
Chapter 2

Essential Tools for Doing
Simulations

c©2005 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
21 February 2005

We introduce some of the core syntax of Java in the context of simulating the motion of falling
particles near the Earth’s surface.

2.1 Introduction

The purpose of this chapter is to introduce some of the essential tools for doing simulations. Many
of the programming concepts that we will use will be introduced in a relatively simple context.
In addition to presenting some of the essential syntax of Java, we will introduce the Open Source
Physics library, which will facilitate writing programs with a graphical user interface and visual
output such as plots and animations. Also we will introduce a simple algorithm for solving first-
order differential equations numerically.

One of the ways that science progresses is by making models of natural systems. If the
model is sufficiently detailed, we can determine the behavior of the model, and then compare the
behavior with experiment. This comparison might lead to verification of the model, changes in our
assumptions, and further experiments. In the context of computer simulation, we usually begin
with a set of initial conditions, determine the dynamical behavior of the model numerically, and
generate data in the form of tables of numbers, plots, and animations. We begin with a simple
example to see how this process works.

Imagine a particle such as a ball near the surface of the earth subject to a single force, the
force of gravity. We assume that air friction is negligible and the gravitational force is given by

Fg = −mg, (2.1)

where m is the mass of the ball and g = 9.8 N/kg is the gravitational field (force per unit mass)
near the earth’s surface. To make our example as simple as possible. we first assume that there is

12

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 13

only vertical motion. To find the motion of the ball we use Newton’s second law

m
d2y

dt2
= F, (2.2)

where y is the vertical coordinate defined so that up is positive, t is the time, F is the total force
on the ball, and m is the inertial mass (which has the same value as the gravitational mass in
(2.1)). If we set F = Fg, (2.1) and (2.2) lead to

d2y

dt2
= −g. (2.3)

Equation (2.3) is a statement of a model for the motion of the ball. Note that in this case the
model is in the form of a second-order differential equation.

You are probably familiar with the model summarized in (2.3) and know the exact solution.
Nevertheless, we will determine the motion of a freely falling particle numerically in order to
introduce the tools that we will need in a familiar context.

We begin by expressing (2.3) as two first-order differential equations:

dy

dt
= v (2.4a)

dv

dt
= −g, (2.4b)

where v is the vertical velocity of the ball. We next approximate the derivatives by small differences:

y(t + ∆t) − y(t)
∆t

= v(t) (2.5a)

v(t + ∆t) − v(t)
∆t

= −g. (2.5b)

Note that in the limit ∆t → 0, (2.5) reduces to (2.4). We can rewrite (2.5) as

y(t + ∆t) = y(t) + v(t)∆t (2.6a)
v(t + ∆t) = v(t) − g ∆t. (2.6b)

Equation (2.6) is an example of a finite difference equation, and ∆t is the time step.
Now we are ready to follow y(t) and v(t) in time. We begin with an initial value for y and v

and then iterate (2.6). If ∆t is sufficiently small, we will obtain a numerical answer that is close
to the solution of the original differential equation. The finite difference approximation we used to
obtain (2.6) is an example of the Euler algorithm. In this case we know the answer, and we can
test our numerical results directly. The analytical solution is

y(t) = y(0) + v(0)t − 1
2
gt2 (2.7a)

v(t) = v(0) − gt. (2.7b)

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 14

Exercise 2.1. A simple example
Consider the numerical solution of the first-order differential equation

dy

dt
= 2t, (2.8)

with y(t = 0) = 0. In this case the analytical solution is y(t) = t2, which we can confirm by taking
the derivative of y(t). Convert (2.8) into a finite difference equation using the Euler algorithm.
For simplicity, choose ∆t = 0.1. Compare your result with the analytical answer. (It would be a
good idea to first use a calculator or pencil and paper to determine y(t) for the first several time
steps.)

Problem 2.2. Invent your own numerical algorithm
Consider the first-order differential equation, dy/dx = f(x), where f(x) is a function of x. The
approximation solution as given by the Euler algorithm is yn+1 = yn + f(xn)dx. Note that the
rate of change of y has been approximated by its value at the beginning of the interval, f(xn).

a. Assume that f(x) = x2 and y(x = 0) = 0, and sketch the difference between the exact solution
and the approximate solution given by the Euler algorithm. What is the error in the first step
if δx = 0.1?

b. The choice of where to approximate the rate of change of y is arbitrary, although we will learn
that some other choices are better than others. All that is required is that the finite difference
equation must reduce to the original differential equation in the limit ∆x → 0. Think of several
other possible algorithms that are consistent with this condition.

2.2 Simulating free fall

The class FirstFallingBallApp shown in Listing 2.1 is defined in a source code file named First-
FallingBallApp.java. The code in this file consists of a sequence of statements that create
variables and define methods. Each statement ends with a semicolon. A Java application (a
program) is a class that contains a main method. Each source code file is compiled into byte
code that can then be executed. The compiler places the byte code in a file with the same
name as the Java source code file with the extension class. For example, the compiler converts
FirstFallingBallApp.java into byte code and produces the FirstFallingBallApp.class file.
One of the features of Java is that this byte code can be used by any computer that can run Java
programs.

The following program is a Java implementation of the Euler algorithm given in (2.6). The
program also compares the numerical and analytic results. We will next describe the syntax used
in each line of the program.

Listing 2.1: First version of a simulation of a falling particle.
// example of a single line comment statement (ignored by compiler)
package org.opensourcephysics.sip.ch02; // location of file
public class FirstFallingBallApp { // beginning of class definition

public static void main(String[] args) { // beginning of method definition

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 15

// braces { } used to group statements
// following statements form the body of main method
double y0 = 10; // example of declaration and assignment statement
double v0 = 0; // initial velocity
double t = 0; // time
double dt = 0.01; // time step
double y = y0;
double v = v0;
double g = 9.8; // gravitational field
for(int n = 0;n<100;n++) { // beginning of loop, n++ equivalent to n = n + 1

// repeat following three statements 100 times
y = y+v∗dt; // indent statements in loop for clarity
v = v−g∗dt; // use Euler algorithm
t = t+dt;

} // end of for loop
System.out.println(”Results”);
System.out.println(” final time = ”+t);
// display numerical result
System.out.println(”y = ”+y+” v = ”+v);
// display analytic result
double yAnalytic = y0+v0∗t−0.5∗g∗t∗t;
double vAnalytic = v0−g∗t;
System.out.println(”analytic y = ”+yAnalytic+” v = ”+vAnalytic);

} // end of method definition
} // end of class definition

The first line in Listing 2.1 is an example of a single line comment statement, which begin with
//. Comments statements are ignored by the computer, but can be very important for the user.
Multiple line comments begin with /* or /** and end with */, but they have been removed from
the printed code listings to save space. Download the source code for the Open Source Physics
website to view the complete code with documentation.

The next line in Listing 2.1 declares a package name, which corresponds to the location
(the directory) of the source and byte code files. According to the package declaration, the file
FirstFallingBallApp.java is in the directory org/opensourcephysics/sip/ch02. The pack-
age statement must be the first non-comment statement in the source file. For organizational
convenience, it is a good idea to put related files in the same package. When executing a Java pro-
gram, the Java Virtual Machine (the run-time environment) will search a specific set of directories
(called the classpath) for the relevant class files. The documentation for your local development
environment will describe how to specify the classpath.

The third line in Listing 2.1 declares the class name, FirstFallingBallApp. The Java con-
vention is to begin a class name with an uppercase letter. If a name consists of more than one
word, the words are joined together and each succeeding word begins with an uppercase letter
(another Java convention). The keyword public means that this class can be used by any other
Java class. Although multiple classes can be defined in a single source code file, only one of these
classes can be declared public, and this class must have the same name as the source file.1

1Defining multiple classes in a single file is sometimes convenient, and we will do so infrequently. The compiler
produces separate output files for each class.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 16

The left brace ({) begins the body of the class definition and the corresponding right brace
(}) ends the class definition.

The fourth line in Listing 2.1 begins the definition of the main method. A method describes
a sequence of actions that use the associated data and can be called (invoked) within the class or
by other classes. The main method has a special status in Java. To run a class as a stand-alone
program (an application), the class must define the main method. (In contrast, a Java applet runs
inside a browser and does not require a main method; instead it has methods such as init and
start.) The main method is the application’s starting point. The argument of the main method
will always be the same, and understanding its syntax is not necessary here.

Because the code for this book contains hundreds of classes, we will adopt our own convention
that classes that define main methods have names that end with App. We sometimes refer to
an application that we are about to run as the target class. Familiarize yourself with your Java
development environment by doing Exercise 2.3.

Exercise 2.3. Our first application

a. Enter the listing of FirstFallingBallApp into a source file named FirstFallingBallApp.java.
(Java programs can be written using any text editor that supports standard ASCII characters.)
Be sure to pay attention to capitalization because Java is case sensitive. In what directory
should you place the source file?

b. Compile and run FirstFallingBallApp. Do the results look reasonable to you? In what
directory did the compiler place the byte code?

c. What happens if you make a typing mistake? For example, type double dT = 0; instead of
double dt = 0; and explain what happens.

Digital computers represent numbers in base 2, that is, sequences of ones and zeros. Each
one or zero is called a bit. For example, the number 13 is equivalent to 1101 or (1 × 23) + (1 ×
22) + (0 × 21) + 1. It would be difficult to write a Java program if we had to write numbers in
base 2. Computer languages allow us to reference memory locations using identifiers or variable
names. A valid variable name is a series of characters consisting of letters, digits, underscores, and
dollar signs ($) that does not begin with a digit nor contain any spaces. Because Java distinguishes
between upper and lowercase characters, T and t are different variable names. The Java convention
is that variable names begin with a lowercase letter, except in special cases, and each succeeding
word in a variable name begins with an uppercase letter.

In a purely object oriented language, all variables would be objects that would be introduced
by their class definitions. However, there are certain variable types that are so common that they
have a special status and are especially easy to create and access. These types are called primitive
data types and represent integer, floating point, boolean, and character variables. An example that
illustrates that classes are effectively new programmer-defined types is given in Appendix 2A.

An integer variable, a floating point variable, and a boolean variable are created (declared)
and initialized by the following statements:

int n = 10;
double y0 = 10.0;

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 17

boolean inert = true;
char c = ’A’; // used for single characters

There are four types of integers, byte, short, int, and long, and two types of floating point
numbers; the differences are the range of numbers that these types can store. We will almost always
use type int because it does not require as much memory as type long. There are two types of
floating point numbers, but we will always use type double, the type with greater precision, to
minimize roundoff error and to avoid having to provide multiple versions of various algorithms. A
variable must be declared before it can be used, and it can be initialized at the same time that its
type is declared as is done in Listing 2.1.

Integer arithmetic is exact, in contrast to floating point arithmetic which is limited by the
maximum number of decimal places that can be stored. Important uses of integers are as counters
in loops and as indices of arrays. An example of the latter is on page 46, where we discuss the
motion of many balls.

A subtle and common error is to use integers in division when a floating point number is
needed. For example, suppose we flip a coin 100 times and find 53 heads. What is the percentage
of heads? In the following we show an unintended side effect of integer division and several ways
of obtaining a floating point number from an integer.

int heads = 53;
int tosses = 100;
double percentage = heads/tosses; // percentage will equal 0 (common error)
percentage = (double)heads/tosses; // percentage will equal 0.53
percentage = (1.0∗heads)/tosses; // percentage will equal 0.53

These statements indicate that if at least one number is a double, the result of the division will
be a double. The expression (double)tails is called a cast and converts heads to a double.
Because a number with a decimal point is treated as a double, we also can do this conversion by
first multiplying heads by 1.0 as is done in the last statement.

Note that we have used the assignment operator, which is the equals (=) sign. This operator
assigns the value to the memory location that is associated with a variable, such as y0 and t. The
following statements illustrate an important difference between the equals sign in mathematics and
the assignment operator in most programming languages.

int x = 10;
x = x + 1;

The equals sign replaces a value in memory and is not a statement of equality. The left and right
sides of an assignment operator are usually not equal.

A statement is analogous to a complete sentence and an expression is similar to a phrase. The
simplest expressions are identifiers or variables. More interesting expressions can be created by
combining variables using operators, such as the following example of the plus (+) operator:

x + 3.0

The next seven lines of Listing 2.1 declare and initialize variables. If a variable is declared but
not initialized, for example,

double dt;

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 18

then the default value of the variable is 0 for numbers and false for boolean variables. It is a
good idea to initialize all variables explicitly and not rely on their default values.

A very useful control structure is the for loop. Loops are blocks of statements that are
executed repeatedly until some condition is satisfied. They typically require the initialization of a
counter variables, a test to determine if the counter variable has reached its terminal value, and
a rule for changing the counter variable. These three parts of the for loop are contained within
parentheses and are separated by semicolons. It is common in Java to iterate from 0 to 99 as is
done in FirstFallingBallApp, rather than from 1 to 100. Note the use of the syntax n++ rather
than the equivalent statement n = n + 1.

After the program finishes the loop, the results are displayed using the System.out.println
method. We will explain the meaning of this long expression later. The parameter passed to the
System.out.println method, which appears between the parentheses, is a String. A String is
a sequence of characters and can be created by enclosing text in quotation marks as shown in the
first println statement in Listing 2.1. We displayed our numerical results by using the + operator.
When applied to a String and a number, the number is converted to the appropriate String and
the two Strings are concatenated (joined). This use is shown in the next three println statements
in Listing 2.1. Note the different outputs produced by the following statements:

System.out.println((”x = ” + 2) + 3); // displays x = 23
System.out.println(”x = ” + (2 + 3)); // displays x = 5

The parentheses in the second line force the compiler to treat the enclosed + operator as the
addition operator, but both + operators in the first line are treated as concatenation operators.

Exercise 2.4. Exploring FirstFallingBallApp

a. Run FirstFallingBallApp for various values of the time step ∆t. Do the numerical results
become closer to the analytic results as ∆t is made smaller?

b. Use an acceptable value for ∆t and run the program for various numbers of iterations. What
criteria do you have for acceptable? At approximately what time does the ball hit the ground
at y = 0?

c. What happens if you replace the System.out.println method by the System.out.print
method?

d. What happens if you try to access the value of the counter variable n outside the for loop?
The scope of n extends from its declaration to the end of the loop block; n is said to have block
scope. If a loop variable is not needed outside the loop, it should be declared in the initialization
expression so that its scope is limited.

You might have found that doing Exercise 2.4 was a bit tedious and frustrating. To do
Exercise 2.4(a) it would be desirable to change the number of iterations at the same time that the
value of ∆t is changed so that we could compare the answers for y and v at the same time. And it
is difficult to do Exercise 2.4(b) because we don’t know in advance how many iterations are needed
to reach the ground.

We can improve FirstFallingBallApp using a while statement instead of the for loop.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 19

while (y > 0) {
// statements go here

}

In this example the boolean test for the while statement is done at the beginning of a loop. It is
also possible to do the test at the end:

do {
// statements go here

}
while (y > 0);

Exercise 2.5. Using while statements

a. Modify FirstFallingBallApp so that the while statement is used and the program ends when
the ball hits the ground at y = 0. Then repeat Exercise 2.4(b).

b. Modify FirstFallingBallApp so that the do while statement is used instead. How do the
results that are displayed differ from those in part (a)?

Exercise 2.6. Summing a series

a. Write a program to sum the following series for a given value of N :

S =
N∑

m=1

1
m2

. (2.9)

The following statements may be useful:

double sum = 0; // sum is equivalent to S in (2.9)
for (int m = 1; m <= N; m++) {

sum = sum + 1.0/(m∗m); // put this statement in
for loop
}

Note that in this case it is more convenient to start the loop from m = 1 instead from m = 0.
Note the use of the ++ operator in the loop construct rather than m = m + 1.

b. First run your program with N = 10. Then run for larger values of N . Does the series converge
as N → ∞? How big must N be to obtain accuracy for S to within 0.01?

c. Modify your program to use a while loop so that the summation continues until the added term
to the sum is less than some value ε. Run your program for ε = 10−2, 10−3, and 10−6.

d. Instead of using the = operator in the statement

sum = sum + 1.0/(m∗m);

use the equivalent operator:

sum += 1.0/(m∗m);

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 20

operator operand description sample expression result
++, -- number increment, decrement x++; 8.0 stored in x
+, - numbers addition, subtraction 3.5 + x 11.5
! boolean logical complement !(x == y) true
= any assignment y = 3; 3.0 stored in y
*, /, % numbers multiplication, division, modulus 7/2 3.0
== any test for equality x == y false
+= numbers x += 3; equivalent to x = x + 3; x += 3; 14.5 stored in x
-= numbers x -= 2; equivalent to x = x - 2; x -= 2.3; 12.2 stored in x
*= numbers x *= 4; equivalent to x = 4*x; x *= 4; 48.8 stored in x
/= numbers x /= 2; equivalent to x = x/2; x /= 2; 24.4 stored in x
%= numbers x %= 5; equivalent to x = x % 5; x %= 5; 4.4 stored in x

Table 2.1: Common operators. The result for each row assumes that the statements from previous
rows have been executed with double x = 7, y = 3 declared initially.

Check that you obtain the same results.

Java provides several shortcut assignment operators that allow you to combine an arithmetic
and an assignment operation. Table 2.1 shows the operators that we will use most often.

2.3 Getting started with object oriented programming

The first step in making our program more object oriented is to separate the implementation of the
model from the implementation of other programming tasks such as producing output. In general,
we will do so by creating two classes. The class that defines the model is shown in Listing 2.2. The
FallingBall class first declares several (instance) variables and one constant that can be used by
any method in the class. To aid reusability, we should be very careful about the accessibility of
these class variables to other classes. For example, if we wrote private double dt, then the value
of dt would only be available to the methods in FreeFall. If we wrote public double dt, then
dt would be available to any class in any package that tried to access it. For our purposes we use
the default package protection, which means that the class variables can be accessed by classes in
the same package.

Listing 2.2: FallingBall class.
package org.opensourcephysics.sip.ch02;
public class FallingBall {

double y, v, t ; // instance variables
double dt; // default package protection
final static double g = 9.8; // constant (note non−use of Java convention)
public FallingBall () { // constructor

System.out.println(”A new FallingBall object is created.”);
}

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 21

public void step() {
y = y+v∗dt; // Euler algorithm for numerical solution
v = v−g∗dt;
t = t+dt;

}

public double analyticPosition(double y0, double v0) {
return y0+v0∗t−0.5∗g∗t∗t;

}

public double analyticVelocity(double v0) {
return v0−g∗t;

}
}

As we will see, a class is a blueprint for creating objects, not an object itself. Except for the
constant g, all the variable declarations in Listing 2.2 are instance variables. Each time an object
is created or instantiated from the class, a separate block of memory is set aside for the instance
variables. Thus, two objects created from the same class will, in general, have different values
of the instance variables. However, we can insure that the value of a variable is the same for all
objects created from the class by adding the word static to the declaration. Such a variable is
called a class variable, and is appropriate for the constant g. In addition, you might not want the
quantity referred to by an identifier to change. For example g is a constant that does not change
its value. We can prevent a change by adding the keyword final to the declaration. Thus the
statement

final static double g = 9.8;

means that a single copy of the constant g will be created and shared among all the objects
instantiated from the class. Without the final qualifier, we could change the value of a class
variable in every instantiated object, by changing it in any one object. Imagine the mischief that
could be caused if we were able to write Math.PI = 3.0 to redefine the constant π in the Math
class. Static variables and methods are accessed from another class using the class name without
first creating an instance (see page 26).

Another Java convention is that the names of constants should be in upper case. But in
physics, the meaning of g, the gravitational field, and G, the gravitational constant, have completely
different meanings. So we will sometimes disregard this convention if doing so makes our programs
more readable.

In addition to the four instance variables (y, v, t, and dt) and one class variable (g), the
FallingBall class has four methods. The first method is FallingBall, and is a special method
known as the constructor. A constructor must have the same name as the class and does not have
an explicit return type. We will see that constructors are n special methods that allocate memory
and initialize instance variables when an object is created.

The second method is step, a name that we will frequently use to advance the system’s
coordinates by one time step. The qualifier void means that this method does not return a value.

The next two methods, analyticPosition and analyticVelocity, each return a double
value and have arguments enclosed by parentheses, the parameter list. The list of parameters and

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 22

their types must be given explicitly and be separated by commas. The parameters can be primitive
data types or class types. When the method is invoked, the argument types must match that given
in the definition or be convertible into the type given in the definition, but need not have the same
names. (Convertible means that the given variable can be unambiguously converted into another
data type. For example, an integer can always be converted into a double.) For example, we can
write

double y0 = 10; // declaration and assignment
int v0 = 0; // note v0 is an integer
double y = analyticPosition(y0,v0); // v0 becomes a double before method is called
double v = analyticVelocity(v0);

but the following is incorrect:
double y = analyticPosition(y0,”0”); // can’t convert String to double automatically
double v = analyticVelocity(v0,0); // method expects only one argument

If a method does not receive any parameters, the parentheses are still required as in method
step().

The FallingBall class cannot be used in isolation because it does not contain a main method.
Thus, we create a second (target) class, which we place in a separate file in the same package. This
class will communicate with FallingBall and include the output statements. This class is shown
in Listing 2.3.

Listing 2.3: FallingBallApp class.
package org.opensourcephysics.sip.ch02; // package statement appears before beginning of class definition
public class FallingBallApp { // beginning of class definition

public static void main(String[] args) { // beginning of method definition
FallingBall ball = new FallingBall(); // declaration and instantiation
double y0 = 10; // example of declaration and assignment statement
double v0 = 0;
ball . t = 0; // note use of dot operator to access instance variable
ball .dt = 0.01;
ball .y = y0;
ball .v = v0;
while(ball.y>0) {

ball .step ();
}
System.out.println(”Results”);
System.out.println(” final time = ”+ball.t);
// displays numerical results
System.out.println(”y = ”+ball.y+” v = ”+ball.v);
// displays analytic results
System.out.println(”analytic y = ”+ball.analyticPosition(y0, v0));
System.out.println(”analytic v = ”+ball.analyticVelocity(v0));
System.out.println(”acceleration = ”+FallingBall.g);

} // end of method definition
} // end of class definition

Note how FallingBall is declared and instantiated by creating an object called ball, and
how the instance variables and the methods are accessed. The statement

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 23

FallingBall ball = new FallingBall(); // declaration and instantiation

is equivalent to two statements

FallingBall ball ; // declaration
ball = new FallingBall(); // instantiation

The declaration statement tells the compiler that the variable ball is of type FallingBall. It
is analogous to the statement int x for an integer variable. The instantiation (new) statement
allocates memory for this object, initializes all the instance variables, and invokes the constructor
method. We could create two identical balls using the following statements:

FallingBall ball1 = new FallingBall();
FallingBall ball2 = new FallingBall();

The variables and methods of an object are accessed by using the dot operator. For example,
the variable t of object ball is accessed by the expression ball.t, and the method step is called
as ball.step(). Because the methods, analyticPosition and analyticVelocity, return values
of type double, they can appear in any expression in which a double valued constant or variable
could appear. In the present context the values returned by these two methods will be displayed
by the println statement. Note that the static variable g in class FallingBallApp is accessed
through the class name.

Exercise 2.7. Use of two classes

a. Enter the listing of FallingBall into a file named FallingBall.java and FallingBallApp
into a file named FallingBallApp.java and put them in the same directory. Run your program
and make sure your results are the same as those found in Exercise 2.5.

b. Modify FallingBallApp by adding a second instance variable ball2 of the same type as ball.
Add the necessary code to initialize ball2, iterate ball2, and to display the results for both
objects. Write your program so that the only difference between the two balls is the value of
∆t. How much smaller does ∆t have to be to reduce the error in the numerical results by a
factor of two for the same final time? What about a factor of four? How does the error depend
on ∆t? This exercise shows how we can do multiple simulations without repeating all the code.

c. Add the statement FallingBall.g = 2.0 to your program from part (b) and use the same
value of dt for ball and ball2. What happens when you try to compile the program?

d. Delete the final qualifier for g in FallingBall and compile again. Run your program. Is there
any difference between the results for the two balls? Is there a difference between the results
compared to when g = 9.8?

e. Now remove the qualifier static, compile your program again, and run your program. How do
the results for the two balls compare now?

f. Explain in your own words the meaning of the qualifiers, static and final.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 24

We have already used certain words such as double, false, main, static, and final. These
reserved words cannot be used as variable names and are examples of keywords.

It is possible for a class to have more than one constructor. For example, we could have a
second constructor defined by

public FallingBall(double dt) {
this.dt = dt; // ”this .dt” refers to instance variable that has the same name as the argument

}

Note the possible confusion of the variable name, dt, in the FallingBall constructor. The name
dt refers to an instance variable of the class and a method argument. When such a name conflict
occurs, it is necessary to use the keyword this to access the instance variable. Otherwise, you
would access the argument or local variable with the same name.

Exercise 2.8. Multiple constructors

a. Add a second constructor with the argument double dt to FallingBall, but make no other
changes. Run your program. Nothing changed because you didn’t use this new constructor.

b. Now modify FallingBallApp to use the new constructor:

FallingBall ball = new FallingBall(0.01); // declaration and instantiation

What statement in FallingBallApp can now be removed? Run your program and make sure
it works. How can you tell that the new constructor was used?

c. Show that the number of parameters and their type in the argument list determines which
constructor is used in FallingBall. For example, show that the following statements,

double tau = 0.01;
FallingBall ball = new FallingBall(tau); // declaration and instantiation

are equivalent to the syntax used in part (b).

The methods that we have written so far have been non-static methods (except for main).
As we have seen, these methods cannot be used without first creating or instantiating an object.
In contrast, static methods can be used directly without first creating an object. A class that is
included in the Java distribution and that we will use often is the Math class, which provides many
common mathematical methods, including trigonometric, logarithmic, exponential, and rounding
operations, and predefined constants. Some examples that use the Math class include:

double theta = Math.PI/4; // constant pi defined in Math class
double u = Math.sin(theta); // sine of theta
double v = Math.log(0.1); // natural logarithm of 0.1
double w = Math.pow(10,0.4); // 10 to the 0.4 power
double x = Math.atan(3.0); // inverse tangent

Note the use of the dot notation in the above statements and the Java convention that constants
such as the value of π are written in uppercase letters, that is, Math.PI. Exercise 2.9 asks you to
read the Math class documentation to learn about the methods in the Math class. To use the Math
methods we need only to know what mathematical functions they compute; we do not need to
know about the details of how the methods are implemented.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 25

Exercise 2.9. The Math class
The documentation for Java 2 Standard Edition (J2SE) is a part of most development environ-
ments. It also can be downloaded from <java.sun.com/docs/>. Look for API specifications and
a link to the latest standard edition.

a. Read the documentation for the Math class available from Sun, and describe the difference
between the two versions of the arctangent method.

b. Write a program to verify the output of several of the methods in the Math class.

It is easy to create additional models for other kinds of motion. Cut and paste the code in the
FallingBall.java file into a new file named SHO.java and change the code to solve the following
two first-order differential equations for a ball attached to a spring:

dx

dt
= v (2.10a)

dv

dt
= − k

m
x, (2.10b)

where x is the displacement from equilibrium and k is the spring constant. Note that the new class
shown in Listing 2.4 has a structure similar to that of the class shown in Listing 2.2.

Listing 2.4: SHO class.
package org.opensourcephysics.sip.ch02;
public class SHO {

double x, v, t ; // the dynamical variables
double dt;
double k = 1.0; // spring constant
double omega = Math.sqrt(k); // assume unit mass
public SHO() { // constructor

System.out.println(”A new harmonic oscillator object is created.”);
}

public void step() {
// modified Euler algorithm
v = v−k∗x∗dt;
x = x+v∗dt; // note that updated v is used
t = t+dt;

}

public double analyticPosition(double y0, double v0) {
return y0∗Math.cos(omega∗t)+v0/omega∗Math.sin(omega∗t);

}

public double analyticVelocity(double y0, double v0) {
return −y0∗omega∗Math.sin(omega∗t)+v0∗Math.cos(omega∗t);

}
}

http://java.sun.com/docs/

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 26

Exercise 2.10. Simple harmonic oscillator

a. Explain how the implementation of the Euler algorithm differs from what we did previously.

b. The general form of the analytical solution of (2.10) can be expressed as

y(t) = A cos ωt + B sinωt. (2.11)

Show that this form satisfies (2.10) with A = y(t = 0) and B = v(t = 0)/ω. What is the form
of v(t)? These analytical solutions are used in SHO.

c. Write a class called SHOApp that creates an SHO object and solves (2.10). Start the ball with
displacements of x = 1, x = 2, and x = 4. Is the time it takes for the ball to reach x = 0 always
the same?

2.4 Inheritance

The falling ball and the simple harmonic oscillator have important features in common. Both are
models of physical systems that represent a physical object as if all its mass were concentrated
at a single point. Writing two separate classes by cutting and pasting is straightforward and
reasonable because the programs are small and easy to understand. But this approach fails when
the code becomes more complex. For example, suppose that you wish to simulate a model of a
liquid consisting of particles that interact with one another according to some specified force law.
Because such simulations are now standard (see Chapter 8), efficient code for such simulations is
readily available. In principle, it would be a good idea to use an already written program in this
case, assuming that you already understood the nature of such simulations. However, in practice,
using most available code requires much effort because the code is not organized properly.

For example, suppose that you wished to use a different force law. You change the code
and save it under a new name. Later you discover that you need a different numerical algorithm
to advance the particles’ positions and velocities. You again change the code and save the file
under yet another name. At the same time the original author discovers a bug in the initialization
method and changes her code. Your code is now out of date because it does not contain the
bug fix. Although strict documentation and programming standards can minimize these types of
difficulties, a better approach is to use object oriented features such as inheritance. Inheritance
avoids duplication of code and makes it easier to debug a number of classes without needing to
change each class separately.

We now write a new class that encapsulates the common features of the falling ball and
the simple harmonic oscillator. We name this new class Particle. The falling ball and harmonic
oscillator that we will define in the following add code that implements their distinguishing features.

Listing 2.5: Particle class.
package org.opensourcephysics.sip.ch02;
abstract public class Particle {

double y, v, t ; // instance variables
double dt; // time step
public Particle () { // constructor

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 27

System.out.println(”A new Particle is created.”);
}

abstract protected void step();

abstract protected double analyticPosition();

abstract protected double analyticVelocity();
}

The abstract keyword allows us to define the Particle class without knowing how the step,
analyticPosition, and analyticVelocity methods will be implemented. Abstract classes are
useful in part because they serve as templates for other classes. The abstract class contains some
but not all of what a user would need. By making the class abstract, we must express the abstract
idea of “particle” explicitly and customize the abstract class to our needs.

By using inheritance we now extend the Particle class (the superclass) to another class
(the subclass). The FallingParticle class shown in Listing 2.6 implements the three abstract
methods. Note the use of the keyword extends. We also have used a constructor with the initial
position and velocity as arguments.

Listing 2.6: Falling particle class.
package org.opensourcephysics.sip.ch02;
public class FallingParticle extends Particle {

final static double g = 9.8; // constant
private double

y0 = 0, v0 = 0; // initial position and velocity
public FallingParticle(double y, double v) { // constructor

System.out.println(”A new FallingParticle object is created.”);
this.y = y; // instance value set equal to passed value
this.v = v; // instance value set equal to passed value
y0 = y; // no need to use ”this” because there is only one y0
v0 = v; // no need to use ”this” because there is only one y0

}

public void step() {
y = y+v∗dt; // Euler algorithm
v = v−g∗dt;
t = t+dt;

}

public double analyticPosition() {
return y0+v0∗t−(g∗t∗t)/2.0;

}

public double analyticVelocity() {
return v0−g∗t;

}
}

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 28

FallingParticle is a subclass of its superclass Particle. Because the methods and data
of the superclass are available to the subclass (except those that are explicitly labeled private),
FallingParticle inherits the variables y, v, t, and dt.

We now rewrite the target class to make use of our new abstraction. Note that we create a
new FallingParticle, but assign it to a variable of type Particle.

Listing 2.7: FallingParticleApp class.
package org.opensourcephysics.sip.ch02;
public class FallingParticleApp { // beginning of class definition

public static void main(String[] args) { // beginning of method definition
Particle ball = new FallingParticle (10, 0); // declaration and instantiation
ball . t = 0;
ball .dt = 0.01;
while(ball.y>0) {

ball .step ();
}
System.out.println(”Results”);
System.out.println(” final time = ”+ball.t);
System.out.println(”y = ”+ball.y+” v = ”+ball.v); // numerical result
System.out.println(”y analytic = ”+ball.analyticPosition ()); // analytic result

} // end of method definition
} // end of class definition

Problem 2.11. Inheritance

a. Run the FallingParticleApp program. How can you tell that the constructor of the superclass
was called?

b. Modify the SHO class so that it is a subclass of Particle. Remove all unnecessary variables and
implement the abstract methods.

c. Modify FallingParticleApp to use the new SHOParticle class by replacing the FallingParticle
constructor with the SHOParticle constructor. Run your program and make sure it works.

d. Try to instantiate a Particle directly by calling the Particle constructor. Explain what
happens when you compile and run this program.

e. Use the analyticPosition and analyticVelocity methods to compare the accuracy of the
numerical and analytic answers in both the falling particle and harmonic oscillator models.

If you examine the console output in Problem 2.11a, you should find that whenever an object
from the subclass is instantiated, the constructor of the super class is executed as well as the
constructor of the subclass. You should also find that an abstract class cannot be instantiated
directly; it must be extended first.

Exercise 2.12. Extending classes

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 29

a. Extend the FallingParticle and SHOParticle classes and give the new classes names such
as FallingParticleEC and SHOParticleEC, respectively. These subclasses should redefine the
step method so that it first calculates the new velocity and then calculates the new position
using the new velocity, that is, for a falling ball:

public void step() {
v = v − g∗dt;
y = y + v∗dt;
t = t + dt;

}

and for the harmonic oscillator:

public void step() {
v = v − k∗x∗dt;
x = x + v∗dt;
t = t + dt;

}

Methods can be replaced (redefined) in the subclass by writing a new method in the subclass
definition with the same name and parameter list as the super class definition.

b. Test that your new step method is executed instead of the one in the superclass.

c. The algorithm that is implemented in the redefined step method is known as the Euler-Cromer
algorithm. Compare the accuracy of this algorithm with the original Euler algorithm for both
the falling particle and the harmonic oscillator. We will explore this algorithm in more detail
in Problem 3.1.

The falling and harmonic oscillator particle models are simple, but they demonstrate important
object-oriented concepts. However, we typically will not build our models using inheritance because
we want our models to be self-contained. In other words, the models in one chapter should not
depend on code that was written in another chapter. Our main use of inheritance will be to extend
abstract classes in the Open Source Physics library to implement calculations and simulations by
customizing a small number of methods. On occasion we will extend a drawable object, such as a
circle, to represent a more complex object, such as a charge.

Thus far our target classes have only included one method, main. We could have used more
than one method, but for the short demonstration or test programs we have used so far, such a
procedure is unnecessary. When you send a short email to a friend, you are not likely to break
up your message into paragraphs. But when you write a paper longer than about a half a page,
it makes sense to use more than one paragraph. The same sensitivity to the need for structure
should be used in programming. Most of the programs in the following chapters will consist of two
classes, each of which will have several instance variables and methods.

2.5 The Open Source Physics library

For each exercise in this chapter, you have had to change the program, compile it, and then run
it. It would be much more convenient to input initial conditions and values for the parameters

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 30

Figure 2.1: An Open Source Physics control that is being used to input parameter values and
display results.

while the program is running. However, a discussion of how to make input fields and buttons using
Java would distract us from our goal of learning how to simulate physical systems. Moreover, the
code we would use for input (and output) would be almost the same in every program. For this
reason input and output should be in separate classes. Our emphasis will be to describe how to
use the Open Source Physics library as a tool for writing graphical interfaces, plotting graphs,
and doing visualizations. Our approach is much like using an oscilloscope in the laboratory. It is
important to have a good idea how an oscilloscope works, and it is essential that you know what
it is measuring. However, it is not necessary to know how to build an oscilloscope before doing an
experiment. If you are interested, you can read the source code of the many Open Source Physics
classes and can modify or subclass them to meet special needs.

We first introduce the Open Source Physics library in several simple contexts. Download the
Open Source Physics library from <www.opensourcephysics.org> and include the library in your
development environment. The following program illustrates how to make a simple plot.

Listing 2.8: An example of a simple plot.
package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.frames.PlotFrame;

public class PlotFrameApp {
public static void main(String[] args) {

PlotFrame frame = new PlotFrame(”x”, ”sin(x)/x”, ”Plot example”);
for(int i = −100;i<=100;i++) {

double x = i∗0.2;
frame.append(0, x, Math.sin(x)/x);

}
frame. setVisible (true);
frame.setDefaultCloseOperation(javax.swing.JFrame.EXIT ON CLOSE);

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 31

}
}

The import statement tells the Java compiler where to find the Open Source Physics classes
that are needed. A frame often is referred to as a window and can include a title and a menu
bar as well as objects such as buttons, graphics, and text information. The Open Source Physics
frames package defines several frames that contain data visualization and analysis tools. We will
use the PlotFrame class to plot x-y data. The constructor for PlotFrame has three arguments
corresponding to the name of the horizontal axis, the name of the vertical axis, and the title of
the plot. To add data to the plot, we use the append method. The first argument of append is
an integer that labels a set of data points, the second argument is the horizontal value of the data
point, and the third argument is the vertical value. The setVisible(true) method makes a frame
appear on the screen or brings it to the front. The last statement makes the program exit when
the frame is closed. What happens when this statement is not included?

Our next example of the Open Source Physics library illustrates how to control a calculation
with two buttons, a parameter input area, and a text message area.

Listing 2.9: An example of a Calculation.
package org.opensourcephysics.sip.ch02;
// get needed classes , ∗ means get all classes in controls subdirectory
import org.opensourcephysics.controls.∗;

public class CalculationApp extends AbstractCalculation {
public void calculate() { // Does a calculation

control . println(”Calculation button pressed.”);
double x = control.getDouble(”x value”); // String must match argument of setValue
control . println(”x∗x = ”+(x∗x));
control . println(”random = ”+Math.random());

}

public void reset() {
control .setValue(”x value” , 10.0); // describes parameter and sets the value

}

public static void main(String[] args) { // Create a calculation control structure using this class
CalculationControl.createApp(new CalculationApp());

}
}

AbstractCalculation is an abstract class, which means that it cannot be instantiated directly,
and must be extended in order to implement the calculate method. CalculationApp extends
AbstractCalculation and contains all the code necessary to run the program. In order for this
program to function, you must write (implement) the calculate method. You also can write an
optional reset method, which is called whenever the Reset button is pressed. Finally, we need to
create a graphical user interface that will invoke methods when the Calculate and Reset buttons
are pressed. This user interface is an object of type CalculationControl and will appear on the
screen:

CalculationControl.createApp(new CalculationApp());

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 32

The method createApp is a static method that instantiates an object of type CalculationControl
and returns this object. We also could have written

CalculationControl control = CalculationControl.createApp(new CalculationApp());

which shows explicitly the returned object which we gave the name control. However, because
we do not use the object control explicitly in this example, we don’t need to actually declare an
object name for it.

Exercise 2.13. CalculationApp
Compile and run CalculationApp. Describe what the graphical user interface looks like and how
it works by pressing the buttons (see Figure 2.1).

The reset method is called automatically when a program is first created and whenever the
Reset button is pressed. The purpose of this method is to clear old data and recreate the initial
state with the default values. These default values are displayed in the control window so that
they can be changed by the user. An example of how to show values in a control is the following:

public void reset () {
control .setValue(”x value” ,10.0); // describes parameter and sets the value

}

The string appearing in the setValue method must be identical to the one appearing in the
getDouble method. This new method overrides the reset method that is already defined in the
AbstractCalculation superclass.

Once we input a value in the reset method, we can use it in the calculate method:

public void calculate () {
double x = control.getDouble(”x value”); // String must match argument of setValue
control . println(”x∗x = ” + (x∗x));

}

Exercise 2.14. Changing parameters

a. Run CalculateApp to see how the control window can be used to change a program’s param-
eters. What happens if the string in the control’s getDouble method does does not match the
string in the setValue method?

b. Incorporate the plot statements in Listing 2.8 into a class that extends the AbstractCalculation
class and plots the function sin kx for various values of the input parameter k.

When you run the modified CalculationApp in Exercise 2.14, you should see a window with
two buttons and an input parameter and its default value. Also, there should be a text area below
the buttons where messages can appear. When the calculate button is pressed, the calculate
method is executed. The control.getDouble method reads in values from the control window.
These values can be changed by the user. Then the calculation is performed and the result
displayed in the message area using the control.println method, similar to the way we used
System.out.println earlier. If the reset button is pressed, the message area is cleared and the
reset method is called.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 33

We now will use a CalculationControl to change the input parameters for a falling particle.
The modified FallingParticleApp is shown in Listing 2.10.

Listing 2.10: FallingParticleCalcApp class.
package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.∗;

public class FallingParticleCalcApp extends AbstractCalculation { // beginning of class definition
public void calculate() {

// gets initial conditions
double y0 = control.getDouble(”Initial y”);
double v0 = control.getDouble(”Initial v”);
// sets initial conditions in model
Particle ball = new FallingParticle(y0, v0);
// reads parameters and sets dt
ball .dt = control.getDouble(”dt”);
while(ball.y>0) {

ball .step ();
}
control . println(” final time = ”+ball.t);
control . println(”y = ”+ball.y+” v = ”+ball.v); // displays numerical results
control . println(”analytic y = ”+ball.analyticPosition ()); // displays analytic position
control . println(”analytic v = ”+ball.analyticVelocity ()); // displays analytic velocity

}

public void reset() {
control .setValue(” Initial y” , 10); // sets default input values
control .setValue(” Initial v” , 0);
control .setValue(”dt” , 0.01);

}

public static void main(String[] args) { // creates a calculation control structure using this class
CalculationControl.createApp(new FallingParticleCalcApp());

}
} // end of class definition

Exercise 2.15. Input of parameters and initial conditions

a. Compile and run FallingParticleCalcApp and make sure you understand how the control
works. Try inputting different values of the parameters and the initial conditions.

b. Vary ∆t and find the value of t when y = 0 to two decimal places.

Exercise 2.16. Displaying floating point numbers
Double precision numbers store 16 significant digits and every digit is included when the num-
ber is converted to a string. We can reduce the number of digits that are displayed using the
DecimalFormat class in the java.text package. A formatter is created using a pattern, such as
#0.00 or #0.00E0, and this format is applied to a number to produce a string.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 34

DecimalFormat decimal2 = new DecimalFormat(”#0.00”);
double x = 1.0/3.0;
System.out.println(”x = ”+decimal2.format(x)); // displays 3.33

a. Use the DecimalFormat class to modify the output from FallingParticleCalcApp so that it
matches the output shown in Figure 2.1.

b. Modify the output so that results are shown using scientific notation with three decimal places.

c. The ControlUtils class in the controls package contains a static method f3 that formats a
floating point number using three decimal places. Use this method to format the output from
FallingParticleCalcApp.

You probably have found that it is difficult to write a program so that it ends exactly at y = 0.
We could develop some code to keep changing ∆t near y = 0 so that the last value computed is at
y = 0. Another limitation of our programs so far are that we have only shown the results at the
end of the calculation. We could put println statements inside the while loop, but it would be
better to plot the results and have a table of the data. An example is shown in Listing 2.11.

Listing 2.11: FallingParticlePlotApp class.
package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;

public class FallingParticlePlotApp extends AbstractCalculation {
PlotFrame plotFrame = new PlotFrame(”t”, ”y”, ”Falling Ball”);
public void calculate() {

plotFrame.setAutoclear(false); // data not cleared at beginning of each calculation
// gets initial conditions
double y0 = control.getDouble(”Initial y”);
double v0 = control.getDouble(”Initial v”);
// sets initial conditions in model
Particle ball = new FallingParticle(y0, v0);
// gets parameters
ball .dt = control.getDouble(”dt”);
double t = ball.t; // gets value of time from ball object
while(ball.y>0) {

ball .step ();
plotFrame.append(0, ball.t , ball .y);
plotFrame.append(1, ball.t , ball . analyticPosition ());

}
}

public void reset() {
control .setValue(” Initial y” , 10);
control .setValue(” Initial v” , 0);
control .setValue(”dt” , 0.01);

}

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 35

public static void main(String[] args) { // sets up calculation control structure using this class
CalculationControl.createApp(new FallingParticlePlotApp());

}
}

Two data sets indexed by 0 and 1, correspond to the numerical data and the analytical results,
respectively. The default action in the Open Source Physics library is to clear the data and redraw
all frames when the Calculate button is pressed. This automatic clearing of data can be disabled
using the setAutoclear method. We have done so here to allow the user to compare the results
of multiple calculations. Data is automatically cleared when the reset button is pressed.

Exercise 2.17. Data output

a. Compile and run FallingParticlePlotApp. Under the Tools menu choose DataTable to see a
table of data corresponding to the plot. This data can be used by another program for further
analysis.

b. On the plot your results probably look like one set of data because the numerical results are so
close to the analytical values. Let dt = 0.1 and press the Calculate button. Do the numerical
and analytical results become worse with time? Why?

c. Run the program for two different values of dt. How do the plot and the data table differ when
two simulations are done, first separated without pressing Reset, and then done by pressing
Reset between calculations? When is the data cleared? What happens if you eliminate the
plotFrame.setAutoclear(false) statement? When is the data cleared now?

d. Modify your program so that the velocity is shown in a separate window from the position.

2.6 Animation and Simulation

We now show how we can visualize the results of a simulation with a few more changes in our code.
Animation requires that we choose a particular visual representation of the system. We also need
to have a way of starting and stopping the animation. To do so involves a programming construct
called a thread. Threads enable a program to execute statements independent of each other as if
they were run on separate processors (which they would be on a multiprocessor computer). We
will use one thread to update the model and display the results. The other thread will monitor
the keyboard and mouse so that we can stop the computation whenever we desire.

Because it is important that models be reset and initialized before we start and stop ani-
mation threads, we have designed a more flexible and capable graphical user interface called a
SimulationControl that performs these actions in a well defined order. This new graphical user
interface has three buttons and the labels on these buttons change depending on user’s actions. As
was the case with CalculationControl, buttons in SimulationControl invoke specific methods
in our models.

The AbstractCalculation class provides a structure for performing a single computation. In
contrast, the AbstractSimulation class provides a structure for creating simulations by perform
a series of computations (steps) that can be started and stopped using a graphical user interface.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 36

At the end of every step the model’s visualizations (views) are updated. Most of the simulations in
the text will be done by extending the AbstractSimulation class and implementing the doStep
method as shown in Listing 2.12. We will need to know nothing about threads because their use
is “hidden” in the AbstractSimulation class. However, it is good to know that the Open Source
Physics library is written so that the graphical user interface does not let us change a program’s
input parameters while the thread is running.

Listing 2.12: A simple example of the extension of the AbstractSimulation class.
package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;

public class SimulationApp extends AbstractSimulation {
int counter = 0;
public void doStep() { // does a simulation step

control . println(”Counter = ”+(counter−−));
}

public void initialize () {
counter = control.getInt(”counter”);

}

public void reset() { // invoked when reset button is pressed
control .setAdjustableValue(”counter”, 100); //allows dt to be changed after initializaton

}

public static void main(String[] args) {
// creates a simulation structure using this class
SimulationControl.createApp(new SimulationApp());

}
}

Exercise 2.18. AbstractSimulation class
Compile and run SimulationApp to see how it works by pressing the buttons. Explain the role
of the various buttons. How many times per second is the doStep method invoked when the
simulation is running?

The buttons in the SimulationControl that were used in SimulationApp in Exercise 2.18
invoke methods in the AbstractSimulation class. These methods start and stop threads and
perform other housekeeping chores. When the user presses the initialize button, the simulation’s
initialize method is executed. When the reset button is pressed, the reset method is executed.
If you don’t write your own versions of these two methods, their default versions will be used. After
the initialize button is pressed, it becomes the start button. When the start button is pressed,
it is replaced by a stop button , and the doStep method is invoked continually until the stop
button is pressed. The default is that frames are redrawn every time doStep is executed. Pressing
the step button will cause the doStep method to be executed once. The New button changes the
start button to an initialize button, which forces the user to initialize a new simulation before

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 37

restarting. Later we will learn how to add other buttons that give the user even more control over
the simulation.

A typical simulation needs to do the following: (1) specify the initial state of the system in
the initialize method, (2) tell the computer what to execute while the thread is running in the
doStep method, and (3) specify what state the system should return to in the reset method.

We could modify our falling particle model to use AbstractSimulation, but such a modifica-
tion would not be very interesting because there is only one particle and all motion takes place in
one dimension. Instead, we will define a new class that models a ball moving in two dimensions,
and we will allow the ball to bounce off the ground and off of the walls.

Listing 2.13: BouncingBall class.
package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.display.Circle;

public class BouncingBall extends Circle { // Circle is a class that can draw itself
final static double g = 9.8; // constant
private double x, y, vx, vy; // initial position and velocity
public BouncingBall(double x, double vx, double y, double vy) { // constructor

this.x = x; // sets instance value equal to passed value
this.vx = vx; // sets instance value equal to passed value
this.y = y;
this.vy = vy;
setXY(x, y); // sets the position using setXY in Circle superclass

}

public void step(double dt) {
x = x+vx∗dt; // Euler algorithm for numerical solution
y = y+vy∗dt; // Euler algorithm for numerical solution
vy = vy−g∗dt;
double wall = 10.0;
if (x>wall) {

vx = −Math.abs(vx); // bounce off right wall
} else if (x<−wall) {

vx = Math.abs(vx); // bounce off left wall
}
if (y<0) {

vy = Math.abs(vy); // bounce off floor
}
setXY(x, y);

}
}

To model the bounce of the ball off a wall, we have added statements such as

if (y < 0) vy = Math.abs(vy);

This statement insures that the ball will move up if y < 0, and is a crude implementation of an
elastic collision. (The Math.abs method returns the absolute value of its argument.)

Also note our first use of the if statement. The general form of an if statement is as follows:

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 38

if (boolean expression) {
// code executed if boolean expression is true

} else {
// code executed if boolean expression is false

}

We can test multiple conditions by chaining if statements.

if (boolean expression) {
// code goes here

} else if (boolean expression) {
// code goes here

} else {
// code goes here

}

If the first boolean expression is true, then only the statements within the first brace will be
executed. If the first boolean expression is false, then the second boolean expression in the else
if expression will be tested, and so forth. If there is an else expression, then the statements after
it will be executed if all the other boolean expressions are false. If there is only one statement to
execute, the braces are optional.

The BouncingBall class is similar to the FallingBall class except that it extends Circle.
We inherit from the Circle class because this class includes a simple method that allows the
object to draw itself in an Open Source Physics frame, called DisplayFrame, which we will use in
BouncingBallApp. In the latter we instantiate BouncingBall and DisplayFrame objects so that
the circle will be drawn at its x-y location when the frame is displayed or while a simulation is
running.

To make the animation more interesting, we will animate the motion of many non-interacting
balls with random initial velocities. BouncingBallApp creates an arbitrary number of non-interacting
bouncing balls by creating an array of BouncingBall objects.

Listing 2.14: BouncingBallApp class.
package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.∗;
import org.opensourcephysics.frames.∗;

public class BouncingBallApp extends AbstractSimulation {
// declares and instantiates a window to draw balls
DisplayFrame frame = new DisplayFrame(”x”, ”y”, ”Bouncing Particles”);
BouncingBall[] ball ; // declares an array of BouncingBall objects
double time, dt;
public void initialize () {

// sets boundaries of window in world coordinates
frame.setPreferredMinMax(−10.0, 10.0, 0, 10);
time = 0;
frame.clearDrawables(); // remove old particles
int n = control.getInt(”number of particles”);
int v = control.getInt(”speed”);
ball = new BouncingBall[n]; // instantiates array of n BouncingBall objects

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 39

for(int i = 0;i<n;i++) {
double theta = Math.PI∗Math.random(); // random angle
// instantiates the ith BouncingBall object
ball [i] = new BouncingBall(0, v∗Math.cos(theta), 0, v∗Math.sin(theta));
frame.addDrawable(ball[i]); // // adds ball to frame so that it will be displayed

}
// decimalFormat instantiated in superclass and used to format numbers conveniently
frame.setMessage(”t = ”+decimalFormat.format(time)); // appears in lower right hand corner

}

public void doStep() { // invoked every 1/10 second by timer in AbstractSimulation supe
for(int i = 0;i<ball.length; i++) {

ball [i]. step(dt);
}
time += dt;
frame.setMessage(”t=”+decimalFormat.format(time));

}

public void startRunning() { // invoked when start or step button is pressed
dt = control.getDouble(”dt”);

} // gets time step

public void reset() { // invoked when reset button is pressed
control .setAdjustableValue(”dt” , 0.1); //allows dt to be changed after initializaton
control .setValue(”number of particles” , 40);
control .setValue(”speed”, 10);

}

public static void main(String[] args) { // sets up animation control structure using this class
SimulationControl.createApp(new BouncingBallApp());

}
}

Because we will need to advance the dynamical variables of each ball using a loop, we store
them in an array. An array such as ball is a data structure that holds many objects (or primitive
data) of the same type. The elements of an array are accessed using an index in square brackets.
The index begins at 0 and ends at the length of the array minus 1. Arrays are created with the
new operator and have several properties such as length. We will discuss arrays in more detail in
Section 3.4.

In this case we represented each ball as an object of type BouncingBall in an array. This use
of objects is appealing, but for better performance, it usually is better to store the positions and
the velocities of the balls in a double array. In Chapter 8 we will simulate a system of N mutually
interacting particles. Because computational speed will be very important in this case, we will not
allocate separate objects for each particle, and instead will treat the system of N particles as one
object.

The initialize method reads the number of particles and creates an array of the appropriate
length. Creating an array sets primitive variables to zero and object values to null. For this reason
we next loop to create the balls and add each ball to the frame. We place each ball initially at (0,0)

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 40

but with a random velocity. To produce random angles for the initial velocity, the Math.random()
method is used. This method returns a random double between 0 and 1, not including the exact
value 1. We define the random angle to be between 0 and π so that the initial vertical component
of the velocity is positive. Note that pressing the initialize button removes old objects from the
drawing.

Most programming languages, including Java, use pixels to define the location on a window,
with the origin at the upper left-hand corner and the vertical coordinate increasing in the downward
direction. However, this choice of coordinates is usually not convenient in physics, and it often
is more convenient to choose coordinates where the origin is determined by where we set the
boundaries, and the vertical coordinate increases upward. The Circle.setXY method uses world
or physical coordinates to set the position of the circle, and its implementation converts these
coordinates to pixels so that the Java graphics methods can be used. In initialize we set the
boundaries for the world coordinates using the setPreferredMinMax method whose arguments
are the minimum x coordinate, maximum x coordinate, minimum y coordinate, and maximum y
coordinate, respectively.

The doStep method implements another straightforward loop to advance the dynamical state
of each ball in the array. It then advances the time and displays the time in the frame. Frames
are automatically redrawn each time doStep is executed.

Finally, we note that there are two types of parameters. Some parameters, such as the number
of particles, determine properties of the model that should not be changed after the model has
been created. We refer to these parameters as fixed, because their values should be edited only
before the model is initialized. Other parameters, such as the time step ∆t, can be changed
between computations, but should not be changed during a computation. For example, if the
time step is changed while a differential equation is being solved, it might occur that one variable
advances using the old value while another variable advances using the new value. These types of
synchronization errors can be avoided by reading parameters before the doStep method executes
and the optional startRunning method allows us to do this. The startRunning method is invoked
once when the step button is pressed and once when the run button is pressed. In other words,
this method is called before the thread starts and insures that the simulation has the opportunity
to read the most recent values. Note that in BouncingBallApp the time step dt is set using using
the setAdjustableValue method rather than the setValue method. Parameters that are set
using setAdjustableValue are editable in the SimulationControl after the program has been
initialized whereas those that are set using setValue are only editable before the program has
been initialized.

Exercise 2.19. Follow the bouncing balls

a. Compile and run BouncingBallApp. Try all the different buttons and note how they affect the
input parameters.

b. Add the statement, enableStepsPerDisplay(true) to the reset method, and run your pro-
gram again. You should see a new input in the control window that lets you change the number
of simulation steps that are computed between redrawing the frame. Vary this new input and
note what happens.

c. What is wrong with the physics of the simulation?

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 41

d. Add a method to the BouncingBall class to calculate and return the total energy. Sum the
energy of the balls in the program’s doStep method and display this value in the message box.
Does the simple model make sense?

e. Look at the source code for the setXY method. If you are using an IDE, such a look up is easy.
What would you need to do to change the radius of the circle that is drawn?

Many of the visualization components in the Open Source Physics library are built using classes
provided by others including Sun Microsystems. The goal of this library is to let you quickly begin
writing your own programs while you are learning the Sun and the Open Source Physics APIs.
You are, however, encouraged to look under the hood as you gain experience. Open Source Physics
controls and visualizations will almost always inherit from the JFrame class. Drawing is almost
always done on a DrawingPanel that inherits from the JPanel class. Both these superclasses are
defined in the javax.swing package.

Exercise 2.20. Peeking into Open Source Physics

a. Look at the source code for PlotFrame (in the frames package) and follow its inheritance until
you reach the JFrame class. How may subclasses are there between JFrame and PlotFrame.
Follow the inheritance from SimulationControl (in the controls package) to JFrame. Describe
in general terms what features are added in each subclass.

b. Read through the different methods in PlotFrame. Don’t worry about how the methods are
implemented, but try to understand what they do. What methods have not yet appeared in a
program listing? What do they do and when might you use them?

c. Look at the source code for PlottingPanel (in the display package), which is used in many of
the frames. Follow its inheritance until you reach the JPanel class. Do you see why we have not
described the PlottingPanel class in detail? Look through the different methods, and describe
in your own words what several of them do and how they might be used.

d. Find the closest common ancestor (superclass) for JFrame and JPanel in the Sun library. Note
that all objects have Object as a common ancestor.

2.7 Model-View-Control

Developing large software programs is best viewed as a design process. One criterion for good
design is the reuse of data structures and behaviors that can facilitate reuse. Separating the
physics from the user interface and the data visualization can facilitate good design. The user
interface is referred to as the control. In Open Source Physics the control object is responsible for
handling user initiated events such as button clicks and passing them to other objects. The plots
that we have constructed present visual representations of the data and are examples of views. By
using this design strategy it is possible to have multiple views of the same data. For example, we
can show a plot and a table view of the same data. The physics is expressed in terms of a model
that contains the data and provides the methods by which the data can change.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 42

-4

-3

-2

-1

1

im
ag

in
ar

y

real

4

3

2

(real, imag)

θ

|z|

-4 -3 -2 -1 1 2 3 4

Figure 2.2: A complex number, z, can be defined by its real and imaginary parts, real and imag,
respectively, or by its magnitude, |z|, and phase angle, θ.

At this point we have described a large fraction of the Java syntax and Open Source Physics
tools that we will need in the rest of this book. One important topic that we still need to discuss
is the use of interfaces. There also is much more in the Open Source Physics library that we can
use. For example, there are classes to draw and manipulate lattices as well as classes to iterate
differential equations more accurately than the Euler method used in this chapter.

At this stage, we hope that you have gained a feel for how Java works, and can focus on the
physics in the rest of the text. Additional aspects of Java will be taught by example as they are
needed.

Appendix 2A: Complex numbers

Complex numbers are used in physics to represent quantities such as alternating currents and
quantum mechanical wave functions which have an amplitude and phase (see Figure 2.2). Java
does not provide a complex number as a primitive data type, so we will build a class that implements
some common complex arithmetic operations. This class is an explicit example of the fact that
classes are effectively new programmer-defined types.

If our new class is called Complex, we could test it by using code such as the following:

package org.opensourcephysics.sip.ch02;
public class ComplexApp {

public static void main(String[] args) {
Complex a = new Complex(3.0, 2.0); // complex number 3 + i2
Complex b = new Complex(1.0, −4.0); // complex number 1 − i4
System.out.println(a); // print a using a.toString()
System.out.println(b); // print b using b.toString()

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 43

Complex sum = b.add(a); // add a to b
System.out.println(sum); // print sum
Complex product = b.multiply(a); // multiply b by a
System.out.println(product); // print product
a.conjugate (); // complex conjugate of a
System.out.println(a);

}
}

Because the methods of class Complex are not static, we must first instantiate a Complex object
with a statement such as

Complex a = new Complex();

The variable a is an object of class Complex. As before, we can think of new as creating the instance
variables and memory of the object. Compare the form of this statement to the declaration,

double x = 3.0;

A variable of class type Complex is literally more complex than a primitive variable because its
definition also involves associated methods and instance variables.

Note that we have first written a class that uses the Complex class before we have actually
written the latter. Although programming is an iterative process, it is usually a good idea to think
about how the objects of a class are to be used first. Exercise 2.21 encourages you to do so.

Exercise 2.21. Complex number test
What will be the output when ComplexApp is run? Make reasonable assumptions about how the
methods of Complex will perform using your knowledge of Java and complex numbers.

We need to define methods that add, multiply, and take the conjugate of complex numbers
and define a method that prints their value. We next list the code for the Complex class.

package org.opensourcephysics.sip.ch02;
public class Complex {

private double real = 0;
private double imag = 0; // real, imag are instance variables
public Complex() {

this (0, 0); // invokes second constructor with 0 + i0
}

public Complex(double real, double imag) {
this. real = real ;
this.imag = imag;

}

public void conjugate() {
imag = −imag;

}

public Complex add(Complex c) {

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 44

// result also is complex so need to introduce another variable of type Complex
Complex sum = new Complex();
sum.real = real+c.real ;
sum.imag = imag+c.imag;
return sum;

}

public Complex multiply(Complex c) {
Complex product = new Complex();
product.real = (real∗c. real)−(imag∗c.imag);
product.imag = (real∗c.imag)+(imag∗c.real);
return product;

}

public String toString() {
// note example of method overriding
if (imag>=0) {

return real+” + i”+Math.abs(imag);
} else {

return real+” − i”+Math.abs(imag);
}

}
}

The Complex class defines two constructors that are distinguished by their parameter list. The
constructor with two arguments allows us to initialize the values of the instance variables. Notice
how the class encapsulates (hides) both the data and the methods that characterize a complex
number. That is, we can use the Complex class without any knowledge of how its methods are
implemented or how its data is stored.

The general features of this class definition are as before. The variables real and imag are the
instance variables of class Complex. In contrast, the variable sum in method add is a local variable
because it can be accessed only within the method in which it is defined.

The most important new feature of the Complex class is that the add and multiply return
new Complex objects. One reason we need to return a variable of type Complex is that a method
returns (at most) a single value. For this reason we cannot return both sum.real and sum.imag.
More importantly, we want the sum of two complex numbers to also be of type Complex so that
we can add a third complex number to the result. Note also that we have defined methods add
and multiply so that they do not change the values of the instance variables of the numbers to
be added, but create a new complex number that stores the sum.

Another way to represent complex numbers is by their magnitude and phase, |z|eıθ. If z =
a + ıb, then

|z| =
√

a2 + b2, (2.12a)

and
θ = arctan

b

a
. (2.12b)

We investigate this alternative representation in Exercise 2.22.

CHAPTER 2. ESSENTIAL TOOLS FOR DOING SIMULATIONS 45

Exercise 2.22. Complex numbers

a. Add methods to get the magnitude and phase of a complex number, getMagnitude and getPhase,
respectively. Add test code to invoke these methods. Be sure to check the phase in all four
quadrants.

b. Create a new class named ComplexPolar that stores a complex number as a magnitude and
phase. Define methods for this class so that it behaves the same as the Complex class. Test this
class using the code for ComplexApp.

This example of the Complex class illustrates the nature of objects, their limitations, and
the tradeoff that enter into design choices. Because accessing an object requires more cpu time
than accessing primitive variables, it is faster to represent a complex number by two doubles,
corresponding to its real and imaginary parts. Thus N complex data points would be represented
by an array of doubles in sequence of dimension 2N , with the first N values corresponding to the
real values. Of course, considerations of computational speed are important only if complex data
types are used extensively.

References and Suggestions for Further Reading

By using the Open Source Physics library we have hidden most of the Java code needed to use
threads, and we have only touched on the graphical capabilities of Java. See the Open Source
Physics: A User’s Guide with Examples for a description of additional details on how threads and
the other Open Source Physics tools are implemented and used.

There are many good books on Java graphics and Java threads. We list a few of our favorites
in the following.

Thomas Christopher and George Thiruvathukal, High Performance Java Platform Computing:
Multithreaded and Networked Programming, Prentice Hall (2001).

David M. Geary, Graphic Java: Vol. 2, Swing, third edition, Prentice Hall (1999).

Jonathan Knudsen, Java 2D Graphics, O’Reilly (1999).

Allen Holub, Taming Java Threads, Apress (2000).

Paul Hyde, Java Thread Programming, Sams (2000).

Doug Lea, Concurrent Programming in Java, second edition, Addison-Wesley (2000).

Bill Lewis and Daniel Berg, Multithreaded Programming with Java Technology, Prentice Hall
(2000).

Scott Oaks and Henry Wong, Java Threads, third edition, O’Reilly (2004).

	Essential Tools for Doing Simulations
	Introduction
	Simulating free fall
	Getting started with object oriented programming
	Inheritance
	The Open Source Physics library
	Animation and Simulation
	Model-View-Control

