric field is due to two fixed point charges: q(1) = 1 at x(1) = 2, y(1) = 0
and q(2) = −1 at x(2) = −2, y(2) = 0. Place a charged particle of unit mass and unit positive
charge at x = 0.05, y = 0. What do you expect the motion of this charge to be? Do the
simulation and determine the qualitative nature of the motion.

d.∗ Consider the motion of a charged particle in the vicinity of the electric dipole defined in part
(d). Choose the initial position to be five times the separation of the charges in the dipole. Do
you find any bound orbits? Do you find any closed orbits or do all orbits show some precession?

10.3 Electric Field Lines

Another way of visualizing the electric field is to draw electric field lines. The properties of these
lines are as follows:

1. An electric field line is a directed line whose tangent at every position is parallel to the electric
field at that position.

2. The lines are smooth and continuous except at singularities such as point charges. (It makes
no sense to talk about the electric field at a point charge.)

3. The density of lines at any point in space is proportional to the magnitude of the field at that
point. This property implies that the total number of electric field lines from a point charge
is proportional to the magnitude of that charge. The value of the proportionality constant is
chosen to provide the clearest pictorial representation of the field. The drawing of field lines
is art plus science.

The FieldLineApp program draws electric field lines in two-dimensions. The program makes
extensive use of the FieldLine class which implements the following algorithm:

1. Begin at a point (x, y) and compute the components Ex and Ey of the electric field vector
E using (10.1).

2. Draw a small line segment of size ∆s = |∆s| tangent to E at that point. The components of
the line segment are given by

∆x = ∆s
Ex

|E| and ∆y = ∆s
Ey

|E| . (10.4)
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3. Iterate the process beginning at the new point (x+∆x, y +∆y). Continue until the field line
approaches a point charge singularity or escapes toward infinity.

This field line algorithm is equivalent to solving the following differential equations:

dx

ds
=

Ex

|E| (10.5a)

dy

ds
=

Ey

|E| (10.5b)

Because a field line extends in both directions from the algorithm’s starting point, the computation
must be repeated in the (−Ex/|E|,−Ey/|E| direction to obtain a complete visualization of the field
line. Note that this algorithm draws a correct field line, but does not draw a collection of field
lines with a density proportional to the field intensity.

To draw the field lines we start a computation when a user double clicks in the panel and end
the computation when the field line approaches a point charge or when the magnitude of the field
becomes too small. Although we can easily describe these stopping conditions, we do not know how
long the computation will take and we might want to compute multiple field lines simultaneously.
An elegant way to do this computation is to use threads.

Traditional procedural programs have one thread. That is, the program starts by executing a
line of code, then another line, and then another. The program may jump from one block of code
to another, but the program moves from one statement to the next and never enters a state where
several statements are executed independently. In contrast, Java programs may have multiple
threads to separate and organize related tasks. A thread is an independent task within a single
program that shares the program’s data with other threads. For example, the AbstractSimulation
class (see Section 2.6) periodically invokes the doStep method in a simulation using a thread.2 In
the following example, we create a thread to compute the solution of the differential equation for
an electric field line.

The computation begins when the FieldLine object is created and ends when the stopping
condition is satisfied.

A thread executes statements within an object, such as FieldLine, that implements the
Runnable interface. This interface consists of a single method, the run method, and the thread
executes the code within this method. The run method is not invoked directly, it is invoked
automatically by the thread after the thread is started. When the run method exits, the thread
that invoked the run method stops executing and is said to die. After a thread dies, it cannot be
restarted. Another thread must be created if we wish to invoke the run method a second time.

We build a FieldLine class by subclassing Thread and adding the necessary drawing and
differential equation capabilities using the Drawable and ODE interfaces, respectively. This class is
shown in Listing 10.3. It is natural to use threads in this context because the drawing of a field line
involves starting the field line, drawing each piece of the field line and then stopping the calculation
when some stopping condition is met. These steps match with three of the key methods in the
Thread class, namely, start, run, and stop.

2The Open Source Physics: A User’s Guide with Examples manual describes simulation threads in more detail.
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Listing 10.3: The FieldLine class computes an electric field line using a Thread.
package org.opensourcephysics.sip.ch10;
import java.util .∗;
import java.awt.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.numerics.∗;

/∗∗
∗ FieldLine computes a electric field line
∗ in the vicinity of one or more point charges.
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class FieldLine extends Thread implements Drawable, ODE {
DrawingFrame frame;
double[] state = new double[2]; // Ex and Ey for ODE
ODESolver ode solver = new RK45MultiStep(this);
ArrayList chargeList ; // list of charged particles
Trail trail ;
double stepSize;
boolean done = false;

/∗∗
∗ Constructs a FieldLine for use in the given drawing frame.
∗
∗ @param frame
∗ @param x0
∗ @param y0
∗ @param stepSize
∗/

public FieldLine(DrawingFrame frame, double x0, double y0, double stepSize) {
stepSize = stepSize ;
frame = frame;
ode solver . setStepSize(stepSize );
state [0] = x0;
state [1] = y0;
chargeList = frame.getDrawables(Charge.class);
trail = new Trail();
trail .addPoint(x0, y0);
start ();

}

/∗∗
∗ Gets the state vector of the field line .
∗ @return the state
∗/

public double[] getState() {
return state;
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}

/∗∗
∗ Gets the rate for the field line using the given state .
∗
∗ @param state the given state
∗ @param rate the rate
∗/

public void getRate(double[] state, double[] rate) {
double ex = 0;
double ey = 0;
for( Iterator it = chargeList. iterator (); it .hasNext();) {

Charge charge = (Charge) it.next();
double dx = (charge.getX()−state[0]);
double dy = (charge.getY()−state[1]);
double r2 = dx∗dx+dy∗dy;
double r = Math.sqrt(r2);
if (r<2∗stepSize||r>100) { // done if too close or too far

done = true;
}
ex += (r==0) ? 0 : charge.q∗dx/r2/r;
ey += (r==0) ? 0 : charge.q∗dy/r2/r;

}
double mag = Math.sqrt(ex∗ex+ey∗ey);
rate [0] = (mag==0) ? 0 : ex/mag;
rate [1] = (mag==0) ? 0 : ey/mag;

}

/∗∗
∗ Runs the field line calculation .
∗/

public void run() {
int counter = 0;
while((counter<1000&&!done)) {

ode solver .step ();
trail .addPoint(state [0], state [1]);
if (counter%20==0) { // repaint every 20th step

frame.repaint ();
try {

sleep (20); // give the event queue a chance
} catch(InterruptedException ex) {}

}
counter++;
Thread.currentThread().yield();

}
frame.repaint ();

}

/∗∗
∗ Draws the field line .
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∗
∗ @param panel
∗ @param g
∗/

public void draw(DrawingPanel panel, Graphics g) {
trail .draw(panel, g);

}
}

The FieldLine constructor saves a reference to the list of charges to calculate the electric field
using (10.1). The loop in the run method solves the differential equation and stores the solution in
a drawable trail. We exit this loop when the field line is close to a charge or when the magnitude
of the field becomes too small. Because there are situations where the field line will never stop, we
execute this loop no more than 1000 times.

The FieldLineApp program instantiates a field line when the user double-clicks within the
panel. Note that adding a charge or moving a charge removes all field lines from the panel. Study
how the handleMouseAction allows the user to drag charges and to create field lines. You are
asked to modify this program in Problem 10.2.

Listing 10.4: The FieldLineApp program computes an electric field line when the user clicks within
the panel.

package org.opensourcephysics.sip.ch10;
import java.awt.event.∗;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.frames.∗;

/∗∗
∗ ElectricFieldApp draws electric field lines .
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class FieldLineApp extends AbstractCalculation implements InteractiveMouseHandler {
DisplayFrame frame = new DisplayFrame(”x”, ”y”, ”Field Lines”);

/∗∗
∗ The FieldLineApp constructor.
∗/

public FieldLineApp() {
frame.setInteractiveMouseHandler(this);
frame.setPreferredMinMax(−10, 10, −10, 10);

}

/∗∗
∗ Adds a charge to the panel and does the calculation .
∗/

public void calculate() {
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frame.removeObjectsOfClass(FieldLine.class); // remove old field lines
double x = control.getDouble(”x”);
double y = control.getDouble(”y”);
double q = control.getDouble(”q”);
Charge charge = new Charge(x, y, q);
frame.addDrawable(charge);

}

/∗∗
∗ Removes all charges and field lines and sets the initial conditions .
∗/

public void reset() {
frame.clearDrawables(); // remove charges and field lines
control .setValue(”x” , 0);
control .setValue(”y” , 0);
control .setValue(”q” , 1);

}

/∗∗
∗ Handles mouse actions by dragging charges and starting field line calculations .
∗
∗ @param panel
∗ @param evt
∗/

public void handleMouseAction(InteractivePanel panel, MouseEvent evt) {
panel.handleMouseAction(panel, evt); // panel handles dragging
switch(panel.getMouseAction()) {
case InteractivePanel.MOUSE DRAGGED :

if (panel. getInteractive ()==null) {
return;

}
frame.removeObjectsOfClass(FieldLine.class); // field is invalid
frame.repaint (); // repaint to keep the screen up to date
break;

case InteractivePanel.MOUSE CLICKED :
if (evt.getClickCount()>1) { // check for double click

double x = panel.getMouseX(), y = panel.getMouseY();
FieldLine fieldLine = new FieldLine(frame, x, y, +0.1);
panel.addDrawable(fieldLine);
fieldLine = new FieldLine(frame, x, y, −0.1);
panel.addDrawable(fieldLine);

}
break;

}
}

/∗∗
∗ The main method starts the Java application.
∗ @param args[] the input parameters
∗/
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public static void main(String[] args) {
CalculationControl.createApp(new FieldLineApp());

}
}

Problem 10.2. Field line program verification

a. Draw field lines for a few simple sets of one, two, and three charges. Use some sets where all
the charges have the same sign, and some where they are different. Verify that the field lines
never connect charges of the same sign. Why do field lines never cross? Are the units of charge
and distance relevant?

b. Compare FieldLineApp and ElectricFieldApp. Which representation conveys more informa-
tion? Consider how each program provides (or does not provide) information about the electric
field magnitude and direction. Discuss some of the difficulties with making an accurate field
line diagram.

c. FieldLine uses a constant value for ∆s. Modify the algorithm so that the calculation continues
when a field line moves off the screen, but speed up the algorithm by increasing the value of
∆s.

d. Removing a field line from the drawing panel in the reset method does not stop the thread.
Improve the performance of the program by modifying ElectricFieldApp so that a field line’s
done variable is set to false when it is removed from the drawing panel.

Problem 10.3. Electric field lines from point charges

a. Modify FieldLineApp so that a charge starts ten field lines per unit of charge whenever a new
charge is added to the panel or when a charge is moved. Start these field lines close to each
charge in such a way that they propagate away from the charge. Should you start these field
lines on both positive and negative charges? What problems may you run into if you start lines
from more than one charge.

b. Draw the field lines for an electric dipole.

c. Draw the field lines for the electric quadrupole with q(1) = 1, x(1) = 1, y(1) = 1, q(2) = −1,
x(2) = −1, y(2) = 1, q(3) = 1, x(3) = −1, y(3) = −1, and q(4) = −1, x(4) = 1, and
y(4) = −1.

d. A continuous charge distribution can be approximated by a large number of closely spaced point
charges. Draw the electric field lines due to a row of ten equally spaced unit charges located
between −2.5 and +2.5 on the x axis. How does the electric field distribution compare to the
distribution due to a single point charge?

e. Repeat part (c) with two rows of equally spaced positive charges on the lines y = 0 and y = 1,
respectively. Then consider one row of positive charges and one row of negative charges.

Problem 10.4. Field lines due to infinite line of charge
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a. The FieldLineApp program plots field lines in two dimensions. Sometimes this restriction can
lead to spurious results (see Freeman). Consider four identical charges placed at the corners of
a square. Use the program to plot the field lines. What, if anything, is wrong with the results?
What should happen to the field lines near the center of the square?

b. The two-dimensional analog of a point charge is an infinite line (thin cylinder) of charge per-
pendicular to the plane. The electric field due to an infinite line of charge is proportional to the
linear charge density and inversely proportional to the distance (instead of the distance squared)
from the line of charge to a point in the plane. Modify the FieldLine class to compute the field
lines from line charges with E(r) = 1/r. Use your modified class to draw the field lines due to
four identical line charges located at the corners of a square, and compare the field lines with
your results in part (10.4).

c. Use your modified program from part (b) to draw the field lines for the two-dimensional analogs
of the distributions considered in Problem 10.3. Compare the results for two and three dimen-
sions, and discuss any qualitative differences.

d. Can your models be used to demonstrate Gauss’s law using point charges? Line charges?

10.4 Electric Potential

It often is easier to analyze the behavior of a system using energy rather than force concepts. We
define the electric potential V (r) by the relation

V (r2) − V (r1) = −
∫ r2

r1

E · dr, (10.6)

or

E(r) = −∇V (r). (10.7)

Only differences in the potential between two points have physical significance. The gradient
operator ∇ is given in Cartesian coordinates by

∇ =
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ, (10.8)

where the vectors x̂, ŷ, and ẑ are unit vectors along the x, y, and z axes respectively. If V depends
only on the magnitude of r, then (10.7) becomes E(r) = −dV (r)/dr. Recall that V (r) for a point
charge q relative to a zero potential at infinity is given by

V (r) =
q

r
. (Gaussian units) (10.9)

The surface on which the electric potential has an equal value everywhere is called an equipo-
tential surface (curve in two dimensions). Because E is in the direction in which the electric
potential decreases most rapidly, the electric field lines are orthogonal to the equipotential surfaces
at any point.
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The Open Source Physics frames package contains the Scalar2DFrame class to provide a
graphical representations of scalar fields (see Appendix 9B). Problem 10.5 uses a scalar field plot
to show the electric potential. The following code fragment shows how to calculate the electric
potential at a grid point.

List chargeList = frame.getDrawables(Charge.class);
Iterator it = chargeList. iterator ();
while (it .hasNext()) {

Charge charge = (Charge) it.next();
double xs = charge.getX(), ys = charge.getY();
for (int ix = 0; ix < n; ix++) {

double x= frame.indexToX(ix);
double dx = (xs − x); //charge gridpoint separation
for (int iy = 0; iy < n; iy++) {

double y= frame.indexToY(iy);
double dy = (ys −y); //charge gridpoint separation
double r2 = dx ∗ dx + dy ∗ dy;
double r = Math.sqrt(r2);
if ( r > 0) {

data[ix ][ iy] += charge.q/r;
}

}
}

}
frame.setAll(data);

Problem 10.5. Equipotential contours

a. Write a program called PotentialFieldApp based on ElectricFieldApp that draws equipo-
tential lines using the charge distributions considered in Problem 10.3.

b. Explain why equipotential surfaces — lines in two dimensions — never cross.

We can use the orthogonality between the electric field lines and the equipotential lines to
modify FieldLineApp so that it draws the latter. Because the components of the line segment
∆s parallel to the electric field line are given by ∆x = ∆s(Ex/E) and ∆y = ∆s(Ey/E), the
components of the line segment perpendicular to E, and hence parallel to the equipotential line,
are given by ∆x = −∆s(Ey/E) and ∆y = ∆s(Ex/E). It is unimportant whether the minus sign
is assigned to the x or y component, because the only difference would be the direction that the
equipotential lines are drawn.

Problem 10.6. Equipotential lines

a. Write a program called PotentialLineApp that is based on FieldLineApp and FieldLine to
draw some of the equipotential lines for the charge distributions considered in Problem 10.3.
Use a mouse click to determine the initial position of an equipotential line. That is, after a
mouse click the program should create a new equipotential line. The equipotential calculation
should stop when the line returns close to the starting point or after an unreasonable number
of calculations. You should, of course, also kill the thread when the user moves a charge, hits
the reset button, or when the application terminates.
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b. What would a higher density of equipotential lines mean if we drew lines such that each adjacent
line differed from a neighboring one by a fixed potential difference?

c. Explain why equipotential surfaces never cross.

Problem 10.7. The electric potential due to a finite sheet of charge
Consider a uniformly charged nonconducting plate of total charge Q and linear dimension L cen-
tered at (0, 0, 0) in the x-y plane. In the limit L → ∞ with the charge density σ = Q/L2 a
constant, we know that the electric field is normal to the sheet and its magnitude is given by 2πσ
(Gaussian units). What is the electric field due to a finite sheet of charge? A simple method is
to divide the plate into a grid of p square regions on a side such that each region is small enough
to be approximated by a point charge of magnitude q = Q/p2. Because the potential is a scalar
quantity, it is easier to compute the total potential rather than the total electric field from the
N = p2 point charges. Use the relation (10.9) for the potential from a point charge and write a
program to compute V (z) and hence Ez = −∂V (z)/∂z for points along the z-axis and perpendic-
ular to the sheet. Take L = 1, Q = 1, and p = 10 for your initial calculations. Increase p until
your results for V (z) do not change significantly. Plot V (z) and Ez as a function of z and compare
their z-dependence to their infinite sheet counterparts.

∗Problem 10.8. Electrostatic shielding
We know that the (static) electric field is zero inside a conductor, all excess charges reside on
the surface of the conductor, and the surface charge density is greatest at the points of greatest
curvature. Although these properties are plausible, it is instructive to do a simulation to see how
these properties follow from Coulomb’s law. For simplicity, consider the conductor to be two-
dimensional so that the potential energy is proportional to ln r rather than 1/r (see Problem 10.4).
It also is convenient to choose the surface of the conductor to be an ellipse.

a. If we are interested only in the final distribution of the charges and not in the dynamics of the
system, we can use a Monte Carlo method. Our goal is to find the minimum energy configuration
beginning with the N charges randomly placed within an conducting ellipse. One method is to
choose a charge i at random, and make a trial change in the position of the charge. The trial
position should be no more than dmax from the old position and still be within the ellipse. The
parameter dmax should be chosen to be approximately b/10, where b is the semiminor axis of
the ellipse. Compute the change in the total potential energy given by (in arbitrary units)

∆U = −
∑

j

[ln r
(new)
ij − ln r

(old)
ij ]. (10.10)

The sum is over all charges in the system not including i. If ∆U > 0, then reject the trial
move, otherwise accept it. Repeat this procedure many times until very few trial moves are
accepted. Write a program to implement this Monte Carlo algorithm. Run the simulation for
N ≥ 20 charges inside a circle and then repeat the simulation for an ellipse. How are the charges
distributed in the (approximately) minimum energy distribution? Which parts of the ellipse
have a higher charge density?

b. Repeat part (a) for a two-dimensional conductor, but assume that the potential energy U ∼ 1/r.
Do the charges move to the surface?
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c. Is it sufficient that the interaction be repulsive for the results of parts (a) and (b) to hold?

d. Repeat part (a) with the added condition that there is a fixed positive charge of magnitude N/2
located outside the ellipse. How does this fixed charge effect the charge distribution? Are the
excess free charges still at the surface? Try different positions for the fixed charge.

e. Repeat parts (a) and (b) for N = 50 charges located within an ellipsoid in three dimensions.

10.5 Numerical Solutions of Laplace’s Equation

In Section 10.1 we found the electric fields and potentials due to a fixed distribution of charges.
Suppose that we do not know the positions of the charges and instead know only the potential on
a set of boundaries surrounding a charge-free region. This information is sufficient to determine
the potential V (r) at any point within the charge-free region.

The direct method of solving for V (x, y, z) is based on Laplace’s equation which can be ex-
pressed in Cartesian coordinates as

∇2V (x, y, z) ≡ ∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0. (10.11)

The problem is to find the function V (x, y, z) that satisfies (10.11) and the specified boundary
conditions. This type of problem is an example of a boundary value problem. Because analytical
methods for regions of arbitrary shape do not exist, the only general approach is to use numerical
methods. Laplace’s equation is not a new law of physics, but can be derived directly from (10.7)
and the relation ∇ · E = 0 or indirectly from Coulomb’s law in regions of space where there is no
charge.

For simplicity, we consider only two-dimensional boundary value problems for V (x, y). We use
a finite difference method and divide space into a discrete grid of sites located at the coordinates
(x, y). In the following, we show that in the absence of a charge at (x, y), the discrete form of
Laplace’s equation satisfies the relation

V (x, y) ≈ 1
4
[V (x + ∆x, y) + V (x − ∆x, y)

+ V (x, y + ∆y) + V (x, y − ∆y)], (two dimensions) (10.12)

where V (x, y) is the average value of the potential in a square region centered at (x, y). Equation
(10.12) says that V (x, y) is the average of the potential of its four nearest neighbor sites. This
remarkable property of V (x, y) can be derived by approximating the partial derivatives in (10.11)
by finite differences (see Problem 10.9b).

In Problem 10.9a we verify (10.12) by calculating the potential due to a point charge at a point
in space selected by the user and at the four nearest neighbors. As the form of (10.12) implies,
the average of the potential at the four neighboring sites should equal the potential at the center
site. We assume the form (10.9) for the potential V (r) due to a point charge, a form that satisfies
Laplace’s equation for r 	= 0.

Problem 10.9. Verification of the difference equation for the potential
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a. Modify PotentialFieldApp to compare the computed potential at a point to the average of the
potential at its four nearest neighbor sites. Choose reasonable values for the spacings ∆x and
∆y and consider a point that is not too close to the source charge. Do similar measurements
for other points. Does the relative agreement with (10.12) depend on the distance of the point
to the source charge? Choose smaller values of ∆x and ∆y and determine if your results are in
better agreement with (10.12). Does it matter whether ∆x and ∆y have the same value?

b. Derive the finite difference equation (10.12) for V (x, y) using the second-order Taylor expansion:

V (x + ∆x, y) = V (x, y) + ∆x
∂V (x, y)

∂x
+

1
2
(∆x)2

∂2V (x, y)
∂x2

+ . . . (10.13)

V (x, y + ∆y) = V (x, y) + ∆y
∂V (x, y)

∂y
+

1
2
(∆y)2

∂2V (x, y)
∂y2

+ . . . (10.14)

The effect of including higher derivatives is discussed by MacDonald (see references).

Now that we have found that (10.12), a finite difference form of Laplace’s equation, is consistent
with Coulomb’s law, we adopt (10.12) as the basis for computing the potential for systems for
which we cannot calculate the potential directly. In particular, we consider problems where the
potential is specified on a closed surface that divides space into interior and exterior regions in
which the potential is independently determined. For simplicity, we consider only two-dimensional
geometries. The approach, known as the relaxation method, is based on the following algorithm:

1. Divide the region of interest into a rectangular grid of sites spanning the region. The region
is enclosed by a surface (curve in two dimensions) with specified values of the potential along
the curve.

2. Assign to a boundary site the potential of the boundary nearest the site.

3. Assign all interior sites an arbitrary potential (preferably a reasonable guess).

4. Compute new values for the potential V for each interior site. Each new value is obtained by
finding the average of the previous values of the potential at the four nearest neighbor sites.

5. Repeat step (4) using the values of V obtained in the previous iteration. This iterative process
is continued until the potential at each interior site is computed to the desired accuracy.

The program shown in Listing 10.5 implements this algorithm using a grid of voltages and a boolean
grid to signal the presence of a conductor.

Listing 10.5: The LaplaceApp program solves the Laplace equation using the relaxation method.
package org.opensourcephysics.sip.ch10;
import java.awt.event.∗;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.display2d.∗;
import org.opensourcephysics.frames.∗;
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/∗∗
∗ LaplaceApp uses the Jacobi relaxation method to solve Laplace’s equation.
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class LaplaceApp extends AbstractSimulation implements InteractiveMouseHandler {
Scalar2DFrame frame = new Scalar2DFrame(”x”, ”y”, ”Electric Potential”);
boolean[][] isConductor;
double[][] data;
double maximumError;
int gridSize ; //number of sites on side of grid

/∗∗
∗ The LaplaceApp constructor.
∗/

public LaplaceApp() {
frame.setInteractiveMouseHandler(this);

}

/∗∗
∗ Initializes the animation and reads parameters from the control.
∗/

public void initialize () {
maximumError = control.getDouble(”maximum error”);
gridSize = control . getInt(”size”);
initArrays ();
frame.show();
frame.showDataTable(true); // show the data table

}

/∗∗
∗ Initialize voltage and conductor arrays.
∗/

public void initArrays() {
isConductor = new boolean[gridSize][gridSize];
data = new double[gridSize][gridSize];
frame.setPaletteType(ColorMapper.DUALSHADE);
// isConductor array is false by default ; pointdata voltage is 0 by default
// [xx what is pointdata voltage? xx
for(int i = 0;i<gridSize;i++) { // initialize the sides

isConductor[0][ i ] = true; // left boundary
isConductor[gridSize−1][i ] = true; // right boundary
isConductor[i ][0] = true; // bottom boundary
isConductor[i ][ gridSize−1] = true; // top boundary

}
for(int i = 5;i<gridSize−5;i++) { // initialize the capacitor

data[gridSize /3][ i ] = 100;
isConductor[gridSize/3][ i ] = true;
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data[2∗gridSize /3][ i] = −100;
isConductor[2∗gridSize/3][ i ] = true;

}
frame.setAll(data);

}

/∗∗
∗ Does a single relaxation step and redraws the panel.
∗/

public void doStep() {
double error = 0;
for(int i = 1;i<gridSize−1;i++) {

for(int j = 1;j<gridSize−1;j++) {
if (! isConductor[i ][ j ]) { // change the voltage for non−conductors

double v = (data[i−1][j]+data[i+1][j]+data[i ][ j−1]+data[i][j+1])/4;
double dv = data[i][j]−v;
error = Math.max(error, Math.abs(dv));
data[ i ][ j ] = v;

}
}

}
frame.setAll(data);
if (error<maximumError) {

animationThread = null; // this will stop the simulaiton thread
control .calculationDone(”Computation done.”);

}
}

/∗∗
∗ Resets the animation model to a predefined state.
∗/

public void reset() {
control .setValue(”maximum error”, 0.1);
control .setValue(”size” , 31);
initialize ();

}

/∗∗
∗ Handles mouse actions by dragging the current interactive drawable object.
∗
∗ @param panel
∗ @param evt
∗/

public void handleMouseAction(InteractivePanel panel, MouseEvent evt) {
switch(panel.getMouseAction()) {
case InteractivePanel.MOUSE DRAGGED :
case InteractivePanel.MOUSE PRESSED :

double x = panel.getMouseX(); // mouse x in world units
double y = panel.getMouseY();
int i = frame.xToIndex(x); // closest array index
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int j = frame.yToIndex(y);
frame.setMessage(”V=”+decimalFormat.format(data[i][j]));
break;

case InteractivePanel.MOUSE RELEASED :
panel.setMessage(null);
break;

}
}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main(String[] args) {
SimulationControl.createApp(new LaplaceApp());

}
}

As the algorithm loops through the grid sites, it first checks if each grid site is a conductor. If
it is, the site is skipped. If not, a new potential is calculated and assigned to the proper element in
the data array. A local variable named error keeps track of the maximum change in the potential,
which is used to determine the end of the simulation.

In Problems 10.10–10.12 you are asked to modify LaplaceApp to compute the potential for
various geometries.

Problem 10.10. Numerical solution of the potential within a rectangular region

a. Modify LaplaceApp to determine the potential V (x, y) in a square region with linear dimension
L = 10. The boundary of the square is at a potential V = 10. Choose the grid size ∆x = ∆y = 1.
Before you run the program, guess the exact form of V (x, y) and set the initial values of the
interior potential 10% lower than the exact answer. How many iterations are necessary to
achieve 1% accuracy? Decrease the grid size by a factor of two, and determine the number of
iterations that are now necessary to achieve 1% accuracy.

b. Consider the same geometry as in part (a), but set the initial potential at the interior sites
equal to zero except for the center site whose potential is set equal to four. Does the potential
distribution evolve to the same values as in part (a)? What is the effect of a poor initial guess?
Are the final results independent of your initial guess?

c. Modify LaplaceApp so that the value of the potential at the four sides is 5, 10, 5, and 10,
respectively (see Figure 10.1). Sketch the equipotential surfaces. What happens if the potential
is 10 on three sides and 0 on the fourth? Start with a reasonable guess for the initial values of
the potential at the interior sites and iterate until 1% accuracy is obtained.

d.∗ Consider the same initial choice of the potential as in part (b) and focus your attention on the
potential at the sites near the center of the square. If the central site has an initial potential
of four, what is the potential at the nearest neighbor sites after the first iteration? Follow
the distribution of the potential as a function of the number of iterations and verify that the
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Figure 10.1: Potential distribution considered in Problem 10.10c. The number of interior sites in
each direction is nine.

nature of the relaxation of the potential to its correct distribution is closely related to diffusion
(see Chapter 7). It may be helpful to increase the number of sites in the grid and the initial
value of the potential at the central site to see the nature of the relaxation more clearly.

In Problem 10.10, we implemented a simple version of the relaxation method known as the
Jacobi method. In particular, the new potential at each site is based on the values of the potentials
at the neighboring sites at the previous iteration. After the entire lattice was visited, the potential
at each site was updated simultaneously. The difficulty with this relaxation method is that it
converges very slowly. The use of more general relaxation methods is discussed in many texts
(cf. Sadiku or Press et al.). In Problem 10.11 we consider a method known as Gauss-Seidel
relaxation.

Problem 10.11. Gauss-Seidel relaxation

a. Modify the program that you used in Problem 10.10 so that the potential at each site is up-
dated sequentially. That is, after the average potential of the nearest neighbor sites of site i is
computed, update the potential at i immediately. In this way the new potential of the next site
is computed using the most recently computed values of its nearest neighbor potentials. Are
your results better, worse, or about the same as the simple relaxation method?

b. Imagine coloring the alternate sites of a grid red and black, so that the grid resembles a checker-
board. Modify the program so that all the red sites are updated first, and then all the black
sites are updated. This ordering is repeated for each iteration. Do your results converge any
more quickly than in part (a)?
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Vin
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Figure 10.2: The geometry of the two concentric squares considered in Problem 10.12.

c.∗ The slow convergence of the relaxation methods we have explored is due to the fact that it
takes a long time for a change in the potential at one site to effect changes further away. We
can improve the Gauss-Seidel method by using an overrelaxation method which updates the
new potential as follows:

Vnew(x, y) = wVave(x, y) + (1 − w)V (x, y). (10.15)

The overrelaxation parameter w is in the range 1 < w < 2. The effect of w is to cause the
potential to change by a greater amount than in the simple relaxation procedure. Explore the
dependence of the rate of convergence on w. A relaxation method that increases the rate of
convergence is explored in Project 10.26.

Problem 10.12. The capacitance of concentric squares

a. Use a relaxation method to compute the potential distribution between the two concentric
square cylinders shown in Figure 10.2. The potential of the outer square conductor is Vout = 10
and the potential of the inner square conductor is Vin = 5. The linear dimensions of the exterior
and interior squares are Lout = 25 and Lin = 5, respectively. Modify your program so that the
potential of the interior square is fixed. Sketch the equipotential surfaces.

b. A system of two conductors with charge Q and −Q respectively has a capacitance C that is
defined as the ratio of Q to the potential difference ∆V between the two conductors. Determine
the capacitance per unit length of the concentric cylinders considered in part (a). In this case
∆V = 5. The charge Q can be determined from the fact that near a conducting surface, the
surface charge density σ is given by σ = En/4π, where En is the magnitude of the electric
field normal to the surface. En can be approximated by the relation −δV/δr, where δV is the
potential difference between a boundary site and an adjacent interior site a distance δr away.
Use the result of part (a) to compute δV for each site adjacent to the two square surfaces. Use
this information to determine En for the two surfaces and the charge per unit length on each
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conductor. Are the charges equal and opposite in sign? Compare your numerical result to the
capacitance per unit length, 1/2 ln rout/rin, of a system of two concentric circular cylinders of
radii rout and rin. Assume that the circumference of each cylinder equals the perimeter of the
corresponding square, that is, 2πrout = 4Lout and 2πrin = 4Lin.

c. Move the inner square 1 cm off center and repeat the calculations of parts (a) and (b). How do
the potential surfaces change? Is there any qualitative difference if we set the inner conductor
potential equal to −5+5

10.6 Poisson’s Equation

Laplace’s equation holds only in charge-free regions. If there is a charge density ρ(x, y, z) in the
region, we need to use Poisson’s equation which can be written as

∇2V (r) =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= −4πρ(r), (10.16)

where ρ(r) is the charge density. The difference form of Poisson’s equation is given in two dimen-
sions by

V (x, y) ≈ 1
4
[
V (x + ∆x, y) + V (x − ∆x, y) + V (x, y + ∆y) + V (x, y − ∆y)

]

+
1
4
∆x∆y 4πρ(x, y). (10.17)

Note that the product ρ(x, y)∆x∆y is the total charge in a ∆x × ∆y region centered at (x, y).

Problem 10.13. Surface charge

a. Poisson’s equation can be used to find the surface charge on a conductor after Laplace’s equation
has been solved. The potential is fixed at the boundary sites. If we assume the boundary is
a conductor with some thickness then we can assume that the potential for the next layer of
sites outside the boundary has the same potential as the boundary. If we do this then after
we have solved numerically for the potential of the interior sites, we will find that the average
value of the neighbors of a boundary site will not equal the imposed potential. From (10.17) the
difference will equal ∆x∆yπρ(x, y). Modify LaplaceApp to calculate and display the surface
charge density assuming ∆x = ∆y = 1. Notice that because we are in two dimensions the
“surface” charge density, ∆x∆yρ(x, y), is a linear density of charge per unit length.

b. Using the same system as in Problem c find the surface charge density on all boundary sites.
Make a reasonable choice for assigning the potential at the corner sites.

c. Model a system with the boundary at a potential V = 0 and a centered interior rectangle of
6 × 12 at a potential of V = 10. Where is the charge density the highest?

d. Repeat if the interior rectangle is placed close to an edge.
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Problem 10.14. Numerical solution of Poisson’s equation

a. Consider a square of linear dimension L = 25 whose boundary is fixed at a potential equal
to V = 10. Assume that the interior region has a uniform charge density ρ such that the
total charge is Q = 1. Modify LaplaceApp to compute the potential distribution for this case.
Compare the equipotential surfaces obtained for this case to that found in Problem 10.12.

b. Find the potential distribution if the charge distribution of part (a) is restricted to a 5×5 square
at the center.

c. Find the potential distribution if the charge distribution of part (a) is restricted to a 1×1 square
at the center. How does the potential compare to that of a point charge without the boundary?

Problem 10.15. Vector potential and magnetic fields
The magnetic field from arbitrary currents also can be obtained using Poisson’s equation. The
field is generated from a vector potential A that satisfies

∇2A = µj (10.18)

where j is the current density in the wires and µ is the magnetic permeability. If current flows
only in the z direction, then j = (0, 0, jz(x, y)) and A = (0, 0, Az(x, y)), and we again have a
two-dimensional problem that can be solved using the relaxation method.

Do a simulation that models the magnetic field from an arbitrary number of wires. Combine
features of the ElectricFieldApp and the LaplaceApp programs. The program should read the
control and create a current carrying wire when a custom button is pressed. The computation
is performed using the animation’s doStep method to perform a Gauss-Seidel relaxation step.
Compute the magnetic field after the computation converges by computing the curl of the vector
potential:

B = ∇× A. (10.19)

See (10.52) for how to compute the curl when only discrete values are available.

10.7 Dielectrics

Dielectrics can be added to the solution of Laplace’s equation by adding an array to store the
dielectric constant k at every grid site and imposing the condition:

D1n = D2n, (10.20)

where D = kE and k is the dielectric susceptibility. This condition is equivalent to

0 =
∮

l

k∇V · dl =
∮

l

k
∂V

∂n
dl, (10.21)
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Figure 10.3: The path integral around the grid sites V1 → V2 → V3 → V4 is based on Gauss’s law
for the electric field.

where ∂V/∂n denotes the derivative of V normal to the contour l. If we approximate (10.21) along
each edge of length 2h using a finite difference for the derivative, we obtain

0 = k1
V1 − V0

h
2h + k2

V2 − V0

h
2h + k3

V3 − V0

h
2h + k4

V4 − V0

h
2h. (10.22)

We rearrange terms in (10.22) and find a modified form of (10.12) that includes the dielectric

V0 =
1

4(k1 + k2 + k3 + k4)
[k1V1 + k2V2 + k3V3 + k4V4], (10.23)

where ki is the average dielectric constant at a site where the electric potential is Vi.

Problem 10.16. Capacitor with dielectric

a. Modify your Laplace program to include a dielectric medium. That is, create an array of
dielectric susceptibilities and implement (10.23) using a relaxation algorithm. Be sure to set
the dielectric array elements to unity in free space and inside conductors.

b. Test your algorithm by creating a capacitor consisting of +10 and -10 potential plates near
the center of the grid. Initialize the dielectric susceptibility to two in half the capacitor and
run the program. Use a Scalar2DFrame to display the electric potential, but note that some
representations of the scalar field are more appropriate than others. Compare the spacing
between the contour lines inside and outside the dielectric. Why does the spacing change?

c. The bound charge on the surface of a dielectric can be computed by subtracting V (x, y) from
the average of the potential at the four nearest neighbor sites. You are, in effect, using (10.17)
to solve for the charge. Implement this calculation and describe the bound charge on the surface
of the dielectric.
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10.8 Random Walk Solution of Laplace’s Equation

In Section 10.5 we found that the solution to Laplace’s equation in two dimensions at the point
(x, y) is given by

V (x, y) =
1
4

4∑
i=1

V (i), (10.24)

where V (i) is the value of the potential at the ith neighbor. A generalization of this result is
that the potential at any point equals the average of the potential on a circle (or sphere in three
dimensions) centered about that point.

The relation (10.24) can be given a probabilistic interpretation in terms of random walks (see
Problem 10.10d). Suppose that many random walkers are at the site (x, y) and each walker “jumps”
to one of its four neighbors (on a square grid) with equal probability p = 1/4. From (10.24) we see
that the average potential found by the walkers after jumping one step is the potential at (x, y).
This relation generalizes to walkers that visit a site on a closed surface with fixed potential. The
random walk algorithm for computing the solution to Laplace’s equation can be stated as:

1. Begin at a point (x, y) where the value of the potential is desired, and take a step in a random
direction.

2. Continue taking steps until the walker reaches the surface. Record Vb(i), the potential at the
boundary site i. A typical walk is shown in Figure 10.4.

3. Repeat steps (1) and (2) n times and sum the potential found at the surface each time.

4. The value of the potential at the point (x, y) is estimated by

V (x, y) =
1
n

n∑
i=1

Vb(i) (10.25)

where n is the total number of random walkers.

Problem 10.17. Random walk solution of Laplace’s equation

a. Consider the square region shown in Figure 10.1 and compare the results of the random walk
method with the results of the relaxation method (see Problem 10.10c). Try n = 100 and
n = 1000 walkers, and choose a point near the center of the square.

b. Repeat part (a) for other points within the square. Do you need more or less walkers when the
potential near the surface is desired? How quickly do your answers converge as a function of n?

The disadvantage of the random walk method is that it requires many walkers to obtain a
good estimate of the potential at each site. However, if the potential is needed at only a small
number of sites, then the random walk method might be more appropriate than the relaxation
method which requires the potential to be computed at all points within the region. Another case
where the random walk method is appropriate is when the geometry of the boundary is fixed, but
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(x,y)

Vb(1)

Figure 10.4: A random walk on a 6× 6 grid starting at the point (x, y) = (3, 3) and ending at the
boundary site Vb(3, 6) where the potential is recorded.

the potential in the interior for a variety of different boundary potentials is needed. In this case
the quantity of interest is G(x, y, xb, yb), the number of times that a walker from the point (x, y)
lands at the boundary (xb, yb). The random walk algorithm is equivalent to the relation

V (x, y) =
1
n

∑
b

G(x, y, xb, yb)V (xb, yb), (10.26)

where the sum is over all sites on the boundary. We can use the same function G for different
distributions of the potential on a given boundary. G is an example of a Green’s function, a func-
tion that you will encounter in advanced treatments of electrodynamics and quantum mechanics
(cf. Section 16.9). Of course, if we change the geometry of the boundary, we have to recompute
the function G.

Problem 10.18. Green’s function solution of Laplace’s equation

a. Compute the Green’s function G(x, y, xb, yb) for the same geometry considered in Problem 10.17.
Use at least 200 walkers at each interior site to estimate G. Because of the symmetry of the
geometry, you can determine some of the values of G from other values without doing an
additional calculation. Store your results for G in a file.

b. Use your results for G found in part (a) to determine the potential at each interior site when
the boundary potential is the same as in part (a), except for five boundary sites which are held
at V = 20. Find the locations of the five boundary sites that maximize the potential at the
interior site located at (3, 5). Repeat the calculation to maximize the potential at (5, 3). Use
trial and error guided by your physical intuition.
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VL

VR

Figure 10.5: Two regions of space connected by a narrow neck. The boundary of the left region
has a potential VL, and the boundary of the right region has a potential VR.

The random walk algorithm can help us gain additional insight into the nature of the solutions
of Laplace’s equation. Suppose that you have a boundary similar to the one shown in Figure 10.5.
The potentials on the left and right boundaries are VL and VR, respectively. If the neck between the
two sides is narrow, it is clear that a random walker starting on the left side has a low probability
of reaching the other side. Hence, we can conclude that the potential in the interior of the left side
is approximately VL, except very near the neck.

Poisson’s equation also can be solved using the random walk method. In this case, the potential
is given by

V (x, y) =
1
n

∑
α

V (α) +
π∆x∆y

n

∑
i,α

ρ(xi,α, yi,α), (10.27)

where α labels the walker, and i labels the site visited by the walker. That is, each time a walker
is at site i, we add the charge density at that site to the second sum in (10.27).

10.9 *Fields Due to Moving Charges

The fact that accelerating charges radiate electromagnetic waves is one of the most important
results in the history of physics. In this section we discuss a numerical algorithm for computing
the electric and magnetic fields due to the motion of charged particles. The algorithm is very
general, but requires some care in its application.

To understand the algorithm, we need a few results that can be found conveniently in Feyn-
man’s lectures. We begin with the fact that the scalar potential at the observation point R due to
a stationary particle of charge q is

V (R) =
q

|R − r| , (10.28)
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where r is the position of the charged particle. The electric field is given by

E(R) = −∂V (R)
∂R

, (10.29)

where ∂V (R)/∂R is the gradient with respect to the coordinates of the observation point. (Note
that our notation for the observation point differs from that used in other sections of this chapter.)
How do the relations (10.28) and (10.29) change when the particle is moving? We might guess that
because it takes a finite time for the disturbance due to a charge to reach the point of observation,
we should modify (10.28) by writing

V (R)
?
=

q

rret
, (10.30)

where

rret = |R − r(tret)|. (10.31)

The quantity rret is the separation of the charged particle from the observation point R at the
retarded time tret. The latter is the time at which the particle was at r(tret) such that a disturbance
starting at r(tret) and traveling at the speed of light would reach R at time t; tret is given by the
implicit equation

tret = t − rret(tret)
c

, (10.32)

where t is the observation time and c is the speed of light.
Although the above reasoning is plausible, the relation (10.30) is not quite correct (cf. Feynman

et al. for a derivation of the correct result). We need to take into account that the potential due
to the charge is a maximum if the particle is moving toward the observation point and a minimum
if it is moving away. The correct result can be written as

V (R, t) =
q

rret

(
1 − r̂ret · vret/c

) , (10.33)

where

vret =
dr(t)
dt

∣∣
t=tret

. (10.34)

To find the electric field of a moving charge, we recall that the electric field is related to the
time rate of change of the magnetic flux. Hence, we expect that the total electric field at the
observation point R has a contribution due to the magnetic field created by the motion of the
charge. We know that the magnetic field due to a moving charge is given by

B =
1
c

qv × r
r3

. (10.35)

If we define the vector potential A as

A =
q

r

v
c
, (10.36)
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we can express B in terms of A as

B = ∇× A. (10.37)

As we did for the scalar potential V , we argue that the correct formula for A is

A(R, t) = q
vret/c

rret

(
1 − r̂ret · vret/c

) . (10.38)

Equations (10.33) and (10.38) are known as the Liénard-Wiechert form of the potentials.
The contribution to the electric field E from V and A is given by

E = −∇V − 1
c

∂A
∂t

. (10.39)

The derivatives in (10.39) are with respect to the observation coordinates. The difficulty associated
with calculating these derivatives is that the potentials depend on tret, which in turn depends on
R, r, and t. The result can be expressed as

E(R, t) =
qrret(

rret · uret

)3

[
uret(c2 − v2

ret) + rret ×
(
uret × aret

)]
, (10.40)

where

uret ≡ cr̂ret − vret. (10.41)

The acceleration of the particle aret = dv(t)/dt|t=tret . We also can show using (10.37) that the
magnetic field B is given by

B = r̂ret × E. (10.42)

The above discussion is not rigorous, but we suggest that you accept (10.40) and (10.42) in the
same spirit as you accepted Coulomb’s law and the Biot-Savart law. All of classical electrodynamics
can be reduced to (10.40) and (10.42) if we assume that the sources of all fields are charges, and
all electric currents are due to the motion of charged particles. Note that (10.40) and (10.42) are
consistent with the special theory of relativity and reduce to known results in the limit of stationary
charges and steady currents.

Although (10.40) and (10.42) are deceptively simple (we do not even have to solve any differ-
ential equations), it is difficult to calculate the fields analytically even if the position of a charged
particle is an analytic function of time. The difficulty is that we must find the retarded time tret
from (10.32) for each observation position R and time t. For example, consider a charged particle
whose motion is sinusoidal, that is, x(tret) = A cos ωtret. To calculate the fields at the position
R = (X, Y, Z) at time t, we need to solve the following transcendental equation for tret:

tret = t − rret

c
= t − 1

c

√
(X − A cos2 ωtret)2 + Y 2 + Z2. (10.43)

The solution of (10.43) can be expressed as a root finding problem for which we need to find the
zero of the function f(tret):

f(tret) = t − tret −
rret

c
. (10.44)
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There are various ways of finding the solution for the retarded time. For example, if the
motion of the charges is given by an analytic expression, we can employ Newton’s method or the
bisection method. Because we store the path of the charged particle, we use a simple method that
looks for a change in the sign of the function f(tret) along the path. First find a value ta such
that f(ta) > 0, and another value tb such that f(tb) < 0. Because f(tret) is continuous, there
is a value of tret in the interval ta < tret < tb such that f(tret) = 0. This technique is used in
the RadiatingCharge class shown in Listing 10.6. Note that the particle’s path is a sinusoidal
oscillation specified in the inner class named ParticlePosition. What is the maximum velocity
for a particle that moves according to this function?

Listing 10.6: The RadiatingCharge class computes the radiating electric and magnetic fields using
Liénard-Wiechert potentials.

package org.opensourcephysics.sip.ch10;
import java.awt.∗;
import org.opensourcephysics.display.∗;
import org.opensourcephysics.numerics.∗;

/∗∗
∗ RadiatingCharge models the fields from an accelerating charged particle .
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗ fixed spelling , H. Gould, 12/12/04
∗/

public class RadiatingCharge implements Drawable {
Circle circle = new Circle(0, 0, 5);
double vmax = 0.9; // vmax in units of c==1
double t = 0; // time
double dt = 0.5; // time step
int numPts = 0; // current number of points in storage
double[][] path = new double[3][1024]; // storage for t ,x,y
double[] r = new double[2];
double[] v = new double[2];
double[] u = new double[2];
double[] a = new double[2];
double[] temp = new double[2];
ChargePosition xpos = new ChargePosition();

/∗∗
∗ MovingCharge constructor
∗
∗/

public RadiatingCharge() {
resetPath();

}

/∗∗
∗ Resizes the arrays used to store the path.
∗/
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private void resizePath() {
int length = path[0].length;
if (length>32768) { // drop half the points

System.arraycopy(path[0], length/2, path [0], 0, length/2);
System.arraycopy(path[1], length/2, path [1], 0, length/2);
System.arraycopy(path[2], length/2, path [2], 0, length/2);
numPts = length/2;
return;

}
double[][] newPath = new double[3][2∗length]; // new path
System.arraycopy(path[0], 0, newPath[0], 0, length);
System.arraycopy(path[1], 0, newPath[1], 0, length);
System.arraycopy(path[2], 0, newPath[2], 0, length);
path = newPath;

}

/∗∗
∗ Steps the position and stores a new space−time coordinate in the path.
∗
∗ @param dt
∗/

void step() {
t += dt;
if (numPts>=path[0].length) {

resizePath ();
}
path [0][ numPts] = t;
path [1][ numPts] = xpos.evaluate(t);
path [2][ numPts] = 0;
numPts++;

}

/∗∗
∗ Resets the stored path.
∗/

void resetPath() {
numPts = 0;
t = 0;
path = new double[3][1024]; // storage for t ,x,y
path [0][ numPts] = t;
path [1][ numPts] = xpos.evaluate(t);
path [2][ numPts] = 0;
numPts++; // initial position has been added

}

/∗∗
∗ Calculates the Coulomb field for a stationary particle .
∗
∗ @param x
∗ @param y



CHAPTER 10. ELECTRODYNAMICS 413

∗ @param field
∗/

void electrostaticField (double x, double y, double[] field) {
double dx = x−path[1][0];
double dy = y−path[2][0];
double r2 = dx∗dx+dy∗dy;
double r3 = r2∗Math.sqrt(r2);
double ex = dx/r3;
double ey = dy/r3;
field [0] = ex;
field [1] = ey;
field [2] = 0; // magnetic field

}

/∗∗
∗ Returns the square of the space−time separation between a space−time coordinate
∗ and a space−time point on the path.
∗
∗ @param i the point on the path
∗ @param t the current time
∗ @param x the x location
∗ @param y the y location
∗
∗ @return
∗/

double dsSquared(int i, double t, double x, double y) {
double dt = t−path[0][i];
double dx = x−path[1][i];
double dy = y−path[2][i];
return dx∗dx+dy∗dy−dt∗dt;

}

/∗∗
∗ Calculates the retarded field at the location (x,y).
∗
∗ @param x
∗ @param y
∗ @param field E&M field at the location
∗/

synchronized void calculateRetardedField(double x, double y, double[] field) {
int first = 0;
int last = numPts−1;
double ds first = dsSquared(first , t , x , y);
if ( ds first >=0) { // field has not yet propagated to the location

electrostaticField (x, y, field );
return;

}
while(( ds first<0)&&(last−first)>1) {

int i = first +(last−first )/2; // bisect the interval
double ds = dsSquared(i, t, x, y);
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if (ds<=0) {
ds first = ds;
first = i ;

} else {
last = i ;

}
}
double t ret = path[0][ first ]; // time where ds changes sign
r [0] = x−xpos.evaluate(t ret ); // evaluate x at retarded time
r [1] = y; // evaluate y at retarded time
v[0] = Derivative.centered(xpos, t ret , dt ); // derivative of x at retarded time
v [1] = 0; // derivative of y at retarded time
a[0] = Derivative.second(xpos, t ret , dt ); // acceleration of x at retarded time
a [1] = 0; // acceleration of y at retarded time
double rMag = Vector2DMath.mag2D(r); // magnitdue of r
u[0] = r [0]/rMag−v[0];
u[1] = r [1]/rMag−v[1];
double r dot u = Vector2DMath.dot2D(r, u);
double k = rMag/r dot u/r dot u/r dot u;
double u cross a = Vector2DMath.cross2D(u, a); // u cross a is perpendicular to plane of motion
temp[0] = r [0];
temp[1] = r [1];
temp = Vector2DMath.crossZ(temp, u cross a); // temp contains r cross u cross a
double c2v2 = 1−Vector2DMath.dot2D(v, v); // (c∗c − v∗v) where c = 1
double ex = k∗(u[0]∗c2v2+temp[0]);
double ey = k∗(u[1]∗c2v2+temp[1]);
field [0] = ex;
field [1] = ey;
field [2] = k∗Vector2DMath.cross2D(temp, r)/rMag;

}

/∗∗
∗ Draws the charge.
∗
∗ @param panel
∗ @param g
∗/

public void draw(DrawingPanel panel, Graphics g) {
circle .setX(xpos.evaluate(t ));
circle .draw(panel, g); // draw the charged particle on the screen

}

/∗∗
∗ Class ChargePosition defines the x motion of the charged particle .
∗/

class ChargePosition implements Function {

/∗∗
∗ Evaluates the charge position at time t.
∗
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∗ @param t
∗ @return the x position
∗/

public double evaluate(double t) {
return 5∗Math.cos(t∗vmax/5.0);

}
}

}

The RadiatingCharge class computes the electric field due to an oscillating charge using the
Liénard-Wiechert potentials. We choose units such that the speed of light is unity, c = 1. As
the charge moves, it stores its ith data point in a two-dimensional array path[3][i] containing
the time, x-position, and y-position. To find the retarded time at the position (x, y), we use the
dsSquared method to compute the square of the space-time interval between the given location
and points along the path. The square of the space-time separation is defined as

∆s2 = ∆x2 + ∆y2 − c2∆t2, (10.45)

where ∆x = x − xpath, ∆y = y − ypath, and ∆t = t − tpath. The last point on the path contains
the current position of the charge so ∆s2 must be positive because ∆t is zero (unless the charge
is at the observation point (x, y) in which case ∆s2 is zero and the field is infinite due to the 1/r2

dependence). The calcRetardedField method evaluates ∆s2 at the first point in the trajectory
to determine if it is negative. We assume the charge was stationary for t < 0 and compute the
electrostatic field if ∆s2 is positive at the trajectory’s first point where t = 0. If ∆s2 is negative
at the trajectory’s first point, we repeatedly bisect the path into smaller and smaller segments
while checking to see if ∆s2 remains negative at the beginning of the segment and positive at the
end. We have found the retarded time when we have a path segment bounded by two data points.
Note that the RadiatingCharge class uses the Vector2DMath class to perform the necessary vector
arithmetic. This helper class, is not listed here but is available in the chapter’s code package.

The RadiatingEFieldApp program is shown in Listing 10.7. It displays the electric field in the
xy plane using a Vector2DFrame. The calculateFields method computes the retarded field at
every grid point. The simulation’s doStep method invokes this method after it moves the charge.

Listing 10.7: The RadiatingEFieldApp program computes the radiating electric and magnetic
fields using Liénard-Wiechert potentials.

package org.opensourcephysics.sip.ch10;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;

/∗∗
∗ RadiatingEFieldApp models the radiating electric field from an accelerating point
∗ charge using Lienard−Wiechert potentials.
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class RadiatingEFieldApp extends AbstractSimulation {
Vector2DFrame frame = new Vector2DFrame(”x”, ”y”, ”Electric Field”);
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RadiatingCharge charge = new RadiatingCharge();
int size ;
double [][][] data;
double xmin = −20, xmax = 20, ymin = −20, ymax = 20;

/∗∗
∗ The RadiationApp constructor.
∗/

public RadiatingEFieldApp() {
frame.setPreferredMinMax(xmin, xmax, ymin, ymax);
frame.setZRange(false , 0, 0.2);
frame.addDrawable(charge);

}

/∗∗
∗ Initializes the animation.
∗/

public void initialize () {
size = control . getInt(”size”);
data = new double[2][size][size ];
charge.vmax = control.getDouble(”vmax”);
charge.dt = control.getDouble(”dt”);
frame.setAll(data);
initArrays ();

}

/∗∗
∗ Initializes the arrays.
∗/

private void initArrays() {
charge.resetPath();
calculateFields ();

}

/∗∗
∗ Calculates the fields .
∗/

private void calculateFields() {
double[] field = new double[3]; // Ex, Ey, Bz
for(int i = 0;i<size; i++) {

for(int j = 0;j<size; j++) {
double x = frame.indexToX(i); // x location where we calculate the field
double y = frame.indexToY(j); // y location where we calculate the field
charge.calculateRetardedField(x, y, field ); // return the retarded time
data [0][ i ][ j ] = field [0]; // Ex
data [1][ i ][ j ] = field [1]; // Ey

}
}
frame.setAll(data);

}
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/∗∗
∗ Resets the model to a predefined state .
∗/

public void reset() {
control .setValue(”size” , 31);
control .setValue(”dt” , 0.5);
control .setValue(”vmax”, 0.9);
initialize (); // initialize the model

}

/∗∗
∗ doStep
∗/

protected void doStep() {
charge.step ();
calculateFields ();

}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main(String[] args) {
SimulationControl.createApp(new RadiatingEFieldApp());

}
}

Problem 10.19. Field lines from an accelerating charge

a. Read the code for RadiatingEFieldApp carefully to understand the correspondence between
the program and the analytic results (10.40) and (10.42) discussed in the text.

b. Describe qualitatively the nature of the electric and magnetic fields from an oscillating point
charge. How does the electric field differ from that of a static charge at the origin? What
happens as the speed increases? The physics breaks down if the maximum speed is greater than
c. Does the algorithm break down? Explain.

c. Modify the program to show the magnetic field in the xy plane using a Scalar2DFrame to show
the Bz vector component.

d. Modify the program to observe a charge moving with uniform circular motion about the origin.
What happens as the speed of the charge approaches the speed of light?

Problem 10.20. Spatial dependence of radiating fields

a. As waves propagate from an accelerating point source, the total power that passes through a
spherical surface of radius R remains constant. Because the surface area is proportional to R2,
the power per unit area or intensity is proportional to 1/R2. Also, because the intensity is
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proportional to E2, we expect that E ∝ 1/R far from the source. Modify the program to verify
this result for a charge that is oscillating along the x-axis according to x(t) = 0.2 cos t. Plot |E|
as a function of the observation time t for a fixed position such as R = (10, 10, 0). The field
should oscillate in time. Find the amplitude of this oscillation. Next double the distance of the
observation point from the origin. How does the amplitude depend on R?

b. Repeat part (a) for several directions and distances. Generate a polar diagram showing the
amplitude as a function of angle in the x-y plane. Is the radiation greatest along the line in
which the charge oscillates?

Problem 10.21. Fields from a charge moving at constant velocity

a. Use RadiationApp to calculate E due to a charged particle moving at constant velocity toward
the origin, that is, x(tret) = 1 − 2tret. Take a snapshot at t = 0.5 and compare the field lines
with those you expect from a stationary charge.

b. Modify RadiationApp so that x(tret) = 1 − 2tret for tret < 0.5 and x(tret) = 0 for tret > 0.5.
Describe the field lines for t > 0.5. Does the particle accelerate at any time? Is there any
radiation?

Problem 10.22. Frequency dependence of an oscillating charge

a. The radiated power at any point in space is proportional to E2. Plot |E| versus time at a fixed
observation point (for example, X = 10, Y = Z = 0), and calculate the frequency dependence
of the amplitude of |E| due to a charge oscillating at the frequency ω. It is shown in standard
textbooks that the power associated with radiation from an oscillating dipole is proportional
to ω4. How does the ω-dependence that you measured compare to that for dipole radiation?
Repeat for a much bigger value of R, and explain any differences.

b. Repeat part (a) for a charge moving in a circle. Are there any qualitative differences?

10.10 *Maxwell’s Equations

In Section 10.9 we found that accelerating charges produce electric and magnetic fields which
depend on position and time. We now investigate the direct relation between changes in E and B
given by the differential form of Maxwell’s equations:

∂B
∂t

= −1
c
∇× E (10.46)

∂E
∂t

= c∇× B − 4πj, (10.47)

where j is the electric current density. We can regard (10.46) and (10.47) as the basis of electrody-
namics. In addition to (10.46) and (10.47), we need the relation between j and the charge density
ρ that expresses the conservation of charge:

∂ρ

∂t
= −∇ · j. (10.48)
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A complete description of electrodynamics requires (10.46), (10.47), and (10.48) and the initial
values of all currents and fields.

For completeness, we obtain the Maxwell’s equations that involve ∇ · B and ∇ · E by taking
the divergence of (10.46) and (10.47), substituting (10.48) for ∇· j, and then integrating over time.
If the initial fields are zero, we obtain (using the relation ∇ · (∇× a) = 0 for any vector a):

∇ · E = 4πρ (10.49)
∇ · B = 0. (10.50)

If we introduce the electric and magnetic potentials, it is possible to convert the first-order
equations (10.46) and (10.47) to second-order differential equations. However, the familiar first-
order equations are better suited for numerical analysis. To solve (10.46) and (10.47) numerically,
we need to interpret the curl and divergence of a vector. As its name implies, the curl of a vector
measures how much the vector twists around a point. A coordinate free definition of the curl of
an arbitrary vector W is

(∇× W) · Ŝ = lim
S→0

1
S

∮
C

W · dl, (10.51)

where S is the area of any surface bordered by the closed curve C, and Ŝ is a unit vector normal
to the surface S.

Equation (10.51) gives the component of ∇ × W in the direction of Ŝ and suggests a way
of computing the curl numerically. We divide space into cubes of linear dimension ∆l. The
rectangular components of W can be defined either on the edges or on the faces of the cubes. We
compute the curl using both definitions. We first consider a vector B that is defined on the edges
of the cubes so that the curl of B is defined on the faces. (We use the notation B because we will
find that it is convenient to define the magnetic field in this way.) Associated with each cube is one
edge vector and one face vector. We label the cube by the coordinates corresponding to its lower
left front corne; the three components of B associated with this cube are shown in Figure 10.6a.
The other edges of the cube are associated with B vectors defined at neighboring cubes.

The discrete version of (10.51) for the component of ∇ × B defined on the front face of the
cube (i, j, k) is

(∇× B) · Ŝ =
1

(∆l)2

4∑
i=1

Bi∆li, (10.52)

where S = (∆l)2, and Bi and li are shown in Figures 10.6b and 10.6c, respectively. Note that two
of the components of B are associated with neighboring cubes.

The components of a vector also can be defined on the faces of the cubes. We call this vector
E because it will be convenient to define the electric field in this way. In Figure 10.7a we show
the components of E associated with the cube (i, j, k). Because E is normal to a cube face, the
components of ∇×E lie on the edges. The components Ei and li are shown in Figures 10.7b and
10.7c respectively. The form of the discrete version of ∇×E is similar to (10.52) with Bi replaced
by Ei, where Ei and li are shown in Figures 10.7b and 10.7c respectively. The z-component of
∇× E is along the left edge of the front face.
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Figure 10.6: Calculation of the curl of B defined on the edges of a cube. (a) The edge vector B
associated with cube (i, j, k). (b) The components Bi along the edges of the front face of the cube.
B1 = Bx(i, j, k), B2 = Bz(i + 1, j, k), B3 = −Bx(i, j, k + 1), and B4 = −Bz(i, j, k). (c) The vector
components ∆li on the edges of the front face. (The y-component of ∇ × B defined on the face
points in the negative y direction.)

A coordinate free definition of the divergence of the vector field W is

∇ · W = lim
V →0

1
V

∮
S

W · dS, (10.53)

where V is the volume enclosed by the closed surface S. The divergence measures the average flow
of the vector through a closed surface. An example of the discrete version of (10.53) is given in
(10.54).

We now discuss where to define the quantities ρ, j,E, and B on the grid. It is natural to define
the charge density ρ at the center of a cube. From the continuity equation (10.48), we see that this
definition leads us to define j at the faces of the cube. Hence, each face of a cube has a number
associated with it corresponding to the current density flowing parallel to the outward normal to
that face. Given the definition of j on the grid, we see from (10.47) that the electric field E and
j should be defined at the same places, and hence we define the electric field on the faces of the
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cubes. Because E is defined on the faces, it is natural to define the magnetic field B on the edges
of the cubes. Our definitions of the vectors j,E, and B on the grid are now complete.

We label the faces of cube c by the symbol fc. If we use the simplest finite difference method
with a discrete time step ∆t and discrete spatial interval ∆x = ∆y = ∆z ≡ ∆l, we can write the
continuity equation as:

[
ρ(c, t +

1
2
∆) − ρ(c, t − 1

2
∆t)

]
= −∆t

∆l

6∑
fc=1

j(fc, t). (10.54)

The factor of 1/∆l comes from the area of a face (∆l)2 used in the surface integral in (10.53)
divided by the volume (∆l)3 of a cube. In the same spirit, the discretization of (10.47) can be
written as:

E(f, t +
1
2
∆t) − E(f, t − 1

2
∆t) = ∆t

[
∇× B − 4πj(f, t)

]
. (10.55)

Note that E in (10.55) and ρ in (10.54) are defined at different times than j. As usual, we choose
units such that c = 1.

We next need to define a square around which we can discretize the curl. If E is defined on
the faces, it is natural to use the square that is the border of the faces. As we have discussed, this
choice implies that we should define the magnetic field on the edges of the cubes. We write (10.55)
as:

E(f, t +
1
2
∆t) − E(f, t − 1

2
∆t) = ∆t

[ 1
∆l

4∑
ef =1

B(ef , t) − 4πj(f, t)
]
, (10.56)

where the sum is over ef , the four edges of the face f (see Figure 10.7b). Note that B is defined
at the same time as j. In a similar way we can write the discrete form of (10.46) as:

B(e, t + ∆t) − B(e, t) = −∆t

∆l

4∑
fe=1

E(fe, t +
1
2
∆t), (10.57)

where the sum is over fe, the four faces that share the same edge e (see Figure 10.7b).
We now have a well defined algorithm for computing the spatial dependence of the electric and

magnetic field, the charge density, and the current density as a function of time. This algorithm
was developed by Yee, an electrical engineer, in 1966, and independently by Visscher, a physicist,
in 1988 who also showed that all of the integral relations and other theorems that are satisfied by
the continuum fields also are satisfied for the discrete fields.

Usually, the most difficult part of this algorithm is specifying the initial conditions because
we cannot simply place a charge somewhere. The reason is that the initial fields appropriate for
this charge would not be present. Indeed, our rules for updating the fields and the charge densities
reflect the fact that the electric and magnetic fields do not appear instantaneously at all positions
in space when a charge appears, but instead evolve from the initial appearance of a charge. Of
course, charges do not appear out of nowhere, but appear by disassociating from neutral objects.
Conceptually, the simplest initial condition corresponds to two charges of opposite sign moving
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oppositely to each other. This condition corresponds to an initial current on one face. From this
current, a charge density and electric field appears using (10.54) and (10.56), respectively, and a
magnetic field appears using (10.57).

Because we cannot compute the fields for an infinite lattice, we need to specify the boundary
conditions. The easiest method is to use fixed boundary conditions such that the fields vanish at the
edges of the lattice. If the lattice is sufficiently large, fixed boundary conditions are a reasonable
approximation. However, fixed boundary conditions usually lead to nonphysical reflections off
the edges, and a variety of approaches have been used including boundary conditions equivalent
to a conducting medium that gradually absorbs the fields. In some cases physically motivated
boundary conditions can be employed. For example, in simulations of microwave cavity resonators
(see Problem 10.24), the appropriate boundary conditions are that the tangential component of E
and the normal component of B vanish at the boundary.

As we have noted, E and ρ are defined at different times than B and j. This half-step approach
leads to well behaved equations that are stable over a range of parameters. An analysis of the
stability requirement for the Yee-Visscher algorithm shows that the time step ∆t must be smaller
than the spatial grid ∆l by:

c∆t ≤ ∆l√
3
. (stability requirement) (10.58)

Your understanding of the Yee-Visscher algorithm for finding solutions to Maxwell’s equations
will be enhanced by carefully reading the MaxwellApp program and the Maxell class.

Listing 10.8: The Maxwell class implements the Yee-Visscher finite difference approximation to
Maxwell’s equations.

package org.opensourcephysics.sip.ch10;

/∗∗
∗ Maxwell models electrodynamcis using the
∗ Visscher−Yee finite difference approximation to Maxwell’s equations.
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

// revised 12/14/04 JT
public class Maxwell {

// static variables determine units and time scale
static final double pi4 = 4∗Math.PI;
static final double dt = 0.03;
static final double dl = 0.1;
static final double escale = dl/(4∗Math.PI∗dt);
static final double bscale = escale∗dl/dt;
static final double jscale = 1;
int size ;
double t; // time
double [][][][] edata, bdata, jdata;
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/∗∗
∗ Creates Maxwell and initializes arrays to the given size .
∗ @param size int
∗/

public Maxwell(int size) {
size = size ;
//3D arrays for electric field , magnetic field , and current
// first three indices indicate location , last index indicates x,y or z component
edata = new double[size][size][size ][3];
bdata = new double[size][size][size ][3];
jdata = new double[size][size][ size ][3];

}

/∗∗
∗ Does a computation step by advancing the time.
∗/

public void doStep() {
current(t ); // update the current
computeE(); // step electric field
computeB(); // step magnetic field
damping(); // damp transients
t += dt;

}

/∗∗
∗ Sets the current.
∗
∗ The current flows for a short time in opposite directions from the middle and then stops.
∗ @param t
∗/

void current(double t) {
final int mid = size/2;
double delta = 1.0;
for(int i = −3;i<5;i++) {

jdata[mid+i][mid][mid][0] = (t<delta) ? +1 : 0;
}

}

/∗∗
∗ Computes the electric field defined on the faces .
∗/

void computeE() {
for(int ix = 1;ix<size−1;ix++) {

for(int iy = 1;iy<size−1;iy++) {
for(int iz = 1; iz<size−1;iz++) {

double curlBx = (bdata[ix][iy][ iz ][1]−bdata[ix ][ iy ][ iz+1][1]+bdata[ix][ iy+1][iz ][2]−bdata[ix ][ iy ][ iz ][2])/ dl ;
edata[ix ][ iy ][ iz ][0] += dt∗(curlBx−pi4∗jdata[ix][iy ][ iz ][0]);
double curlBy = (bdata[ix][iy][ iz ][2]−bdata[ix+1][iy ][ iz ][2]+bdata[ix ][ iy ][ iz+1][0]−bdata[ix][ iy ][ iz ][0])/ dl ;
edata[ix ][ iy ][ iz ][1] += dt∗(curlBy−pi4∗jdata[ix][iy ][ iz ][1]);
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double curlBz = (bdata[ix][iy][ iz ][0]−bdata[ix ][ iy+1][iz ][0]+bdata[ix+1][iy ][ iz ][1]−bdata[ix ][ iy ][ iz ][1])/ dl ;
edata[ix ][ iy ][ iz ][2] += dt∗(curlBz−pi4∗jdata[ix][ iy ][ iz ][2]);

}
}

}
}

/∗∗
∗ Computes the magnetic field defined at the edges.
∗/

void computeB() {
for(int ix = 1;ix<size−1;ix++) {

for(int iy = 1;iy<size−1;iy++) {
for(int iz = 1; iz<size−1;iz++) {

double curlEx = (edata[ix][iy][ iz ][2]−edata[ix ][ iy−1][iz ][2]+edata[ix ][ iy ][ iz−1][1]−edata[ix ][ iy ][ iz ][1])/ dl ;
bdata[ix ][ iy ][ iz ][0] −= dt∗curlEx;
double curlEy = (edata[ix][iy][ iz ][0]−edata[ix ][ iy ][ iz−1][0]+edata[ix−1][iy ][ iz ][2]−edata[ix ][ iy ][ iz ][2])/ dl ;
bdata[ix ][ iy ][ iz ][1] −= dt∗curlEy;
double curlEz = (edata[ix][iy ][ iz ][1]−edata[ix−1][iy ][ iz ][1]+edata[ix ][ iy−1][iz ][0]−edata[ix ][ iy ][ iz ][0])/ dl ;
bdata[ix ][ iy ][ iz ][2] −= dt∗curlEz;

}
}

}
}

/∗∗
∗ Damps the fields near the boundaries.
∗/

void damping() {
double coef = 0.1;
for(int i = 0;i<size; i++) {

for(int j = 0;j<size; j++) {
for(int w = 0;w<4;w++) { // w = number of cells in from boundary subject to damping

for(int comp = 0;comp<3;comp++) {
edata[w][ i ][ j ][ comp] −= coef∗edata[w][i][j ][ comp];
edata[ size−w−1][i][j ][ comp] −= coef∗edata[size−w−1][i][j][comp];
edata[ i ][ w][ j ][ comp] −= coef∗edata[i][w][j ][ comp];
edata[ i ][ size−w−1][j][comp] −= coef∗edata[i][size−w−1][j][comp];
edata[ i ][ j ][ w][comp] −= coef∗edata[i][j ][w][comp];
edata[ i ][ j ][ size−w−1][comp] −= coef∗edata[i][j][size−w−1][comp];
bdata[w][i ][ j ][ comp] −= coef∗bdata[w][i][j ][comp];
bdata[size−w−1][i][j ][ comp] −= coef∗bdata[size−w−1][i][j][comp];
bdata[i ][ w][ j ][ comp] −= coef∗bdata[i][w][j ][comp];
bdata[i ][ size−w−1][j][comp] −= coef∗bdata[i][size−w−1][j][comp];
bdata[i ][ j ][ w][comp] −= coef∗bdata[i][j][w][comp];
bdata[i ][ j ][ size−w−1][comp] −= coef∗bdata[i][j][size−w−1][comp];

}
}

}
}



CHAPTER 10. ELECTRODYNAMICS 425

}
}

The Maxwell class implements the the Visscher-Yee finite difference algorithm for solving
Maxwell’s equations. The field and current data are stored in multi-dimensional arrays edata,
bdata, and jdata. The first three indices iterate over the three spatial coordinates. The last
index determines the vector component. The current method models a positive current flowing
for one time unit. This current flow produces both electric and magnetic fields. Because charge
is conserved, the current flow produces an electrostatic dipole. Negative charge remains at the
source and a positive charge is deposited at the destination. Note that the doStep method invokes
a damping method that reduces the fields at points near the boundaries thereby absorbing the
emitted radiation and reducing the reflected electromagnetic waves.

Listing 10.9: The MaxwellApp program computes and displays the electric field by solving Maxwell’s
equations.

package org.opensourcephysics.sip.ch10;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;

/∗∗
∗ MaxwellApp creates the Maxwell model and displays time dependent solution to Maxwell’s equations.
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class MaxwellApp extends AbstractSimulation {
Vector2DFrame frame = new Vector2DFrame(”x”, ”y”, ”EField in XY Plane”);
int size ;
Maxwell maxwell;
double [][][] data;

/∗∗
∗ Constructor MaxwellApp
∗
∗/

public MaxwellApp() {
frame.setZRange(false , 0, 1.0);

}

/∗∗
∗ Resets the model to a predefined state .
∗/

public void reset() {
control .setValue(”size” , 31);
control .setValue(”dt” , 0.5);
initialize (); // initialize the model

}

/∗∗
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∗ Initializes the animation.
∗/

public void initialize () {
size = control . getInt(”size”);
data = new double[2][size][size ];
maxwell = new Maxwell(size);
frame.setAll(data);
// maxwell xyz data that the y index starts at y=ymax
frame.setPreferredMinMax(0, maxwell.dl∗size, maxwell.dl∗size, 0);
plotField ();

}

/∗∗
∗ Does a time step.
∗/

protected void doStep() {
maxwell.doStep();
plotField ();
frame.setMessage(”t=”+decimalFormat.format(maxwell.t));

}

/∗∗
∗ Plots the electric field using the arrays in the Maxwell object.
∗/

void plotField() {
double [][][][] xyzData = maxwell.edata;
int mid = size/2;
for(int i = 0;i<size; i++) {

for(int j = 0;j<size; j++) {
data [0][ i ][ j ] = xyzData[i ][ j ][ mid ][0]; // Ex
data [1][ i ][ j ] = xyzData[i ][ j ][ mid ][1]; // Ey

}
}
frame.setAll(data);

}

/∗∗
∗ Starts the Java application .
∗ @param args command line parameters
∗/

public static void main(String[] args) {
SimulationControl.createApp(new MaxwellApp());

}
}

The MaxwellApp program shows the electric field in the x-y plane. The x-y components of the
electric field are represented by arrows, whose length is fixed and whose color indicates the field
magnitude at each position where the field is defined.

Problem 10.23. Fields from a current loop
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a. A steady current in the middle of the x-y plane is turned on at t = 0 and left on for one time
unit. Before running the program, predict what you expect to see. Compare your expectations
with the results of the simulation. Use ∆t = 0.03, ∆l = 0.1, and take the number of cubes in
each direction to be n(1) = n(2) = n(3) = 8.

b. Add a plot of the magnetic field. Where should the viewing plane be placed to produce the
best visualization? How should the plane be oriented? Predict what you expect to see before
you run the simulation.

c. Verify the stability requirement (10.58), by running your program with ∆t = 0.1 and ∆l = 0.1.
Then try ∆t = 0.05 and ∆l = ∆t

√
3. What happens to the results in part (a) if the stability

requirement is not satisfied?

d. Modify the current density in part (a) so that j oscillates sinusoidally. What happens to the
electric and magnetic field vectors?

e. How much must you change the factor coef in the damping method before you can visually see
a difference in the simulation? What problems occur when the damping is removed?

e.∗ The amplitude of the fields far from the current loop should be characteristic of radiation fields
for which the amplitude falls off as 1/r, where r is the distance from the current loop to the
observation point. Do a simulation to detect this dependence if you have sufficient patience or
computer resources.

Problem 10.24. Microwave cavity resonators

a. Cavity resonators are a practical way of storing energy in the form of oscillating electric and
magnetic fields without losing as much energy as would be dissipated in a resonant LC circuit.
Consider a cubical resonator of linear dimension L whose walls are made of a perfectly conduct-
ing material. The tangential components of E and the normal component of B vanish at the
walls. Standing microwaves can be set up in the box of the form (cf. Reitz et al.)

Ex = Ex0 cos kxx sin kyy sin kzz eiωt (10.59a)
Ey = Ey0 cos kyy sin kxx sin kzz eiωt (10.59b)
Ez = Ez0 cos kzz sin kxx sin kyy eiωt. (10.59c)

The wave vector k = (kx, ky, kz) = (mxπ/L, myπ/L, mzπ/L), where mx, my, and mz are
integers. A particular mode is labeled by the integers (mx, my, mz). The initial electric field is
perpendicular to k, and ω = ck. Implement the boundary conditions at (x = 0, y = 0, z = 0)
and (x = L, y = L, z = L). Set ∆t = 0.05, ∆l = 0.1, and L = 1. At t = 0, set B = 0, j = 0
(there are no currents within the cavity), and use (10.59) with (mx, my, mz) = (0, 1, 1), and
Ex0 = 1. Plot the field components at specific positions as a function of t and find the resonant
frequency ω. Compare your computed value of ω with the analytical result. Do the magnetic
fields change with time? Are they perpendicular to k and E?

b. Repeat part (a) for two other modes.
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c. Repeat part (a) with a uniform random noise added to the initial field at all positions. Assume
the amplitude of the noise is δ and describe the resulting fields for δ = 0.1. Are they similar
to those without noise? What happens for δ = 0.5? More quantitative results can be found
by computing the power spectrum |E(ω)|2 for the electric field at a few positions. What is the
order of magnitude of δ for which the maximum of |E(ω)|2 at the standing wave frequency is
swamped by the noise?

d. Change the shape of the container slightly by removing a 0.1 × 0.1 cubical box from each of
the corners of the original resonator. Do the standing wave frequencies change? Determine the
standing wave frequency by adding noise to the initial fields and looking at the power spectrum.
How do the standing wave patterns change?

e. Change the shape of the container slightly by adding a 0.1 × 0.1 cubical box at the center of
one of the faces of the original resonator. Do the standing wave frequencies change? How do
the standing wave patterns change?

f. Cut a 0.2 × 0.2 square hole in a face in the y-z plane, and double the computational region in
the x direction. Begin with a (0, 1, 1) standing wave, and observe how the fields “leak” out of
the hole.

Problem 10.25. Billiard microwave cavity resonators

a. Repeat Problem 10.24a for Lx = Ly = 2, Lz = 0.2, ∆l = 0.1, and ∆t = 0.05. Indicate the
magnitude of the electric field in the Lz = 0.1 plane by a color code. Choose an initial normal
mode field distribution and describe the pattern that you obtain. Then repeat your calculation
for a random initial field distribution.

b. Place an approximately circular conductor in the middle of the cavity of radius r = 0.4. Describe
the patterns that you see. Such a geometry leads to chaotic trajectories for particles moving
within such a cavity (see Project 6.26). Is there any evidence of chaotic behavior in the field
pattern?

c. Repeat part (b) with the circular conductor placed off center.

10.11 Projects

Much of the difficulty in understanding electromagnetic phenomena is visualizing its three-dimensional
character. Although Java has an excellent three-dimensional graphics package, Java3D, we have
not used it here because of its steep learning curve. Many interesting problems can be posed based
on the simple, but nontrivial question of how three-dimensional electromagnetic fields can best be
represented visually in various contexts.

Many of the techniques used in this chapter, for example, the random walk method and
the relaxation method for solving Laplace’s equation, have applications in other fields, especially
problems in fluid flow and transport. Similarly, the multigrid method, discussed in Project 10.26,
has far reaching applications.
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Project 10.26. Multigrid method
In general, the relaxation method for solving Laplace’s equation is very slow even using overre-
laxation. The reason is that the local updates of the relaxation method cannot quickly take into
account effects at very large length scales. The multigrid method greatly improves performance
by using relaxation at many length scales. The important idea is to use a relaxation method to
find the values of the potential on coarser and coarser grids, and then use the coarse grid values
to determine the fine grid values. The fine grid relaxation updates take into account effects at
short length scales. If we define the initial grid by a lattice spacing b = 1, then the coarser grids
are characterized by b = 2n, where n determines the coarseness of the grid and is known as the
grid level. We need to decide how to use the fine grid values of the potential to assign values to
a coarser grid, and then how to use a coarse grid to assign values to a finer grid. The first step is
called prolongation and the second step is called restriction. There is some flexibility on how to
do these two operations. We discuss one approach.

We define the centers of the sites of the coarse grid to be located at the centers of every other
site of the fine grid. That is, if the set {i, j} represents the positions of the sites of the fine grid,
then {2i, 2j} represents the positions of the coarse grid sites. The fine grid sites that are at the
same position as a coarse grid point are assigned the value of the potential of the corresponding
coarse grid point. The fine grid sites that have two coarse grid points as nearest neighbors are
assigned the average value of these two coarse grid sites. The other fine grid sites have four coarse
grid sites as next nearest neighbors and are assigned the average value of these four coarse grid
sites. This prescription specifies how values on the fine grid are computed using the values on the
coarse grid.

In the full weighting prolongation method, each coarse grid site receives one fourth of the
potential of the fine grid site at the same position, one eighth of the potential for the four nearest
neighbor site of the fine grid, and one sixteenth of the potential for the four next nearest neighbor
points of the fine grid. Note that the sum of these fractions, 1/4 + 4(1/8) + 4(1/16), adds up to
unity. An alternative procedure, known as half weighting, ignores the next nearest neighbors and
uses one half of the potential of the fine grid site at the same position as the coarse grid site.

a. Write a program that implements the multigrid method using Gauss-Seidel relaxation on a
checkerboard lattice (see Problem 10.11b). In its simplest form the program should allow the
user to intervene and decide whether to go to a finer or coarser grid, or to remain at the same
level for the next relaxation step. Have the program print the potential at each site of the
current level after each relaxation step. Test your program on a 4 × 4 grid whose boundary
site are all equal to unity, and whose initial internal sites are set to zero. Make sure that the
boundary sites of the coarser grids also are set to unity.

b. The exact solution for part (a) gives a potential of unity at each point. How many relaxation
steps does it take to reach unity within 0.1% at every site by simply using the 4× 4 grid? How
many steps does it take if you use one coarse grid and continue until the coarse grid values are
within 0.1% of unity? Is it necessary to carry out any fine grid relaxation steps to reach the
desired accuracy on the fine grid? Next start with the coarsest scale, which is just one site.
How many relaxation steps does it take now?

c. Repeat part (b), but change the boundary so that one side of the boundary is held at a potential
of 0.5. Experiment with different sequences of prolongation, restriction, and relaxation.
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d. Assume that the boundary points alternate between zero and unity, and repeat part (b). Does
the multigrid method work? Should one go up and down in levels many times instead of staying
at the coarsest level and then going down to the finest level?

Appendix A: Vector Fields

The frames package contains the Vector2DFrame class for displaying two-dimensional vector fields.
To use this class we instantiate a multi-dimensional array to store components of the vector. The
first array index indicates the component, the second index indicates the column or x position, and
the third index indicates the row or y position. The vectors in the visualization are set by passing
the data array to the frame using the setAll method. The program in Listing 10.10 demonstrates
how this is done by displaying the electric field of a unit charge located at the origin.

Listing 10.10: A vector field test program.
package org.opensourcephysics.sip.ch10;
import javax.swing.∗;

import org.opensourcephysics.frames.∗;

/∗∗
∗ VectorPlotApp plots a 1/(r∗r) vector field .
∗
∗ @author Wolfgang Christian, Jan Tobochnik, Harvey Gould
∗ @version 1.0
∗/

public class VectorPlotApp {

/∗∗
∗ The main method that starts the Java application.
∗ @param args[] the input parameters
∗/

public static void main(String[] args) {
Vector2DFrame frame = new Vector2DFrame(”x”, ”y”, ”Vector Field”);
double a = 2; // half width
frame.setPreferredMinMax( −a, a, −a, a);
int nx = 15, ny = 15;
// generate sample data
double [][][] data = new double[2][nx][ny]; // vector field
frame.setAll(data); // vector field displays zero data
for (int i = 0; i < nx; i++) {

double x = frame.indexToX(i);
for (int j = 0; j < ny; j++) {

double y = frame.indexToY(j);
double r2 = x ∗ x + y ∗ y; // distance squared
double r3 = Math.sqrt(r2) ∗ r2; // distance cubed
data [0][ i ][ j ] = (r2 == 0) ? 0 : x / r3 ; // x component
data [1][ i ][ j ] = (r2 == 0) ? 0 : y / r3 ; // y component

}
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}
frame.setAll(data); // vector field displays new data
frame.show();
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

}
}

The arrows in the visualization have a fixed length that is chosen to fill the viewing area. The
arrow’s color represents the field’s magnitude. We have found that using an arrow’s color rather
than its length to represent field strength produces a more effective representation of vector fields
over a wider dynamic range. The frame’s Legend menu item under Tools shows this mapping.
The appropriate representation of vector fields is an active area of interest.

Problem 10.27. Gradient of a scalar field
The gradient of a scalar field, A(x, y), defines a vector field. In a two-dimensional Cartesian
coordinate system, the components of the gradient are equal to the derivative of the scalar field
along the x and y axes, respectively.

∇A =
∂A

∂x
x̂ +

∂A

∂y
ŷ (10.60)

Write a short program that displays both a scalar field and its gradient. (Hint: Define a function
and use numerical derivatives along the rows and columns.) Create separate frames for the scalar
and vector field visualizations. The Open Source Physics: A User’s Guide with Examples manual
describes how a vector field visualization can be superimposed on a scalar field visualization.
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Figure 10.7: Calculation of the curl of the vector E defined on the faces of a cube. (a) The face
vector E associated with the cube (i, j, k). The components associated with the left, front, and
bottom faces are Ex(i, j, k), Ey(i, j, k), Ez(i, j, k) respectively. (b) The components Ei on the faces
that share the front left edge of the cube (i, j, k). E1 = Ex(i, j − 1, k), E2 = Ey(i, j, k), E3 =
−Ex(i, j, k), andE4 = −Ey(i − 1, j, k). The cubes associated with E1 and E4 also are shown.
(c) The vector components ∆li on the faces that share the left front edge of the cube. (The
z-component of the curl of E defined on the left edge points in the positive z direction.)
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