
IEEE l -RANSACTIONS ON CIRCUITS AND SYSTEMS-l: FUNDAMENTAL THEORY AND APPLICATIONS. VOL. 44, NO. 4, APRIL 1997

REFERENCES

t11

VI

[31

[41

[51

[61

M. K. M. Ali and F. Kamoun, “Neural networks for shortest path
computation and routing in computer networks,” IEEE Trans. Neural
iVetworks, vol. 4, pp. 931-940, Nov. 1993.
B. Linares Barranco, E. Sanchez-Sinenco, A. Rodriguez-Vazquez, and
J. L. Huertas, “A modular T-mode design approach for analog neural
network hardware implementations,” IEEE .I. Solid State Circuits, vol.
27, pp. 701-713, May 1992.
D. Bertsekas and J. Tsitsiklis, Purullel and Distributed Computation.
Englewood Cliffs, NJ: Prentice Hall, 1989.
V. S. Borkar, “Topics in controlled Markov chains,” Pitman Research
Notes in Mathematics, No 240, Longman Scientific and Technical,
Harlow, England, 199 1.
A. Bouzerdoum and T. R. Pattison, “Neural network for quadratic
optimization with bound constraints,” IEEE Trans. Neural Networks,
vol. 4, pp. 293-304, 1993.
R. W. Brockett, “Dynamical systems that sort lists, diagonalize matrices,
and solve linear programming problems,” in Linear Algebra und its
Applications, vol. 146, pp. 79-91, 1991.

[71 ,
WI

“Least squares matching problems,” Center for Intell. Contr. Syst.
G ’CICS-P-133, Harvard Univ., MA, Apr. 1989.
R. W. Brockett and W. S. Wong, “A gradient flow for the assignment

_-problem,” Center for Intell. Corm. Syst. Rep. CICS-P-284, Harvard
Univ., MA, Feb. 1991.

355

[9] L. 0. Chua and G. N. Liu, “Nonlinear programming without computa-
,- tion,” IEEE Trans. Circuits Syst., vol. 31, pp. 182-188, 1984.

[IO] L. 0. Chua and L. Yang, “Cellular neural networks: Theory and
applications,” IEEE Trans. Circuits. Syst., vol. 35, pp. 1257-1290, 1988.

[1 I] .T: Roska and L. 0. Chua “The CNN universal machine: An analogic
array,” IEEE Trans. Circuits Syst., vol. 40, pp. 163-173, Mar. 1993.

[I21 C. Chiu, C. Y. Maa, and M. A. Shanblatt, “Energy function analysis of
--dynamic programming neural networks,” fEEE Trans. Neural Networks,

vol. 2, pp. 418426, July 1991.
[131 M. T. Chu, “On the continuous realization of iterative processes,” SIAM

‘Rev., vol. 30. no. 3, Sept. 1988.
[141 A. Cichocki and R. Unbehauen, “Neural networks for solving systems of

linear equations-Part II: Minimax and least absolute value problems,”
IEEE Truns. Circuits Syst. II, vol. 39 pp. 619-633, 1991.

[151 J. Cronin, Differential Equations: Introduction and Qualitative Theory.
-New York: Marcel Dekker, 1994, second ed. vi

[I71

[I81

L191

[201

[211

WI

C. B. Garcia and W. I. Zangwill, Pathways to Solutions, Fixed Points
and Equilibria. Englewood Cliffs, NJ: Prentice-Hall, 1981.
D. G. Kelly, “Stability in contractive neural networks,” IEEE Trans.
Biomed. Eng.. vol. 37, pp. 231-242, Mar. 1990.
M. K. Kennedy and i: 0. Chua, “Neural networks for nonlinear
programming,” IEEE Trans. Ciruits Syst., vol. 35, PD. 554-562. 1988.
i<. Matsuoka, “Stability conditions -for nonlinear-continuous neural
networks with asymmetric connection weights,” Neural Networks, vol.
5, pp. 495-500, 1992.
S. Smale, “A convergent process of price adjustment and global newton
methods,” .I. Math. Economics, vol. 3, pp. 107-120, 1976.
G. R. Sell, Topological Dynamic.? and Ordinary Differential Equations.
London, England: Van Nostrand Reinhold, 1971.
L. Zhang and S. C. A. Thomopoulos, “Neural network implementation
of the shortest path algorithm for traffic routing in communication
networks,” in Proc. Int. Joint Conf: Neural Networks, June 1989, p.
II 591.
M. Vidyasagar, Nonlinear System Anulysis. Englewood Cliffs, NJ:
Prentice Hall, 1992.

~231

Efficient Implementation of Neighborhood
Logic for Cellular Automata via the Cellular

Neural Network Universal Machine

Kenneth R. Crounse, Eula L. Fung, and Leon 0. Chua

Abstract-The main difficulty in implementing cellular automata on
the Cellular Neural Network Universal Machine (CNNUM) is the need
to perform arbitrary logic functions of the input neighborhood. Since
the architecture computes weighted sums of this neighborhood, by using
a “B-template,” it is limited to threshold logic, i.e., a logical operation
to be computed by a single transient must be in the class of linearly
separable Boolean functions. It was shown previously how a general logic
function can he implemented on the CNNUM by cascading component
functions from this class-namely by the direct implementation of the
minterm or maxterm formulation of the desired function. However, for
functions of a 3 x 3 input neighborhood this method may require up
to 256 stages. We propose a more efficient method for implementing
general logic functions on the CNNUM and other hardwares capable
of performing a threshold logic function of an input neighborhood. The
class of considered component functions is a superset of the minterms and
maxterms but, for purposes of searchability, ease of implementation, and
robustness, a subset of the general linearly separable Boolean functions.
We have formulated an algorithm that will find a sequence of weight-
restiicted threshold logic functions (B-templates with weights from (-1,
0, +l] and a bias) that, when cascaded together using two-input logical
operations, will result in the desired Boolean function. Two examples are
given to exhibit the algorithm.

I. INTRODUCTION

Cellular automata are an important class of array dynamical
systems which are discrete in space, state, and time. They have been
shown to be useful in modeling physical systems [l], morphological
image processing [2], and random number generation [3].

The main task in evolving a particular cellular automaton rule is,
in a space-invariant and synchronous manner, to evaluate a given
Boolean function of the state of a cell and its immediate neighbors.
The result of this Boolean function is then stored as the next state of
the cell and the whole procedure is iterated. When a different cellular
automaton state transition rule is to be implemented, a different
Boolean function must be specified.

The cellular automaton evolution is inherently a highly parallel
operation, and many specialized hardwares have been developed
exploiting this fact ([4], for instance). When implementing an ar-
bitrary cellular automaton in circuitry, there is a tradeoff between the
space required and processing time. At one extreme is the bit-serial
processor approach, by which the whole array is updated serially. At
the other extreme is the array approach, by which simple processors
are assigned one-per-cell and consult a local look-up table in order
to update the states.

We propose a method for implementing an arbitrary cellular
automaton rule on an architecture which rests somewhere between
these extremes. The processing units are placed one-per-cell, but, due
to implementation concerns, a unit is not given enough computational
capability to implement an arbitrary logic function in a single time

Manuscript received March 10, 1996. This work was supported by the Joint
Services Electronics Program, Contract F49620-94-C-0038. The work of E.
L. Fung was supported by the National Science Foundation. This paper was
recommended by Associate Editor B. Sheu.

The authors are with the Electronics Research Laboratory, Electrical
Engineering and Computer Sciences Department, University of California,
Berkeley, CA 94720 USA.

Publisher Item Identifier S 1057-7122(97)02068-O.

1057-7122/97$10.00 0 1997 IEEE

356 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-l: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44. NO. 4, APRIL 1997

step. Instead, the processors are time multiplexed to perform a single
cellular automaton iteration by means of a short sequence of simple
operations.

Architectures capable of implementing the proposed method in a
massively parallel fashion are the Cellular Neural Network Universal
Machine (CNNUM) and the Discrete-Time CNN [5], [6]. Both of
these processors are more general than necessitated by our approach
and allow for many other image processing computations. However,
the robust implementation of cellular automata and neighborhood
logic on such machines is an important question since these operations
are often used as stages of more complicated algorithms. Altema-
tively, larger arrays to run programmable general cellular automata
might be built by tailoring the hardware to specialize in the proposed
method.

It has long been known that threshold logic can be used to
implement the class of linearly separable Boolean functions. And, that
by cascading the outputs of threshold logic units, arbitrary Boolean
functions can be built [7], [8]. The idea of applying such cascading
approaches to neighborhood logic on the CNN and CNNUM was
first developed in the works and ideas of Venetianer [9], [lo], (and
personal communications) and in the multilayer CNN context by Shi
[l 11, [121. These concepts were later used and fomalized to show
that any neighborhood logic funciton could, in fact, be implemented
by a CNNUM algorithm [131.

Our approach follows the threshold logic methodology but restricts
the weights to be taken from {- 1, 0, +l}. Under this restriction,
only N thresholds need to be implemented for Boolean functions
of N-inputs-all others are redundant. To minimize the chance of
errors due to noise it is wise to choose threshold values which are
furthest from the possible sums formed by the unit, which in this
case can more easily be done by using 2N - 1 different thresholds.
The advantage of such an approach (over general threshold logic) is
threefold: The architecture need not implement an arbitrary analog
multiplication and threshold, the weight space can be exhaustively
searched by present-day computers, and the hardware would be
more robust to noise. The main disadvantage is that, presumably,
longer template sequences will be needed than would be required
by using general threshold logic. However, in practice, finding such
sequences for general threshold logic is a very difficult task [S]
and the algorithms for doing so are necessarily sub-optimal. Since
the number of Boolean functions in the weight-restricted class is
explicitly searchable, it is expected that the possibility of more
efficient algorithms for finding template sequences will make up
some of the difference. In addition, allowing for arbitrary two-
input Boolean functions for composing outputs of the threshold units
provides further degrees of freedom.

II. BACKGROUND

A. Cellular Automata Rules
The states of a cellular automaton (CA) evolve according to a state

transition rule-a function which determines the next state of each
cell as a function of the current state of the cell and its neighbors.

In this brief we will discuss two-dimensional first-order binary-
state cellular automata. The states of a binary CA can take on one of
two values which we will designate as {O,l } where 0 can be thought
of as logical FALSE and 1 as logical TRUE. The state transition rule
is a Boolean function of the current states of the cell and its &nearest
neighbors. The state evolution of the automaton to the next time step
can be written as

threshold

Fig. 1. Required architecture for one cell of a restricted threshold-logic
machine. Only two of the lines from the eight neighboring state buffers are
shown. -

where ,v:,j are the indices for the neighborhood of cell (i. j) -and f,
in our case a Boolean function of nine variables, is the state transition
rule. A total of 2’ = 512 neighborhood configurations are possible.
The Boolean function which defines the transition rule must specify
a next state for each of these configurations. Since a cell can have
two possible next states there are 2512 z 1015” possible &&~lar
automata rules in the considered class.

B. Restricted Threshold Logic Machine
We are proposing a technique for implementing any of these cellu-

lar automata in array hardware. The minimal architecture required for
the proposed method is shown in Fig. 1. The machine has a massively
parallel cellular structure, of which one cell is shown.

Each cell has a binary buffer which can be accessed by neighboring
cells. For our purposes here, it is convenient to let - 1 denote logical
FALSE and +l denote logical TRUE. These buffers must be able
to be supplied to the input of a restricted-parameter threshold logic
unit. Mathematically, the unit accomplishes the function

(
1

sgn c m(k, I)st+k.,+1(72) - 10

k.l=-1 >

where the weights w (k? I) must be chosen from { - 1, 0, 1). Note
that since the weighted sums formed by the unit must be integral and
will jump in steps of two (although they will be either even or odd
depending on the number of weights which are zero), choosing 10 E
(-8, -7, . . . : +7, +8} is a well-spaced choice for thresholds. The
restricted parameter set is one of the unique aspects of this hardware
which allows for ease of implementability as well as robustness.

The output of the threshold unit must be able to be combined
with the contents of a temporary storage binary buffer through a
general selectable two-input logic function. Finally, the contents of
the temporary buffer must be able to be transferred back to the state
buffer.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 4, APRIL 1997 357

These requirements can be satisfied by some more complex ar-
chitectures such as the CNNUM and some implementations of the
Discrete-Time CNN. For instance, a standard CNN is controlled by
three paraineters: an A-template, a B-template, and a bias term I.
To use the CNN to perform the sign function, all values of the A-
template are set to zero except the center element which is set to one.
The B-template and bias together define the particular threshold logic
function of the CNN input [ll]. For an &neighbor configuration,
using 0 0 0

A=0 10 [1 0 0 0

[

,uJ(-1: -1) ,cu(-1,O) w(-1,l)
B= 40, -1) w(O,O) ru(0, 1)

w(1, -1) ,w(l, 0) w(l, 1) 1
I = -la.

will give the corresponding threshold logic computation at the stead-
state CNN output. The Universal Machine is used to provide buffering
and general two-input local logic.

III. WEIGHT GENERATION ALGORITHM

Fig. 1 hints at how we intend to use the architecture to implement
a cellular automaton. The current states s; ,j (I?,) are stored in the state
registers. The restricted threshold logic unit is used to perform a
series of logic functions b(‘) on the current state. Each of these is
sequentially combined with the previously composed result through
a two-input logic function 0 (k) After M iterations, the desired logic .
function will have been performed and the result is fed-back to the
state register as the next state. Namely,

Si,j(71, + 1) = f(.“)[s~V~,~(12)] (1)

where

f(")[snr,,j(7f)] = b(O)[snr,,J7,q]

f(l)[s&Jn)] = f(“)[sni,,,(7r)] a(l) b(~)[SM,,J71~)]

f(2)[%v”,, (71)l = P[sni,,, (n)l a@) b(2)[SM~,j(7L)]

. . .

pysni,,, (n)] = p-)[SNz,, (7L)] cp) b(“4)[snr,,j (?I,)].

Given an arbitrary state transition rule f, we want to be able to
efficiently implement it by such a decomposition. Thus, the problem
we would like to solve is: for an arbitrary given state transition
rule (neighborhood Boolean function), find the shortest sequence
(smallest M) of bcL) from this restricted-weight threshold logic class
and corresponding two-input logic operations such that the resulting
function f(*‘) is the given transition rule.

A. Characterization of Restricted-Weight Threshold Logic Class
We will express an input u to the Boolean function f as the

N-tuple u = (UO, ~1,. . . , UN-I) E 11 = {071}“. (For our
examples, N = 9.) Then, the Boolean function can be expressed
as a 2N-tuple listed in the natural order when interpreting the input
N-tuple as the binary representation of an integer. That is, we can
write the Boolean function f (u) = (fo: fl ? fZ N _ 1) such that
f(u) E F = (0; l}?

Some special Boolean functions should be noted. Minterms are
Boolean expressions that are true for only one input. Specifically,
there are 2N such minterms, indexed by i E li defined by

lit j (u) = 1, if ‘u = i
0, otherwise.

The maxterms are the dual to minterms in that they evaluate to 0
if a single given input occurs and 1 otherwise. Then, similarly, the
maxterms can be defined as

lvf~(u) = 0, ifu=i
1, otherwise.

it is, an elementary observation that any Boolean function can
be expressed as a sum (OR) of minterms or a product (AND) of

maxterms. To express a Boolean function in minterms, simply add all
minterms corresponding to inputs that make the function evaluate to
1. For maxterms, the Boolean function is equivalent to multiplying all
maxterms that correspond to inputs that make the function evaluate
to 0.

We will now attempt to quantify the behavior of the restricted-
weight threshold logic unit. Let us define the distance between input
N-tuples as

N-l

dist(,u’u) = c ‘uu; $ ‘I); for ‘u: ‘u E U
2=0

where $ denotes the XOR operation that returns 1 if ‘u,~ # uz and 0
if ui = ‘u;. Let the threshold logic unit have weights ‘w, of which
7 are zero, and possible thresholds 10 = (N - 2 - 1 - 2k) for
k = 0,. . . , N - 3 - 1.

First, consider the case when there are no zero weights, i.e., 2 = 0
Then, when L = 0 it is easily shown that the unit implements the
mmterm mzur where we have allowed a slight abuse of notation by
considering the { - 1, 1 }-valued weights UI to be a { 0, 1 }-valued
vector in U. Decreasing the threshold, by increasing k, will allow
more inputs to be accepted by the unit. Namely, the unit will return
TRUE for the set of inputs {u : ‘(1 E lJ: dist (u, 1~) 5 k}. A Boolean
function of this form will be called a ballterm and can be written

b,,,, = OR 711, for L’ E li s.t. dist(u;,(u) 5 k.

Intuitively, this function can be visualized as detecting all inputs
within a ball of radius k centered at the input w.

When 2 # 0 the unit will ignore some inputs. Then, the unit with
L = 0, giving a threshold of (N - z - 1), is equivalent to an ORing of
minterms in the same way that a circled implicant on a Karnaugh map
is equivalent to the sum of the minterms circled. For example, a set of
iveights ‘(u = (~0: wlr.. ,WN-1) withwo = 0 and UI, E {-l,+l}
fori = l,... , N - 1 acts the same as the following sum of minterms

(-l,Wl:..., fUN-1) OR (+l;(Ul,..‘, “,,$‘-I).

For k # 0 the template will detect all minterms that are at a
distance less than or equal to k from the implicant that would be
detected when k = 0. For example, suppose N = 4 and our set of
weights is (+ 1, 0, - 1, + 1). A threshold of 2 (from I; = 0, t = 1) will
give the implicant equivalent to the minterm template combination
($1, +l, -1, +l) OR (+l, -1, -1, +l), both with thresholds of
3. NOW if we consider a threshold of 0 (from L = 1,~ = I), the
resulting template will be equivalent to the combination

(+l,+l, -1, +I) OR ($1. -1, -1, +1) OR

(-1, +I: -1: +1) OR (-1, -1: -1: +1) OR

(+I. +1.+1. +I) OR (+l: -1, +l> $1) OR

($1, +I: -1: -1) OR (+l: -1. -1, -1)

with each set of weights thresholded at (N - 1) = 3. The last six
sets of weights describe templates that detect minterms a distance 1
away from the implicant detected with k = 0.

358 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTALTHEORY AND APPLICATIONS, VOL.~~,NO. 4, APRIL 1497

1 desired function

If?.. &%?
Fig. 2. Flowchart for the template-finding algorithm. The input is the desired
Boolean function. The algorithm finds a sequence of functions from the
restricted-weight threshold logic class and associated two-input combining
logic to implement the desired function.

B. Dbcription of Decomposition Algorithm

Having made these observations we can address the first
question: does a solution of the form of (1) exist? The answer
is yes, and a constructive argument can be found in [13].
The important point of the argument is: by using weights in
{- l,+ 1 } and a threshold of +(N - 1) one can implement any
minterm with the restricted threshold logic unit. Similarly, with
weights in { - l,+ 1) and a threshold of -(N - 1) any maxterm
can be implemented. Thus we only need the local two-input
logical operations OR and AND and the min/maxterm class of
templates to construct a solution to implementing a desired Boolean
function. A solution’ of this form would require at most 2N-1
templates.

By using ballterms, one would expect to be able to find solutions
which use fewer templates than required in a purely minterm or
maxterm formulation because we are considering a larger class of
component functions. We have an additional weight value, 0, which
allows a template to ignore some inputs. In addition, the ability to
assign threshold values other than the ZIZ(N - 3 - 1) used for the
min/maxterms allows even more flexibility.

% S2 1 XOR

0
0

0 1 0' /

10 1

11 '\
O\

tm
4 4

Fig. 3. A demonstration of the pictorial Boolean functioh notation used in
this brief. The truthtable of a Boolean function (in this case the exclusive-OR
(XOR)) is mapped to a graph by converting successive regions of the truth
table to rows of the graph, as shown, giving a compact representation.

With this in mind, we would like to create an algorithm to
automatically find a “good” solution for us. Of course, to find the
best solution an exhaustive search of longer and longer sequences of
templates and combining logic could be performed until the desired
function is found, but such a thought is untenable with current
computing technology. At the other extreme, an algorithm could
simply generate all the minterms of the given Boolean function and
OR them together. Clearly there is a tradeoff between the running time
of the algorithm and the length of the resulting template sequence.
We propose the following algorithm to demonstrate the existence
of a practical approach to design template sequences which takes
advantage of the restricted-weight threshold class with arbitrary two-
input combining logic. Many such algorithms are possible since, in
general, more than one solution exists.

The following greedy algorithm is proposed to decompose a
Boolean function into the form of (1). Generate the set B of all
the Boolean functions that can be implemented with weights in { - 1,
0, +l } and appropriate biases. Let L designate the set of two-input
Boolean functions used for combining elements in B. Fig. 2 shows a
flowchart of the algorithm. First, the function b(O) E B of minimum
distance to the desired function is found. Our notion of distance is
similar to the one defined above except that we apply it to Boolean
functions rather than inputs, that is

ZN-1

distF(f, g) = c f(u) 6~ g(u) for any f, g E F.
u=o

As long as the distance between the currently composed function
fckP1) and the desired funciton is greater than zero, the algorithm
iteratively searches B and L for a function b(“) and logic operation
o(‘) that will modify the previous composed function (in the manner
of (1)) to result in one of minimal distance to the desired function.

The algorithm is guaranteed to converge to a solution since in
every iteration prior to convergence the error can decrease by at least
one. This can be seen by observing that.even in the worst case the
current function fck) can be brought closer to the desired one by
either OR& with a minterm or ANDing with a maxterm.

C. Examples
In this section we will show some examples of algorithm results.

For readability, we are going to display the 2”-digit Boolean func-
tions pictorially as a rectangular array of 2” squares colored either
black or white. Starting at the top left with f(O), we will fill in each
square row by row, coloring it black if f(i) = 0 or white if f(i) ti I.
For instance, the XOR function, fxon = (0, 1, 1, 0), could be depicted
as shown in Fig. 3. In the following examples N = 9. Each Boolean
function will be depicted with f (0) - f (31) displayed in the *first
row; the last entry, f (5 1 1), is in the bottom right comer.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 4, APRIL 1997 359

n Black = 0

Cl White=1

P= desired output

r
n

n

n

n

I‘ ¶o II
I 0

Fig. 4. Template-finding algorithm output for the game of life CA. The .512-entry truth tables for the desired and output Boolean function are shown pictorially.

With nine inputs, there are 118098 Boolean functions in the set
B. However, since each ballterm also has its complement in this
set, only half of them need to be generated for searching since the
complements are easily generated during the search. Each truth table
requires 512 b, requiring a total of less than 4 MB of storage. For
these examples, the set L of two-input logic functions was chosen to
be (AND, OR, XOR}, a decision which is discussed in Section IV.

Example l-Game of Life: Fig. 4 shows the algorithm results for
implementing the game of life, which is a famous two-dimensional
cellular automata rule with many interesting properties [14].

The resulting ballterms (weights and trhreshold) and logic oper-
ations are

To imclement these results on the CNN, we would create a Ba
template to implement the b (‘I ballterm and a Bi template for the
b(l) ballterm as shown below

Bo =

B, =

-1 -1 -1

-1

0 -1
-1 -1 -1 1
$1 +1 +1
+1 $1 +1

+1 $1 $1 1
I, = -1

Ii = $4.

Each set of templates is applied to the input, and the results are
ANDed together to get the final answer. These results are identical to

those designed informally in [lo].
Example 2: Fig. 5 shows the algorithm’s results for another sam-

ple function.
The resulting ballterms and logic operations are

b(O) = b _ _ (1. 1,0,+1,0,-l,-l,O,-1),3

b(l) = b - - (1, 1,+1,-1,0,+1,-1,+1.-1),5

b(*) = b (+l,-l,O,O.-l,O,-l,o,+l),-2

bc3) = be-l o --1,--1 - a, > 1,0,+1.-1,0).5

($1) = XOR

($2) = AND

o(3) = OR.

Therefore, this chosen neighborhood logic function could be im-
plemented using a sequence of four CNN templates and three local
logic operations.

IV. PERFORMANCE CONSIDERATIONS

Many, modifications could be made to improve the performance
of the weight-finding algorithm. For instance, the case often occurs
during the search that more than one function in the table will result
in the same minimal distance. For convenience, the algorithm simply
picks the first such function it encountered. This choice of function,

360 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS,VOL.44,NO.4, APRIL 1997

m Black=0

Cl White = 1

Fig. 5. Template-finding algorithm output for a sample input function. The desired function was found to be implementable in four restricted-weight
threshold logic stages. The 512-entry truth tables for the desired logic function, the restricted-weight threshold logic functions, and the intermediate
results after each stage are shown here pictorially.

however, can make a difference in the final number of templates justify the significant increase in search time. When finding templates
needed. Random testing indicates that the improvement gained by for permanent use however, a breadth-first search which keeps all
searching all paths with same minimal distance is typically not templates giving the same minimal distance at each level may be
significant (a few templates) and for demonstration purposes did not expedient.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 4, APRIL I997 361

Another consideration is to restrict the number of two-input com-
bining logic functions in the set L for quicker convergence. It is
clear that TRUE, FALSE, identity of either input, and complement of
either input, need not be considered. Furthermore, two-input functions
which complement b(“) are not needed since the complements are also
ballterms. But, in fact, during simulation it was found that combining
functions which complement fckP1) never arose (although we have
not proven that they are not needed) leaving only the AND, OR, and
XOR fUnCtiOnS.

The choice of distance measure also affects the outcome. The
distance measure described above looks for the best fit by weighting
both TRUE (1) and FALSE (0) equally so that the best fit function
may have errors which output 1 when it should output 0 and vice
versa. The operation OR can only modify a function by changing O’s
to l’s its truth table while the operation AND can only change l’s to
O’s; only XOR can add both l’s and 0’s. Thus this distance measure
shows no preference between OR and AND since both could be used
to decrease the distance.

Suppose instead we defined a distance measure that considers only
functions that must output TRUE every time the desired function
outputs TRUE but may output TRUE or FALSE when the given
function outputs FALSE. The best fit function would then be the
one that outputs TRUE the fewest times when the desired output is
FALSE. Such a distance measure would favor the logical operation
AND since in subsequent steps, O’s need to be added. In the same
manner, we could also define a distance measure that favors OR.
(Due to the difficulties of searching the weight-space of the general
threshold logic functions, the method given in [8] is restricted to this
last type of distance measure.)

In certain situations, such favoritism would be desirable. For
example, for N = 9 consider the Boolean function that outputs TRUE
every time exactly four input variables are 1. Using the new AND-
favoring distance measure, the algorithm finds a solution using only
two templates while the original distance measure results in a solution
with over 70 templates. A more complex algorithm could perform a
search by using each of these measures.

Even if an optimal algorithm could be designed to choose template
sequences from this class, we do not know how many steps might be
needed in the worst-case to implement’a desired function. A simple
counting argument gives 28 steps as a lower upper-bound on the
minimal number. That is, there is some logic function that requires
at least this many steps even when optimally implemented. If the
upper bound is in fact much greater than this, it may be necessary to
explore techniques which drop the weight restriction.

V. CONCLUSION

Choosing from among the enormous number of threshold logic
functions of nine variables makes composing general Boolean func-
tions with them a daunting task. We have shown how by restricting
the threshold logic functions to those with { - 1, 0, +1 } weights,
the component functions can be reduced to a manageable number.
The concept of balltenn was introduced to characterize such Boolean
functions. An algorithm was presented for finding a sequence of
templates and two-input logical operators that will implement any
desired neighborhood Boolean function on the CNNUM by using
this weight-restricted class. The algorithm does not necessarily choose
the optimal set from the ballterm class and sometimes produces long
sequences. However, the generated sequences are shorter than those
produced by a direct minterm/maxterm implementation. Therefore,
the proposed technique represents a significant step toward, the
efficient automation of template design for the implementation of
cellular automata and general neighborhood logic.

[II

PI

131

[41

[51

[61

[71

PI

[91

[lOI

[Ill

[121

U31

r141

REFERENCES

T. Toffoli, Cellular Automata Machines. Cambridge, MA: The MIT
Press, 1987.
K. Preston, Jr. and M. .I. B. Duff, Modern Cellular Automata: Theory
and Applications. New York: Plenum, 1984.
S. Wolfram, “Random sequence generation by cellular automata,” Ad-
vances in Applied Mathematics, vol. 7, pp. 123-169, 1986.
A. P. Marriott, P. Tsalides, and P. J. Hicks, “VLSI implementation
of smart imaging system using two-dimensional cellular automata,”
Proc. Inst. Elect. Enp. G. Circuits. Devices and Systems, vol. 138, pp.
582-586, Oct. 1991:
T. Roska and L. 0. Chua, “The CNN Universal Machine: An analogic
arrav comouter.” IEEE Trans. Circuits Sysf. II, ~01.40, pp. 163-173,
Mar: ,993.
L. 0. Chua and T. Roska, “The CNN paradigm,” IEEE Trans. Circuifs
Syst. I, vol. 40, pp. 147-156, Mar. 1993.
P. M. Lewis II and C.L. Coates, Threshold Logic New York: Wiley,
1967.
T. A. M. Kevenaar, “PLANET: A hierarchical network simulator,” Ph.D.
dissertation, Eindhoven Univ. Technol., The Netherlands, 1992.
P. L. Venetianer, P.Szolgay, K. R. Crounse, T.Roska, and L.O. Chua,
“Analogue combinatorics and cellular automata - Key algorithms and
layout design,” Int. J. Circuit Theory Applicat., vol. 24, pp. 145-164,
Jan.-Feb. 1996.
L. 0. Chua, T. Roska, and P. L. Venetianer, “The CNN is as universal as
the Turing Machine,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 289-29 1,
1993.
L. 0. Chua and B. E. Shi, “Exploiting Cellular Automata in the design
of Cellular Neural Networks for binary image processing,” Memo.
UCB/ERL M89/130, Univ. Calif., Berkeley, Electron. Res. Lab., Nov.
1989.
- “Multiple layer Cellular Neural Networks -A tutorial,” in Al-
gorithms and Parallel VLSI Architectures, F. Deprettere and A. Van
der Veen, Eds. Amsterdam, The Netherlands: Elsevier Sci., 1991, pp.
137-168.
K. R. Crounse and L. 0. Chua, “The CNN universal machine is as
universal as a turing machine,” IEEE Trans. Circuits Syst. I, vol. 43, pp.
353-355, Apr. 1996.
E. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for your
Mathematical Plays. New York: Academic, 1982, vol. 2, ch. 25, pp.
X17-850.

