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Efficient Implementation of Neighborhood 
Logic for Cellular Automata via the Cellular 

Neural Network Universal Machine 

Kenneth R. Crounse, Eula L. Fung, and Leon 0. Chua 

Abstract-The main difficulty in implementing cellular automata on 
the Cellular Neural Network Universal Machine (CNNUM) is the need 
to perform arbitrary logic functions of the input neighborhood. Since 
the architecture computes weighted sums of this neighborhood, by using 
a “B-template,” it is limited to threshold logic, i.e., a logical operation 
to be computed by a single transient must be in the class of linearly 
separable Boolean functions. It was shown previously how a general logic 
function can he implemented on the CNNUM by cascading component 
functions from this class-namely by the direct implementation of the 
minterm or maxterm formulation of the desired function. However, for 
functions of a 3 x  3 input neighborhood this method may require up 
to 256 stages. We propose a more efficient method for implementing 
general logic functions on the CNNUM and other hardwares capable 
of performing a threshold logic function of an input neighborhood. The 
class of considered component functions is a superset of the minterms and 
maxterms but, for purposes of searchability, ease of implementation, and 
robustness, a subset of the general linearly separable Boolean functions. 
We have formulated an algorithm that will find a sequence of weight- 
restiicted threshold logic functions (B-templates with weights from (-1, 
0, +l] and a bias) that, when cascaded together using two-input logical 
operations, will result in the desired Boolean function. Two examples are 
given to exhibit the algorithm. 

I. INTRODUCTION 

Cellular automata are an important class of array dynamical 
systems which are discrete in space, state, and time. They have been 
shown to be useful in modeling physical systems [l], morphological 
image processing [2], and random number generation [3]. 

The main task in evolving a particular cellular automaton rule is, 
in a space-invariant and synchronous manner, to evaluate a given 
Boolean function of the state of a cell and its immediate neighbors. 
The result of this Boolean function is then stored as the next state of 
the cell and the whole procedure is iterated. When a different cellular 
automaton state transition rule is to be implemented, a different 
Boolean function must be specified. 

The cellular automaton evolution is inherently a highly parallel 
operation, and many specialized hardwares have been developed 
exploiting this fact ([4], for instance). When implementing an ar- 
bitrary cellular automaton in circuitry, there is a tradeoff between the 
space required and processing time. At one extreme is the bit-serial 
processor approach, by which the whole array is updated serially. At 
the other extreme is the array approach, by which simple processors 
are assigned one-per-cell and consult a local look-up table in order 
to update the states. 

We propose a method for implementing an arbitrary cellular 
automaton rule on an architecture which rests somewhere between 
these extremes. The processing units are placed one-per-cell, but, due 
to implementation concerns, a unit is not given enough computational 
capability to implement an arbitrary logic function in a single time 
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step. Instead, the processors are time multiplexed to perform a single 
cellular automaton iteration by means of a short sequence of simple 
operations. 

Architectures capable of implementing the proposed method in a 
massively parallel fashion are the Cellular Neural Network Universal 
Machine (CNNUM) and the Discrete-Time CNN [5], [6]. Both of 
these processors are more general than necessitated by our approach 
and allow for many other image processing computations. However,  
the robust implementation of cellular automata and neighborhood 
logic on such machines is an important question since these operations 
are often used as stages of more complicated algorithms. Altema- 
tively, larger arrays to run programmable general cellular automata 
might be built by tailoring the hardware to specialize in the proposed 
method. 

It has long been known that threshold logic can be used to 
implement the class of linearly separable Boolean functions. And, that 
by cascading the outputs of threshold logic units, arbitrary Boolean 
functions can be built [7], [8]. The idea of applying such cascading 
approaches to neighborhood logic on the CNN and CNNUM was 
first developed in the works and ideas of Venetianer [9], [lo], (and 
personal communications) and in the multilayer CNN context by Shi 
[l 11, [ 121. These concepts were later used and fomalized to show 
that any neighborhood logic funciton could, in fact, be implemented 
by a CNNUM algorithm [ 131. 

Our  approach follows the threshold logic methodology but restricts 
the weights to be taken from {- 1, 0, +l}. Under this restriction, 
only N thresholds need to be implemented for Boolean functions 
of N-inputs-all others are redundant. To minimize the chance of 
errors due to noise it is wise to choose threshold values which are 
furthest from the possible sums formed by the unit, which in this 
case can more easily be done by using 2N - 1 different thresholds. 
The advantage of such an approach (over general threshold logic) is 
threefold: The architecture need not implement an arbitrary analog 
multiplication and threshold, the weight space can be exhaustively 
searched by present-day computers, and the hardware would be 
more robust to noise. The main disadvantage is that, presumably, 
longer template sequences will be needed than would be required 
by using general threshold logic. However,  in practice, finding such 
sequences for general threshold logic is a very difficult task [S] 
and the algorithms for doing so are necessarily sub-optimal. Since 
the number of Boolean functions in the weight-restricted class is 
explicitly searchable, it is expected that the possibility of more 
efficient algorithms for finding template sequences will make up 
some of the difference. In addition, allowing for arbitrary two- 
input Boolean functions for composing outputs of the threshold units 
provides further degrees of freedom. 

II. BACKGROUND 

A. Cellular Automata Rules 
The states of a cellular automaton (CA) evolve according to a state 

transition rule-a function which determines the next state of each 
cell as a function of the current state of the cell and its neighbors. 

In this brief we will discuss two-dimensional first-order binary- 
state cellular automata. The states of a binary CA can take on one of 
two values which we will designate as {O,l } where 0 can be thought 
of as logical FALSE and 1 as logical TRUE. The state transition rule 
is a Boolean function of the current states of the cell and its &nearest 
neighbors. The state evolution of the automaton to the next time step 
can be written as 

threshold 

Fig. 1. Required architecture for one cell of a restricted threshold-logic 
machine. Only two of the lines from the eight neighboring state buffers are 
shown. - 

where ,v:,j are the indices for the neighborhood of cell (i. j ) -and f, 
in our case a Boolean function of nine variables, is the state transition 
rule. A total of 2’ = 512 neighborhood configurations are possible. 
The Boolean function which defines the transition rule must specify 
a next state for each of these configurations. Since a cell can have 
two possible next states there are 2512 z 1015” possible &&~lar 
automata rules in the considered class. 

B. Restricted Threshold Logic Machine 
We are proposing a technique for implementing any of these cellu- 

lar automata in array hardware. The minimal architecture required for 
the proposed method is shown in Fig. 1. The machine has a massively 
parallel cellular structure, of which one cell is shown. 

Each cell has a binary buffer which can be accessed by neighboring 
cells. For our purposes here, it is convenient to let - 1 denote logical 
FALSE and +l denote logical TRUE. These buffers must be able 
to be supplied to the input of a restricted-parameter threshold logic 
unit. Mathematically, the unit accomplishes the function 

( 
1 

sgn c m(k, I)st+k.,+1(72) - 10 

k.l=-1 > 

where the weights w (k? I) must be chosen from { - 1, 0, 1). Note 
that since the weighted sums formed by the unit must be integral and 
will jump in steps of two (although they will be either even or odd 
depending on the number of weights which are zero), choosing 10 E 
(-8, -7, . . . : +7, +8} is a well-spaced choice for thresholds. The 
restricted parameter set is one of the unique aspects of this hardware 
which allows for ease of implementability as well as robustness. 

The output of the threshold unit must be able to be combined 
with the contents of a temporary storage binary buffer through a 
general selectable two-input logic function. Finally, the contents of 
the temporary buffer must be able to be transferred back to the state 
buffer. 
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These requirements can be satisfied by some more complex ar- 
chitectures such as the CNNUM and some implementations of the 
Discrete-Time CNN. For instance, a standard CNN is controlled by 
three paraineters: an A-template, a B-template, and a bias term I. 
To use the CNN to perform the sign function, all values of the A- 
template are set to zero except the center element which is set to one. 
The B-template and bias together define the particular threshold logic 
function of the CNN input [ll]. For an &neighbor configuration, 
using 0 0 0 

A=0 10 [ 1 0 0 0 

[ 

,uJ(-1: -1) ,cu(-1,O) w(-1,l) 
B= 40, -1) w(O,O) ru(0, 1) 

w(1, -1) ,w(l, 0) w(l, 1) 1 
I = -la. 

will give the corresponding threshold logic computation at the stead- 
state CNN output. The Universal Machine is used to provide buffering 
and general two-input local logic. 

III. WEIGHT GENERATION ALGORITHM 

Fig. 1 hints at how we intend to use the architecture to implement 
a cellular automaton. The current states s; ,j ( I?,) are stored in the state 
registers. The restricted threshold logic unit is used to perform a 
series of logic functions b(‘) on the current state. Each of these is 
sequentially combined with the previously composed result through 
a two-input logic function 0 (k) After M iterations, the desired logic . 
function will have been performed and the result is fed-back to the 
state register as the next state. Namely, 

Si,j(71, + 1) = f(.“)[s~V~,~(12)] (1) 

where 

f(")[snr,,j(7f)] = b(O)[snr,,J7,q] 

f(l)[s&Jn)] = f(“)[sni,,,(7r)] a(l) b(~)[SM,,J71~)] 

f(2)[%v”,, (71)l = P[sni,,, (n)l a@) b(2)[SM~,j(7L)] 

. . . 

pysni,,, (n)] = p-)[SNz,, (7L)] cp) b(“4)[snr,,j (?I,)]. 

Given an arbitrary state transition rule f, we want to be able to 
efficiently implement it by such a decomposition. Thus, the problem 
we would like to solve is: for an arbitrary given state transition 
rule (neighborhood Boolean function), find the shortest sequence 
(smallest M) of bcL) from this restricted-weight threshold logic class 
and corresponding two-input logic operations such that the resulting 
function f(*‘) is the given transition rule. 

A. Characterization of Restricted-Weight Threshold Logic Class 
We will express an input u to the Boolean function f as the 

N-tuple u = (UO, ~1,. . . , UN-I) E 11 = {071}“. (For our 
examples, N  = 9.) Then, the Boolean function can be expressed 
as a 2N-tuple listed in the natural order when interpreting the input 
N-tuple as the binary representation of an integer. That is, we can 
write the Boolean function f ( u) = ( fo: fl . . . . ? fZ N _ 1 ) such that 
f(u) E F = (0; l}? 

Some special Boolean functions should be noted. Minterms are 
Boolean expressions that are true for only one input. Specifically, 
there are 2N such minterms, indexed by i E li defined by 

lit j ( u) = 1, if ‘u = i 
0, otherwise. 

The maxterms are the dual to minterms in that they evaluate to 0 
if a single given input occurs and 1 otherwise. Then, similarly, the 
maxterms can be defined as 

lvf~(u) = 0, ifu=i 
1, otherwise. 

it is, an elementary observation that any Boolean function can 
be expressed as a sum (OR) of minterms or a product (AND) of 

maxterms. To express a Boolean function in minterms, simply add all 
minterms corresponding to inputs that make the function evaluate to 
1. For maxterms, the Boolean function is equivalent to multiplying all 
maxterms that correspond to inputs that make the function evaluate 
to 0. 

We will now attempt to quantify the behavior of the restricted- 
weight threshold logic unit. Let us define the distance between input 
N-tuples as 

N-l 

dist(,u’u) = c ‘uu; $ ‘I); for ‘u: ‘u E U 
2=0 

where $ denotes the XOR operation that returns 1 if ‘u,~ # uz and 0 
if ui = ‘u;. Let the threshold logic unit have weights ‘w, of which 
7 are zero, and possible thresholds 10 = (N - 2 - 1 - 2k) for 
k  = 0,. . . , N  - 3 - 1. 

First, consider the case when there are no zero weights, i.e., 2 = 0 
Then, when L = 0 it is easily shown that the unit implements the 
mmterm mzur where we have allowed a slight abuse of notation by 
considering the { - 1, 1 }-valued weights UI to be a { 0, 1 }-valued 
vector in U. Decreasing the threshold, by increasing k, will allow 
more inputs to be accepted by the unit. Namely, the unit will return 
TRUE for the set of inputs {u : ‘(1 E lJ: dist (u, 1~) 5 k}. A Boolean 
function of this form will be called a ballterm and can be written 

b,,,, = OR 711, for L’ E li s.t. dist( u;,(u) 5 k. 

Intuitively, this function can be visualized as detecting all inputs 
within a ball of radius k  centered at the input w. 

When 2 # 0 the unit will ignore some inputs. Then, the unit with 
L = 0, giving a threshold of (N - z  - 1), is equivalent to an ORing of 
minterms in the same way that a circled implicant on a Karnaugh map 
is equivalent to the sum of the minterms circled. For example, a set of 
iveights ‘(u = (~0: wlr.. ,WN-1) withwo = 0 and UI, E {-l,+l} 
fori = l,... , N  - 1 acts the same as the following sum of minterms 

(-l,Wl:..., fUN-1) OR (+l;(Ul,..‘, “,,$‘-I). 

For k  # 0 the template will detect all minterms that are at a 
distance less than or equal to k  from the implicant that would be 
detected when k = 0. For example, suppose N = 4 and our set of 
weights is (+ 1, 0, - 1, + 1). A threshold of 2 (from I; = 0, t = 1) will 
give the implicant equivalent to the minterm template combination 
($1, +l, -1, +l) OR (+l, -1, -1, +l), both with thresholds of 
3. NOW if we consider a threshold of 0 (from L = 1,~ = I), the 
resulting template will be equivalent to the combination 

(+l,+l, -1, +I) OR ($1. -1, -1, +1) OR 

(-1, +I: -1: +1) OR (-1, -1: -1: +1) OR 

(+I. +1.+1. +I) OR (+l: -1, +l> $1) OR 

($1, +I: -1: -1) OR (+l: -1. -1, -1) 

with each set of weights thresholded at (N - 1) = 3. The last six 
sets of weights describe templates that detect minterms a distance 1 
away from the implicant detected with k  = 0. 
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1 desired function 

If?.. &%? 
Fig. 2. Flowchart for the template-finding algorithm. The input is the desired 
Boolean function. The algorithm finds a sequence of functions from the 
restricted-weight threshold logic class and associated two-input combining 
logic to implement the desired function. 

B. Dbcription of Decomposition Algorithm 

Having made these observations we can address the first 
question: does a solution of the form of (1) exist? The answer 
is yes, and a constructive argument can be found in [13]. 
The important point of the argument is: by using weights in 
{- l,+ 1 } and a threshold of +( N - 1) one can implement any 
minterm with the restricted threshold logic unit. Similarly, with 
weights in { - l,+ 1) and a threshold of -(N - 1) any maxterm 
can be implemented. Thus we only need the local two-input 
logical operations OR and AND and the min/maxterm class of 
templates to construct a solution to implementing a desired Boolean 
function. A solution’ of this form would require at most 2N-1 
templates. 

By using ballterms, one would expect to be able to find solutions 
which use fewer templates than required in a purely minterm or 
maxterm formulation because we are considering a larger class of 
component functions. We have an additional weight value, 0, which 
allows a template to ignore some inputs. In addition, the ability to 
assign threshold values other than the ZIZ( N - 3 - 1) used for the 
min/maxterms allows even more flexibility. 

% S2 1 XOR 

0 
0 

0 1 0' / 

10 1 

11 '\ 
O\ 

tm 
4 4 

Fig. 3. A demonstration of the pictorial Boolean functioh notation used in 
this brief. The truthtable of a Boolean function (in this case the exclusive-OR 
(XOR)) is mapped to a graph by converting successive regions of the truth 
table to rows of the graph, as shown, giving a compact representation. 

With this in mind, we would like to create an algorithm to 
automatically find a “good” solution for us. Of course, to find the 
best solution an exhaustive search of longer and longer sequences of 
templates and combining logic could be performed until the desired 
function is found, but such a thought is untenable with current 
computing technology. At the other extreme, an algorithm could 
simply generate all the minterms of the given Boolean function and 
OR them together. Clearly there is a tradeoff between the running time 
of the algorithm and the length of the resulting template sequence. 
We propose the following algorithm to demonstrate the existence 
of a practical approach to design template sequences which takes 
advantage of the restricted-weight threshold class with arbitrary two- 
input combining logic. Many such algorithms are possible since, in 
general, more than one solution exists. 

The following greedy algorithm is proposed to decompose a 
Boolean function into the form of (1). Generate the set B of all 
the Boolean functions that can be implemented with weights in { - 1, 
0, +l } and appropriate biases. Let L designate the set of two-input 
Boolean functions used for combining elements in B. Fig. 2 shows a 
flowchart of the algorithm. First, the function b(O) E B of minimum 
distance to the desired function is found. Our notion of distance is 
similar to the one defined above except that we apply it to Boolean 
functions rather than inputs, that is 

ZN-1 

distF(f, g) = c f(u) 6~ g(u) for any f, g E F. 
u=o 

As long as the distance between the currently composed function 
fckP1) and the desired funciton is greater than zero, the algorithm 
iteratively searches B and L for a function b(“) and logic operation 
o(‘) that will modify the previous composed function (in the manner 
of (1)) to result in one of minimal distance to the desired function. 

The algorithm is guaranteed to converge to a solution since in 
every iteration prior to convergence the error can decrease by at least 
one. This can be seen by observing that.even in the worst case the 
current function fck) can be brought closer to the desired one by 
either OR& with a minterm or ANDing with a maxterm. 

C. Examples 
In this section we will show some examples of algorithm results. 

For readability, we are going to display the 2”-digit Boolean func- 
tions pictorially as a rectangular array of 2” squares colored either 
black or white. Starting at the top left with f(O), we will fill in each 
square row by row, coloring it black if f(i) = 0 or white if f(i) ti I. 
For instance, the XOR function, fxon = (0, 1, 1, 0), could be depicted 
as shown in Fig. 3. In the following examples N = 9. Each Boolean 
function will be depicted with f (0) - f (31) displayed in the *first 
row; the last entry, f (5 1 1 ), is in the bottom right comer. 
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n Black = 0 

Cl White=1 

P= desired output 

r 
n 

n 

n 

n 

I‘ ¶o II 
I 0 

Fig. 4. Template-finding algorithm output for the game of life CA. The .512-entry truth tables for the desired and output Boolean function are shown pictorially. 

With nine inputs, there are 118098 Boolean functions in the set 
B. However,  since each ballterm also has its complement in this 
set, only half of them need to be generated for searching since the 
complements are easily generated during the search. Each truth table 
requires 512 b, requiring a total of less than 4 MB of storage. For 
these examples, the set L of two-input logic functions was chosen to 
be (AND, OR, XOR}, a decision which is discussed in Section IV. 

Example l-Game of Life: Fig. 4 shows the algorithm results for 
implementing the game of life, which is a famous two-dimensional 
cellular automata rule with many interesting properties [14]. 

The resulting ballterms (weights and trhreshold) and logic oper- 
ations are 

To imclement these results on the CNN, we would create a Ba 
template to implement the b (‘I ballterm and a Bi template for the 
b(l) ballterm as shown below 

Bo = 

B, = 

-1 -1 -1 

-1 

0 -1 
-1 -1 -1 1 
$1 +1 +1 
+1 $1 +1 

+1 $1 $1 1 
I, = -1 

Ii = $4. 

Each set of templates is applied to the input, and the results are 
ANDed together to get the final answer. These results are identical to 

those designed informally in [lo]. 
Example 2: Fig. 5 shows the algorithm’s results for another sam- 

ple function. 
The resulting ballterms and logic operations are 

b(O) = b _ _ ( 1. 1,0,+1,0,-l,-l,O,-1),3 

b(l) = b - - ( 1, 1,+1,-1,0,+1,-1,+1.-1),5 

b(*) = b (+l,-l,O,O.-l,O,-l,o,+l),-2 

bc3) = be-l o --1,--1 - a, > 1,0,+1.-1,0).5 

($1) = XOR 

($2) = AND 

o(3) = OR. 

Therefore, this chosen neighborhood logic function could be im- 
plemented using a sequence of four CNN templates and three local 
logic operations. 

IV. PERFORMANCE CONSIDERATIONS 

Many, modifications could be made to improve the performance 
of the weight-finding algorithm. For instance, the case often occurs 
during the search that more than one function in the table will result 
in the same minimal distance. For convenience, the algorithm simply 
picks the first such function it encountered. This choice of function, 
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m Black=0 

Cl White = 1 

Fig. 5. Template-finding algorithm output for a sample input function. The desired function was found to be implementable in four restricted-weight 
threshold logic stages. The 512-entry truth tables for the desired logic function, the restricted-weight threshold logic functions, and the intermediate 
results after each stage are shown here pictorially. 

however, can make a difference in the final number of templates justify the significant increase in search time. When finding templates 
needed. Random testing indicates that the improvement gained by for permanent use however, a breadth-first search which keeps all 
searching all paths with same minimal distance is typically not templates giving the same minimal distance at each level may be 
significant (a few templates) and for demonstration purposes did not expedient. 
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Another consideration is to restrict the number of two-input com- 
bining logic functions in the set L for quicker convergence. It is 
clear that TRUE, FALSE, identity of either input, and complement of 
either input, need not be considered. Furthermore, two-input functions 
which complement b(“) are not needed since the complements are also 
ballterms. But, in fact, during simulation it was found that combining 
functions which complement fckP1) never arose (although we have 
not proven that they are not needed) leaving only the AND, OR, and 
XOR fUnCtiOnS. 

The choice of distance measure also affects the outcome. The 
distance measure described above looks for the best fit by weighting 
both TRUE (1) and FALSE (0) equally so that the best fit function 
may have errors which output 1 when it should output 0 and vice 
versa. The operation OR can only modify a function by changing O’s 
to l’s its truth table while the operation AND can only change l’s to 
O’s; only XOR can add both l’s and 0’s. Thus this distance measure 
shows no preference between OR and AND since both could be used 
to decrease the distance. 

Suppose instead we defined a distance measure that considers only 
functions that must output TRUE every time the desired function 
outputs TRUE but may output TRUE or FALSE when the given 
function outputs FALSE. The best fit function would then be the 
one that outputs TRUE the fewest times when the desired output is 
FALSE. Such a distance measure would favor the logical operation 
AND since in subsequent steps, O’s need to be added. In the same 
manner, we could also define a distance measure that favors OR. 
(Due to the difficulties of searching the weight-space of the general 
threshold logic functions, the method given in [8] is restricted to this 
last type of distance measure.) 

In certain situations, such favoritism would be desirable. For 
example, for N = 9 consider the Boolean function that outputs TRUE 
every time exactly four input variables are 1. Using the new AND- 
favoring distance measure, the algorithm finds a solution using only 
two templates while the original distance measure results in a solution 
with over 70 templates. A more complex algorithm could perform a 
search by using each of these measures. 

Even if an optimal algorithm could be designed to choose template 
sequences from this class, we do not know how many steps might be 
needed in the worst-case to implement’a desired function. A simple 
counting argument gives 28 steps as a lower upper-bound on the 
minimal number. That is, there is some logic function that requires 
at least this many steps even when optimally implemented. If the 
upper bound is in fact much greater than this, it may be necessary to 
explore techniques which drop the weight restriction. 

V. CONCLUSION 

Choosing from among the enormous number of threshold logic 
functions of nine variables makes composing general Boolean func- 
tions with them a daunting task. We have shown how by restricting 
the threshold logic functions to those with { - 1, 0, +1 } weights, 
the component functions can be reduced to a manageable number. 
The concept of balltenn was introduced to characterize such Boolean 
functions. An algorithm was presented for finding a sequence of 
templates and two-input logical operators that will implement any 
desired neighborhood Boolean function on the CNNUM by using 
this weight-restricted class. The algorithm does not necessarily choose 
the optimal set from the ballterm class and sometimes produces long 
sequences. However, the generated sequences are shorter than those 
produced by a direct minterm/maxterm implementation. Therefore, 
the proposed technique represents a significant step toward, the 
efficient automation of template design for the implementation of 
cellular automata and general neighborhood logic. 
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