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2 Institut National Polytecnique de Grenoble, ENSEEG-LTPCM, 38402 Saint Martin d’Heres, France

3 Centro de Fisica do Porto, 4099-002 Porto, Portugal

E-mail: zneda@phys.ubbcluj.ro

A simple mechanical spring-block model is introduced for studying magnetization phenomena and
in particular the Barkhausen noise. The model captures and reproduces the accepted microscopic
picture of domain wall movement and pinning. Computer simulations suggest that the model is able
to reproduce the main characteristics of hysteresis loops and Barkhausen jumps. The statistics of the
obtained Barkhausen jumps follows several scaling laws, in qualitative agreement with experimental
results. The simplicity and the invoked mechanical analogies make the model attractive for computer
simulations and pedagogical purposes.
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I. INTRODUCTION

Barkhausen noise (BN) belongs to the family of the
so-called crackling noises [1]. It appears as a series of dis-
crete and abrupt jumps in the magnetization whenever
a ferromagnetic sample is placed under varying external
magnetic field. In standard ferromagnets where magne-
tization is driven by the motion of domain walls, it is
believed that the BN is a consequence of the fast move-
ment of domain walls between pinning centers, which are
either defects or impurities. The present paper intro-
duces a simple and successful mechanical analogy for de-
scribing this classic magnetization phenomenon. We do
not intend to make a complete description for a particu-
lar experiment or material, there are several specific and
successful models in this aspect (for a recent review see
[2]). Our stated aim is to introduce a very general and
simple model which is attractive for computer simulation
studies and captures the minimum ingredients necessary
to model BN.

The Barkhausen phenomenon is interesting from sev-
eral points of view. From a practical side, by measuring
the BN there is a possibility for non-destructive and non-
invasive material testing and control. On the other hand,
from a pure conceptual viewpoint, by studying the BN
one might reach a better understanding of the complex
dynamics of domain walls during magnetization processes
in the presence of pinning centers opposing to the motion
of magnetic walls. It is also a clear example for the dy-
namics of a system presenting collective pinning when a
quenched disorder is present.

Since its discovery (1917) BN has been intensively
studied [2]. Numerous measurements were done to clarify
the statistical properties of the BN [3–5]. Regarding the
nature of the Barkhausen noise (white noise, 1/f noise,
or 1/f2 noise) a variety of conflicting statements can be
found in the experimental literature. The most exten-
sive measurements and data analysis were performed by

Spasojevic et al. [3] with a commercial VITROVAC 6025-
X metal glass (quasi 2D) sample. After performing the
statistical and numerical calculations, they have found:
(i) power-law type distribution for signal duration with
scaling exponent −2.22, (ii) power-law behavior for sig-
nal area with scaling exponent −1.77, and (iii) power-
law type power spectrum with scaling exponent −1.6 to
−1.7. From here they concluded that BN is not pure 1/f ,
nor 1/f2 (Brownian) type noise, but something between
these two. Plewka, et al. [4] performed measurements
(and calculations) with a similar experimental setup on
an amorphous ribbon in an open magnetic circuit. They
obtained instead a value around −0.9 for the scaling ex-
ponent of the power spectrum. From this result they
concluded that BN is typically 1/f noise. O’Brien and
Weissman [5] performed measurements with a SQUID
magnetometer on an amorphous iron-based metallic alloy
(2605TCA) and they suggested that BN is much closer
to a white noise than a 1/f noise and differs sharply from
most typical 1/f noises.

BN received a special attention in the context of self-
organized criticality. Self -organized criticality (SOC) is
a term used for a class of complex phenomena where
non-equilibrium broadband noise in driven systems re-
flects a type of self-organization, producing states with
power-law correlations closely analogous to critical phe-
nomena [6]. Some of the ingredients of SOC were known
to be potentially relevant to BN. In some cases, mag-
netization changes have been directly observed to occur
via avalanche process in the domain topology [7]. These
avalanches exhibit some scaling effects, at least over a
narrow range of parameters, and their behavior has been
described by a SOC model [8,9]. There are however other
approaches that put under doubt the relevance of the
SOC concept to BN. O’Brien and Weissman [5] for ex-
ample argued that the presumed 1/f nature of BN and
the observed power-law distributions are not necessar-
ily evidences of SOC, but rather the consequences of the
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scaling properties of quenched disorder in the material.
Many conceptually different models were elaborated

to explain BN and its scaling properties. Without the
intention of making a complete review, here we will men-
tion only a few selected theoretical approaches. Alessan-
dro et al. [10] proposed a single degree of freedom model
(ABBM model) that considers the motion of a single do-
main wall in a spatially rough coercive field created by
the defects. They concluded that a mean-field approx-
imation is adequate, and found power-law behavior for
the Barkhausen pulse size distribution. Another model
[16] which is strongly related to the previous one con-
siders the motion of a single flexible domain wall in an
uncorrelated disordered medium. This approach leads to
a power-law distribution of the avalanche sizes (exponent
−1.5) and durations (exponent −2), and yields an expo-
nent −2 for the scaling of the power spectrum. Travesset
et al. [11] and Perkovic et al. [12] described the BN in
terms of avalanches near a critical point. They used the
zero-temperature random field Ising model (RFIM), in
which the effect of the pinning centers was taken into
account as a normally distributed local random field.
This model was able to account for the power-laws char-
acteristic for the distribution of avalanche sizes, signal
area and signal duration. Another theoretical attempt
by O. Narayan [13] considers a multiple degrees of free-
dom model, studying the relaxation dynamics of a single
domain wall in a two-dimensional Ising system. This
model yields a power-law with critical exponent −1.5 for
the power spectrum. The model predicts that in other
dimensions different critical exponents are expected, for
example in one-dimension the critical exponent for the
power spectrum should be zero. This result is in contra-
diction with the prediction of the mean-field approxima-
tion for the single degree of freedom model [10], which
predicts the value −2 for the exponent, independently of
the dimensionality of the model. Urbach, Madison and
Markert considered a model (known as the UMM model)
[14] where three relevant forces for the interface dynam-
ics are taken into account, namely the interface elastic
energy, a random quenched disorder and external driv-
ing. However, in the UMM model the pinning force is
accounted in an unrealistic manner. Pinning is consid-
ered simply as an additive stochastic term in the value of
the total force. The motion of the interface is governed
simply by the sum of the three forces, and the main signa-
ture of pinning as a static friction which has the property
to oppose a net force with a given strength, is lost. The
UMM model has the advantage that it can be studied
in arbitrary dimension and leads power-law distribution
for the Barkhausen avalanche sizes. The obtained expo-
nents for the Barkhausen signal area distribution is in
reasonable agreement with the experimental results.

Despite the numerous complex and conceptually dif-
ferent approaches the Barkhausen phenomenon is still an
open and much debated problem [15]. The spring-block
model introduced in this paper offers an over-simplified
but elegant alternative, which can be successfully used

for pedagogical purposes. As it is shown in the following,
this model has the potential to qualitatively explain the
general signatures and scaling laws characteristic to BN,
with parameters which can be at least qualitatively re-
lated to micro-structural features (wall density, pinning
centers strength and density).

II. THE SPRING-BLOCK MODEL

The model is essentially a one-dimensional spring-
block system. It is aimed to reproduce the accepted mi-
croscopic picture of domain wall dynamics for 180 degree
Bloch-walls which separate inversely oriented (+| − | +
| − | + . . .) magnetic domains (Fig.1).

We assume that the domain walls are pinned by de-
fects and impurities, and cannot move unless the resul-
tant force acting on them is bigger than the strength of
the Fp pinning force. When the resulting force is greater
than the pinning force, the wall simply jumps in the re-
sulting force direction on the next pinning center. Apart
of this pinning force there are two other types of forces
acting on each domain wall. To understand these forces
let us consider the i-th wall (which separates the (i−1)-th
and i-th domain) free to move and all other walls fixed.
One of the forces acting on the domain wall, FH , results
from the magnetic energy of the domains i and (i − 1)
in an external magnetic field. Let us consider the exter-
nal magnetic field as sketched in Fig.1. The interaction
energy between one magnetic domain and the external
magnetic field:

W = −cH · H · M (1)

where cH is a constant, H is the strength of the external
magnetic field and M is the magnetization of the do-
main (the positive direction both for M and H is taken
upward). Taking into account that the (i − 1) and i
neighboring domains are oppositely oriented, their total
energy of interaction with the external magnetic field is:

W (i) = Wi−1 + Wi = −cH · H · ∆M (2)

The quantity ∆M (the sum of magnetizations of the
neighboring (i − 1) and i domains) is related to the two
domains’ length’s difference (∆x = xi − xi−1) as

∆M = (−1)
i
γ · ∆x (3)

where γ is constant relating the size of the domain with
its magnetization. From (2) and (3) it results:

W (i) = (−1)i+1 · cHγ · H · ∆x (4)

The force FH acting on domain wall i can be determined
considering the δL elementary work performed by this
force, when the wall is displaced by a distance dl

δL = FH · dl = −dW (i) = (−1)
i
cHγ · H · d(∆x) =

= (−1)
i
cHγ · H · 2dl (5)
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FH =
δL

dl
= (−1)

i
2cHγ · H = (−1)

i
β · H (6)

with β = 2cHγ another constant. In our model for the
sake of simplicity we define the units such that β = 1. For
positive values of the external magnetic field this force en-
courages the increase of the domains oriented in the + di-
rection, and for negative values of the external magnetic
field this force tends to increase the size of the domains
oriented in the − direction.

A second type of force, Fm, acting on both sides of
the domain walls, is due to the magnetic self-energy of
each domain. This force tends to minimize the length of
each domain. It can be immediately shown that Fm is
proportional with the length of the considered domain.
The Ei magnetic self-energy of a magnetic domain i has
the form

Ei = cmMi
2 (7)

where cm is a constant. As in the previous case

dEi = cm · d(Mi
2) = −δL = −Fmdl (8)

and from here the Fm force:

Fm = −
dEi

dl
= −2cm(Mi)

dMi

dl
≈ −2cmγ2 · xi

dxi

dl
=

= −2cmγ2xi = −fmxi (9)

The constant fm is an important coupling parameter in
this model and acts as the elastic constant of a mechan-
ical spring.

The system of the Fp, Fm and FH forces can be now
easily mapped on a mechanical spring-block model.

FIG. 1. Sketch of the mechanical spring-block model

The main constituents in this mechanical model are
randomly distributed pinning centers, rigid walls sitting
on pinning centers (describing Bloch-walls) separating +
and − oriented domains and springs between the walls
(describing the Fm forces). The strength of the pinning
centers (pinning forces), Fp, are randomly distributed fol-
lowing a normal distribution. Walls can be only on pin-
ning centers and two walls are not allowed to occupy the
same pinning center. This constraint implies that the
number of magnetic domains and domain walls are kept

constant and are thus a-priori fixed. Domains cannot to-
tally disappear and new domains cannot appear during
magnetization phenomena. The elastic springs are ideal
with zero equilibrium length and with the tension linearly
proportional with their length. The tension in the elastic
springs will reproduce the Fm forces. Beside the pinning
forces and the tensions in the springs there is an extra
force acting on each wall. The strength of this force is
proportional with the exterior magnetic field’s intensity,
it is the same for all walls but its direction is inverse for
+|− and −|+ walls. This force will reproduce the FH

forces.
It has to be noticed that in the absence of applied

field and pinning centers the walls at equilibrium will be
equally spaced. Since we impose the number of walls to
be constant, this means that the average wall spacing
will be given by the classical expression corresponding to
the minimization of the magnetostatic energy and of the
total wall energy.

The model as it stands is grossly simplified: in a real
system the walls are 2D, they have an anisotropic stiff-
ness, so they may be described by the dynamics of their
trace (1D) on the plane perpendicular to the easy mag-
netization axis. The depinning of this line is unlikely to
occur as a whole, but it will probably propagate all along
the line. Because of all these simplifications the present
model cannot be expected to be directly connected to mi-
crostructural features (such as the density and strengths
of the physical pinning centers), neither to be quantita-
tive. The present model is important mainly for concep-
tual purposes, to define the minimum ingredients nec-
essary to capture the various power laws observed. In
addition, the relative importance of the pinning poten-
tial (via Fp the strength and Np the number of pinning
centers) and of the coupling between walls (via Fm) can
be qualitatively investigated.

The dynamics of this model is aimed to reproduce real
magnetization phenomena. First Np pinning centers are
randomly distributed on a fixed length (L) interval, and
their strengths are assigned. Than a fixed Nw number
of walls are randomly spread over the pinning centers
(Nw � Np) and connected by ideal springs. Neighboring
domains are assigned opposite magnetic orientation. The
external FH force is first chosen zero (corresponding to
H = 0), and we let the system relax to an equilibrium
configuration. To achieve this we calculate the resultant
of the Fm forces on each wall. If the strength of the pin-
ning force acting on one wall is smaller than the force
resulting from the tension of the springs attached to it,
the wall will jump in the direction of the resultant force
on the next pinning site. However, if this pinning site
is already occupied, the wall remains in its original posi-
tion. We assume that the time needed for the system to
achieve equilibrium is zero. It is important to note that
one event (jump) can trigger many other events leading
to avalanche-like processes. The above dynamics is con-
tinued until the equilibrium is satisfied for each domain
wall. The order in which the position of the walls is up-
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dated is random.
Once the initial equilibrium configuration is reached we

begin to simulate the magnetization phenomenon. The
value of the FH external force is increased step-by-step
(corresponding to an increasing H magnetic field inten-
sity), and for each new FH value an equilibrium position
of the system is searched. In equilibrium the magnitude
of the resulting force on each wall should be less than
the pinning force acting on that wall. In each equilib-
rium configuration we calculate the total magnetization
of the system as:

M =
∑

i

li · si (10)

where li is the length of domain i, and si is it’s orien-
tation: +1 for positive orientation, and −1 for negative
orientation. We increase FH until no more walls can
move and the magnetization reaches its maximal value.
Starting from this we decrease step-by-step the value of
FH , and for each new value the equilibrium configuration
is again reached and the total magnetization computed.
The system is driven until oppositely oriented saturation.
From here we increase again the value of FH and many
hysteresis cycles are simulated. Throughout the whole
simulation we assume that the process of magnetization
is performed at a rate slow enough so that at each step
the system can reach a position of equilibrium in a sort
of quasi-static magnetization process.

During the simulation we are monitoring the varia-
tion of the magnetization focusing on the shape of the
hysteresis loop, jump size distribution, power spectrum,
Barkhausen signal duration and signal area distribution
functions.

The hysteresis loop is the history-dependent relation
between the magnetization M and the external mag-
netic field H when the value of H is increased and de-
creased successively. The jump size distribution (g(s))
is the distribution function for the obtained values of
abrupt jumps in M throughout many hysteresis loops.
The Barkhausen signal is given by dM

dt
and it is propor-

tional with an electric voltage that would be induced in
a detecting electromagnetic coil. Under the assumption
of a quasi-static process performed at a constant rate
of increase of the applied magnetic field H , the deriva-
tives with respect to time which enter the generation of
Barkhausen noise are proportional to derivations with re-
spect to H : Dom

dH
. This means that the magnitude of the

Barkhausen jumps is not to be understood as absolute
values, but would depend on the rate of increase of H .

We determined the power spectrum (P (f)) of the ob-
tained Barkhausen signal by using a Fast Fourier Trans-
form (FFT). The situation we have considered here for
modeling the power spectrum is highly idealized. Beside
the implicit assumption that the external field is varied
quasi-stationary and at constant rate, we have neglected
the interaction between the physical phenomena respon-
sible for the noise (unpinning avalanches) and the detec-
tion device. Thus, we emphasize that the power spectrum

determined from this simulation should be viewed under
these constraints.

We also study the shape of the histograms for
Barkhausen signal duration distribution (g(d)) and sig-
nal area distribution g(A). In terms of our simulation
the signal duration measures the number of consecutive
dH steps when Barkhausen jumps occur (∆M/dH is
nonzero). Signal area is also related to this quantity: it
represents the area under ∆M/dH versus H for a nonzero
∆M/dH sequence.

The parameters of the model are: Np – the num-
ber of pinning centers; Nw – the number of Bloch-walls
(Nw � Np); fm – the coupling constant between the
neighboring domain walls (corresponds to the elastic con-
stant in the case of coupled springs); and the dH – driv-
ing rate of the external magnetic field (change in H for
one simulation step). The total length of the magnetic
domains is considered to be of unity (L = 1) and the dis-
tribution function for the strength of the pinning forces
was considered to be normally distributed and has been
fixed. We use rigid boundary conditions: the first Bloch-
wall compulsory occupies the first pinning center, the last
wall occupies the last pinning center, and these bounding
walls cannot move. This constraint means that the geo-
metrical size of our model system doesn’t change during
the simulation. As we already mentioned the number of
Bloch-walls and magnetic domains are also fixed within
this model, domains can shrink or grow, but they cannot
appear or disappear during the simulation. This con-
straint is also a serious drawback of the model, since in
real magnetization phenomena domains can disappear or
appear, and thus the number of interfaces are not con-
stant. This drawback is expected to be serious in the
saturation limit, but not in the low magnetization region.

III. EFFECTS OF THE FREE PARAMETERS

Before presenting the simulation results let us discuss
here the expected effects of the free parameters. We will
use adimensional units for the forces, their strengths are
determined relatively to the adimensional strength of the
pinning forces. The fm, β, H and x quantities are defined
through equations (6) and (9) and they are also consid-
ered to be adimensional. The pinning forces can have
only positive values and they are normally distributed
on the [0,1] interval with mean 〈Fp〉 = 0.5 and standard
deviation σ = 0.1.

a. Influence of Np. As Np increases the pinning cen-
ters are closer to each other which causes many small
Barkhausen jumps. Concurrently, small number of pin-
ning centers result less but bigger jumps in magneti-
zation. From the above arguments one can conclude
that the value of the parameter Np influences directly
the shape of the hysteresis loops and the obtained jump
size distribution histogram. As Np increases the simula-
tion is more and more time consuming, since many small
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jumps and thus many intermediate equilibrium positions
are available. This is an important factor that limits the
value of the used Np parameter. We have performed our
calculations with Np between 1000 and 10000.

b. Influence of Nw. Nw determines the number of
magnetic domains in our model system. Large values
of Nw require long computation times since the equilib-
rium becomes more and more sophisticated. Because Nw

should be much smaller than Np, increasing Nw would
lead also to large Np values, which again makes the sim-
ulation technically difficult. In our simulations we con-
sidered Nw = 200. The parameter Nw determines also
how strongly the springs are stressed. Small value of Nw

means that the walls are far from each other and the
coupling springs between them are strongly tensioned.
In this case the obtained avalanches in wall movements
are usually longer. The Np/Nw ratio is one of the most
relevant quantities regarding the outcome of the simu-
lations. We consider the Np/Nw ratio to be relatively
”small” if it is less than 10 and ”large” if it is greater then
30. For small Np/Nw ratio springs are not very stressed,
thus small number of jumps will occur during the mag-
netization process and strong external magnetic field is
needed in order to make the walls jump. After relatively
few jumps saturation is reached and the walls will form
”pairs” that can be destroyed only by inverting the ex-
ternal magnetic field’s direction. For large Np/Nw ratio
the existence of relatively many pinning centers causes
many small jumps. The small number of Bloch-walls
causes springs to be stretched and favors the occurrence
of jumps even for weak external magnetic fields. A large
number of steps is needed until saturation is reached and
the walls are stopped by their neighbors. In simulations
we varied this parameter between 10 and 50 and studied
it’s influence on the BN statistics.

c. Influence of fm. Since this parameter acts in our
spring-block model like the elastic constant of the springs,
its value determines the value of attractive forces between
neighboring walls. As fm increases the coupling becomes
stronger, and weak external magnetic field is enough to
make the walls jump. For small fm values the springs
are weakly coupled, so a stronger external magnetic field
is needed to make the walls jump. In our model the
Np/Nw ratio and the fm parameters are strongly related
to each other. In the case of many pinning centers and
relatively small number of walls (equivalent with Np/Nw

large) even for weak coupling (fm around 10) many jumps
occur and equilibrium states are easily reached. When
the Np/Nw ratio is small (around 10) weak coupling re-
quires strong external magnetic fields in order to make
walls jump and only a relatively small number of jumps
are possible. In this parameter region the hysteresis loops
have only a very limited number of jumps and these
jumps occur only for high H magnetic field values. If
the coupling gets stronger (still Np/Nw low) equilibrium
states are very difficult to reach, walls jump back and
forth and hysteresis loops are totally damaged. When the
Np/Nw ratio is large (around 30), this means that there

are many pinning centers and relatively small number of
walls. In this case weak coupling (fm around 10) will be
enough to make walls jump even for low H values because
the springs are strongly stressed. The expected result is
the existence of many small jumps along the whole hys-
teresis loop. For stronger couplings equilibrium is again
difficult to reach and the hysteresis curves are expected
to be damaged. It is obvious that finding the optimal
parameter region for the simulation is crucial. Wrong
parameters that generate damaged hysteresis loops, or
situations where the equilibrium states are difficult to
reach (walls jump back and forth many times consecu-
tively) will cause significant artifacts in the jump-size,
signal-duration or signal-area distribution functions.

e. Influence of the driving rate in H (dH). This pa-
rameter is also important for all the considered distribu-
tion functions. It is obvious that small dH (around 0.001)
steps produce very many ”short” and small jumps, while
larger steps (dH between 0.01-0.005) make possible only
the ”longer” Barkhausen-signals. The latter means that
larger dH steps leads usually to many consecutive jumps
(i.e. large avalanches). Very small dH value will divide
the bigger and longer jumps into many tinny jumps. In
the experiments greater dH steps correspond to the case
where the ferromagnetic sample is submitted to a rela-
tively fast changing driving field, thus it reaches the sat-
uration magnetization after few number of large jumps.
In the experiments it is reported however [3,5,9,17] that
they used very low frequencies (< 1 Hz) for the driving
field. This is the reason why we have chosen to make
the simulations with relatively small dH steps (0.001)
that corresponds to quasi-stationary driving and allows
the system to relax to a closer equilibrium configuration
during each step of the magnetization – demagnetization
process.

Pondering the effects of all the above described param-
eters, we have found that the best parameter region that
produces simulation results in agreement with the exper-
imental ones is the following: Np = 5000− 10000, Nw =
100 − 200 (Np/Nw = 50 − 100), fm = 10, dH = 0.001.
The simulation results presented in this paper are all ob-
tained for the parameter values: Np = 10000, Nw = 200,
fm = 10, dH = 0.001. The relevant distribution func-
tions were obtained by averaging on 100 independent con-
figurations (different initial states for the walls and pin-
ning centers). For illustrating that the obtained scaling
exponents are not altered by finite-size effects (i.e. the
exponents characteristic for the thermodynamic limit are
reached) we also plot the characteristic curves obtained
for Np = 5000.

IV. SIMULATION RESULTS

Characteristic hysteresis loops are plotted on Fig. 2.
The shape of the obtained hysteresis curves satisfies our
expectations and fulfills all the requirements for real mag-
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netization phenomena. On these curves one can detect
many discrete jumps with different sizes, thus the model
exhibits BN. In addition, when the sample is driven con-
secutively through many hysteresis cycles the magnetiza-
tion curves do not follow exactly the same path, although
the parameters of the simulation were unchanged. The
qualitative shape of the hysteresis curve is quite stable
for a wide range of the free parameters.

All the distribution functions we have computed for
the statistics of the Barkhausen noise are normalized and
defined as

g(y) =
N(y, y + dy)

Nt · dy
, (11)

where Nt denotes the total number of occurrences,
N(y, y + dy) is the number of occurrences with sizes be-
tween y and y + dy, y is the quantity under focus which
can be jump size (s), signal duration (d) or signal area
(A).

−1 −0.5 0 0.5 1
H

−1.2

−0.7

−0.2

0.3

0.8

M

FIG. 2. Hysteresis loops obtained by simulation with pa-
rameter values: Np = 10000, Nw = 200, fm = 10 and
dH = 0.001.

The jump size distribution histogram in our simu-
lations corresponds to the avalanche size distributions
from experiments and it is the most relevant distribution
for the characterization of the Barkhausen noise. For
Np=10000 and 5000, Nw = 200, fm = 10, dH = 0.001,
the jump-size distribution function is plotted on Fig. 3.

Based on this graph we can conclude: (i) the jumps size
distribution function shows power-law with exponential
tail; the exponent of the power-function part is −0.7; (ii)
there is a clear exponential cut-off which is the result
of finite-size effect; (iii) the region where this scaling is
valid extends over three decades in our simulation for
Np = 10000 and represents the trend that is to be fol-
lowed if the system is increased to infinity. (iv) finite size
effects do not influence any more the obtained −0.7 scal-
ing exponent, since the results for Np = 5000 indicates
the same power-law. (v) as expected for smaller Np val-
ues the scaling regime is shorter, and the exponential
cutoff appears sooner.

The fact that our simulation results indicate a power-
law distribution in the thermodynamic limit means that
jump (avalanche) sizes exhibits a scale-invariance, a fea-
ture that is expected to be common for all types of crack-
ling noises.

0 1 10 100 1000 10000
s

10−8

10−6

10−4

10−2

100

g(
s)

FIG. 3. Jump size distribution function for Np = 10000
(circles) and Np = 5000 (x symbols, dashed line) (Nw = 200,
fm = 10, dH = 0.001). The solid line indicates a fit to the
simulation data Np = 10000: power-function with exponen-
tial cut-off: g(s) = 0.32s−0.7exp(−003s)

100 101 102 103

f

10−2

10−1

100

P
(f

)

FIG. 4. Power spectrum of the simulated BN (Np = 10000;
Nw = 200; fm = 10; dH = 0.001). Two regions with
different behavior are clearly distinguishable: low-frequency
region – power-law with slope = −1.23 (dashed line) and
high-frequency region – almost white noise, the slope of the
fitted power-function being −0.1 (solid line)

The power spectrum obtained from simulation indi-
cates different noise-type in the low- and high-frequency
region. For low frequencies the power spectrum is fitted
well with a power-function with exponent −1.23, that in-
dicates a 1/f type noise. In the high-frequency region the
power spectrum suggests white noise over two decades,
though there is a small measurable non-zero slope −0.1
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(Fig. 4.).
We emphasize it again that this power spectrum has

to be treated with care since we do not have real time
in simulations, and thus we cannot define a proper fre-
quency. Time evolution is substituted with the driving
rate dH of the external field and it is considered that
equilibrium is reached for each simulation step. We have
plotted thus the ”power spectrum” in terms of the 1/dH
– type ”frequency”, assuming the unit time as the time
needed to change the external magnetic field by dH .

On Fig. 5. we plotted the signal duration distribu-
tion function for Np = 10000 and Np = 5000. As it
results from the graph in our simulations we have only
two decades of data. The results are fitted with a power-
law with exponential cut-off. The results suggest that for
the obtained scaling exponent the thermodynamic limit
is reached. From the results for Np = 10000 we get the
exponent of the power-function −1.33 and the exponent
of the cut-off −0.045. The cut-off again is a finite-size ef-
fect as it is clear from the plotted results for Np = 10000

and Np = 5000. This approach is valid for dH
dt

= const.
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FIG. 5. Distribution function for signal duration for
Np = 10000 (circles) and Np = 5000 (x symbols,
dashed line), Nw = 200; fm = 10; dH = 0.001.
The solid line indicates the fit to simulation data with
Np = 10000, using a power-function with exponential cut-off:
g(d) = 0.31d−1.33exp(−0.045d)

On Fig. 6. we plotted the signal area distribution
function, again for Np = 10000 and Np = 5000. The
curves suggest a power-law behavior over four decades
of data. The exponent of the fitting power-function is
−1.66. As expected, the scaling is much nicer for bigger
Np values.
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FIG. 6. Signal area distribution function for Np = 10000
(circles) and Np = 5000 (x symbols, dashed line), Nw = 200;
fm = 10; dH = 0.001. The solid line is a power-function fit
to the Np = 10000 simulation data with slope = −1.66.

V. DISCUSSION

Comparison of the obtained simulation results with the
experimental ones yields the following conclusions:

1. The simulated hysteresis loops are qualitatively in
good agreement with the ones obtained in experiments.
On the simulated hysteresis loops one can observe many
Barkhausen jumps with various sizes, just as it is ex-
pected from the experimental results. We can also learn
from the graph that the hysteresis loops do not follow
the same path when the system goes through several cy-
cles. As an illustration, on Fig. 2 we presented three
consecutive loops.

2. The shape of the simulated jump size distribution
function predicts in the thermodynamic limit (Nw → ∞,
Np → ∞, Np/Nw → ∞) a tendency toward a power-law.
Our results on relatively small systems suggest a power-
law behavior with an exponent −0.7. Experimentally this
quantity is usually not investigated, since it is difficult to
detect those very small changes in the magnetization.

3. As already emphasized, we do not consider the
power spectrum obtained within our model relevant. A
first reason for this is that we do not have real time in
our simulations and the equilibration of the system is in-
stantaneously in real time. A second reason why we do
not consider our results for the power-spectrum realistic
is that the detection of the Barkhausen signal is without
any inertia. An inertia of the detection device (which in
experiments always appears) would definitely alter the
nature of the results. Despite all these concerns, our re-
sult which suggests a white noise (exponent of the power
spectrum ≈ 0) for high frequencies is in agreement with
O. Narayan’s [13] prediction for one-dimensional systems.
For low frequencies however, our results suggest a 1/f
type noise, and supports the experimental results of Spa-
sojevic et al. ( [3]) and Plewka et al. ( [4]). In this sense
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our results support most of the experimental data, and
suggests, that the frequency region in which the power-
spectrum is computed is important in deciding the type
of the measured BN noise.

4. The experimental results for the signal duration and
the signal area [3,9,14,17] distribution indicate a scaling
behavior for both quantities.

For the signal duration distribution the experimentally
measured exponents were −2.2 [3] and −1.64 to −2.1 [9].
Although the measured values are strongly dependent on
the used material and experimental setup, all the exper-
iments agree in the validity of the power-law distribu-
tion. Our simulations show a power-law with exponen-
tial cutoff, suggesting thus a scaling with an exponent
−1.33, somehow smaller than those obtained in experi-
ments. We have to remember however that one has to
be careful when comparing our theoretical results for the
signal durations and signal areas with the experimental
ones. We have to remember that in our simulations the
time is not a real one and the simulation time-step is
governed by dH , which is taken as constant. It is also
assumed that the system relaxes to equilibrium in each
simulation step. Our simulation results would be appro-
priate thus for those experimental conditions where the
H driving field is slowly and linearly changed in time.
Many of the performed experiments might not satisfy
these conditions. It is also known that the driving rate
has an influence on the measured power-law exponents
[18] in the limit of high frequencies. However in the limit
of low frequencies, the results seem to be stable, and the
experimental results cited by us are all in this limit.

For the signal area distribution experiments obtained
power-laws with exponents ranging from −1.7 to −1.8 [3],
−1.74 to −1.88 [9], −1.23 to −1.35 [17] and −1.33 [14].
As in the case of the signal duration distribution, the
measured value is again strongly dependent on the used
material and experimental setup. Our simulations pre-
dict a clear scaling on four orders of magnitude with an
exponent −1.66, which is in reasonable agreement with
the results of [3] and [9].

From all these scaling results we conclude that the
power-law tendencies suggested in our simulations can
explain at least qualitatively the measured statistics of
the Barkhausen noise.

VI. CONCLUSIONS

The simple one-dimensional model presented in this
paper is successful in qualitatively reproducing the mea-
sured statistics of the Barkhausen noise. The model cap-
tures the main elements of the microscopic dynamics for
the phenomenon and in spite of its gross simplification,
it contains all the necessary ingredients to describe the
statistics of the BN. The model is also suitable for peda-
gogical purposes and can be easily implemented on com-
puter.

Despite of the encouraging results the model is far from
being perfect. One very important feature is the absence
of the temperature as parameter. Also, there is no real
time in simulations, and only the value of the dH magne-
tization step determines the rate at which time evolves in
our simulations. The model doesn’t account for the pin-
ning mechanism and the strength of the pinning forces.
It is an oversimplified one-dimensional approximation for
the complex three-dimensional domain topology. Seem-
ingly the most serious problem of the present model is
that the number of domain walls is a priori fixed and
domains cannot appear or disappear during the dynam-
ics. There are many other complex and more specialized
models, elaborated for different experimental setups and
different materials ( [2]). Our model cannot, and does
not intend to compete with these ones in describing the
experimental results. The stated aim of the introduced
model is to give a simple and somehow general model for
the Barkhausen phenomenon, that can be successfully
used for pedagogical and simulation purposes.
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