

Can we combine computer aided diagnosis with radiologist expertise?

Lect. Dr. habil. Zoltán Bálint

Faculty of Physics Department of Biomolecular Physics

http://www.phys.ubbcluj.ro/~zoltan.balint/

Ludwig Boltzmann Institute Lung Vascular Research

2016 - Image courtesy of M. Pienn, Z. Bálint, H. Olschewski

1. Computer aided diagnosis – CAD

- the use of computer algorithms to aid the image interpretation process
- used as computer aided/assisted detection, too
- (a) CAD should improve radiologists' performance
- (b) CAD should save time
- (c) CAD must be seamlessly integrated into the workflow
- (d) CAD should not impose liability concerns and the incremental cost

Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic – Ginneken et al 2011 Radiology

1. Computer aided diagnosis – CAD

Figure 1: Graph shows number of publications on or related to CAD per year from 1966 through 2009 (last bar). Data were obtained from a PubMed search with search term "computer-aided diagnosis"[Title/Abstract] OR "computer-aided detection"[Title/Abstract] OR "computer-assisted diagnosis"[Title/Abstract].

Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic – Ginneken et al 2011 Radiology

1. Computer aided diagnosis – CAD

- Preprocessing
- Segmentation
- Candidate detection
- Feature extraction
- Classification
- System output

Figure 4: Radiograph of the left hand and wrist analyzed with BoneXpert. The program reconstructs the borders of 15 bones and estimates bone age for 13 bones, displayed. These are combined with a nonlinear function to obtain the Greulich Pyle bone age, 9.03 years for this case. Running time for the analysis was 4 seconds.

Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic – Ginneken et al 2011 Radiology

Ludwig Boltzmann Institute Lung Vascular Research

Graz, Austria http:/lvr.lbg.ac.at

17/03/2017

Acknowledgements

DIAGNOSTIKZENTRUMGRAZ

Christian Payer, Michael Helmberger Michael Pienn and the whole team of the LBI-LVR

Dr. Martin Urschler

PD Dr. Thorsten Johnson Dr. Felix Meinel Dr. Caroline Burgard

Prof. Horst Olschewski Dr. Robert Neuwirth, Dr. Emine Talakic, Dr. Carmen Salvan-Schaschl, Dr. Eszter Nagy

Prof. Rudolf Stollberger Prof. Thomas Pock

Wolfgang Loidl Univ.-Doz. Peter Kullnig

Software development for semi-automated CT image analysis

Aim: automatic extraction and analysis of lung vessels from computed tomography (CT) images

[1] Helmberger et al. (2014). Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. PLoS ONE.

Idea: automatic artery-vein separation 11.11.2013

Algorithm overview

Payer C. et al.; (2015) MICCAI oral presentation Pienn M. et al.; (2015) MIUA oral presentation

4D path graph

Goal:

- create overcomplete vessel graph G = (V, E)
 - probable and improbable paths

Approach:

- 4D vessel enhancement
- local maxima graph
- 4D tubular paths

Subtree extraction

Goal:

- extract subtrees s_i from graph G
 - multiple subtrees
 - no distinction of arteries and veins

Approach:

- integer program
 - geometric relationship of paths
 - implicit root detection

Geometric relationship of paths

Weight for adjoining path pairs:

- . short geodesic distance
 - tube-like structures
- 2. high orientation similarity
 - no abrupt direction changes
- 3. decreasing radius
 - from proximal to distal vessels

17/03/2017

(a) Local maxima

(b) Neighbor edges

(c) Paths

Geometric relationship of paths

Weight for adjoining path pairs:

- short geodesic distance
 - tube-like structures
- 2. high orientation similarity
 - no abrupt direction changes
- 3. decreasing radius
 - from proximal to distal vessels

(d) Large radius weight

(e) Extracted subtree

(b) Large distance weight (c) Large direction weight

A/V labeling of subtrees

Goal:

• label each extracted subtree s_i as artery or vein

Approach:

- integer program
- use two anatomical properties
 - uniform distribution of A/V
 - proximity of arteries and bronchi

Uniform distribution of A/V

- calculate generalized Voronoi diagram
 - estimate nearest subtree for every voxel
- maximize the contact surface of the Voronoi regions
 - encourages uniform distribution

(a) Slice of a GVD

(b) Slice of GVD borders

(e) GVD borders maximizing area

(c) GVD

(d) GVD borders

Proximity of arteries and bronchi

- "arterialness" per vessel segment
- bronchus enhancement
 - similar to vessel enhancement
 - identify bronchus points close to vessels
- fit line through detected points
- final measure based on orientation and proximity

Results

fully automatic artery/vein separation from CT volumes

arteries: blue veins: red

Payer C. et al.; (2015) MICCAI oral presentation Pienn M. et al.; (2015) MIUA oral presentation

Evaluation

25 datasets with manual A/V segmentation
size: approx. 512x512x512 voxel
voxel: approx. 0.6x0.6x0.6 mm
methods evaluated:

- proposed method
- state-of-the-art semi automatic (Park et al.)

Results

manual segmentation of 25 data sets for validation: E. Talakic, E. Nagy, D. Scherjau, C. Payer

arteries: blue veins: red

17/03/2017

Payer C. et al. LNCS (2015) 9350

Overlap with manual segmentation

Manual reference

Proposed method

Park et al.

Overlap with manual segmentation

Manual reference

Proposed method

Park et al.

Overlap with manual segmentation

$$agreement = \frac{|A_{ref} \cap A_{test}| + |V_{ref} \cap V_{test}|}{|(A_{ref} \cup V_{ref}) \cap (A_{test} \cup V_{test})|}$$

Results of the A/V separation project

Oral presentation - C. Payer "Medical Image Computing and Computer Assisted Interventions"[1]

- C. Payer MSc defense in 2015 at TU Graz
- Invited article Medical Image Analysis (Top 1, Rank 3) [2]

 Payer et al. (2015). Automatic Artery-Vein Separation from Thoracic CT Images Using Integer Programming. MICCAI 2015.
 Payer C., Pienn M, **Bálint Z**, Shekhovtsov A, Talakic E, Nagy E, Olschewski A, Olschewski H, Urschler M. 2016. Automated integer programming based separation of arteries and veins from thoracic CT images. *Medical image analysis* 2016 Dec; 34:109-122. arteries: blue veins: <mark>red</mark>

Martin Wurm – Diploma student (08.2013 - 07.2014)
Michael Pienn – PhD student
Pius Sonnberger – MSc student - project (07.2014 – 09.2014)
Zoltán Bálint – group leader
Christian Payer – MSc student (till 07.2015)

Michael Helmberger – MSc Student (till 2013) Horst Olschewski – supporting scientist

2. Radiological validation

2 radiologists (C. Salvan-Schaschl and R. Neuwirth, Graz), blinded to patient clinical data, performed user defined labeling on the results of the automatic algorithm

8 3	All
Number of values	19
Minimum	54.90
25% Percentile	70.78
Median	93.92
75% Percentile	96.92
Maximum	99.92
Mean	85.17
Std. Deviation	15.69

2. Radiologist expertise

- LMU Munich example
- nr. Radiologist nr. CT/MRI per day
- workload/CAD to help 10 15 min diagnosis

Project: Image denoising and iodine quantification from dual-energy CT images

Aim: - provide radiologists better quality images to facilitate diagnosis

 Develop software for noise reduction and iodine quantification from lung CT images

Image denoising and iodine quantification from dual-energy CT images

Validation/Evaluation in clinical setting

- Try and error in the validation setup
- Quantitative OK physicist calculated
- Radiological validation Siemens algorithm preferred
- Project on hold

3. we combine...

Trust:

"Because humans and computers make decisions in a different way, it is sometimes difficult for a human to understand why an automated aid has made a certain decision."

Jorritsma et al 2015 Clinical Radiology

Patent story – LBI-LVR, Graz

- Idea 2010
- Patent priority 2011, filing 2012AT, 2014EU/US-Publication 2015
- Tech offer for companies no interest raised
- Scientific article 2014
- No Company No investment 2017

M. Pienn, Z. Bálint, H. Olschewski, R. Stollberger, G. Kovacs. *Methode z. Nichtinvasiven Diagnose von Pulmonaler Hypertonie* – Patent Application No. AU 512393/2013 **filed 29th June 2012**, issued 13th August 2013; PCT/AT2013/050127 filed 25th June 2013.

M. Pienn, Z. Bálint, H. Olschewski, R. Stollberger, G. Kovacs. *Method for Processing Images of Pulmonary Circulation and Device for Performing the Method* – Patent Publication No. US 2015/0206303-A1, **issue date 23rd July 2015**.

 M. Pienn, Z. Bálint, H. Olschewski, R. Stollberger, G. Kovacs. *Methode z. Nichtinvasiven Diagnose von Pulmonaler Hypertonie* – Patent Application No. EU 13737520.0 filed 19th December 2014; EU Patent 2867856 issue date 6th May 2015.

imATFIB team POC P37_245

17/03/2017

Proiect co-finanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Competitivitate 2014-2020

UNIUNEA EUROPEANĂ

IMAGING-BASED, NON-INVASIVE DIAGNOSIS OF PERSISTENT ATRIAL FIBRILLATION

imATFIB

Nr. contract de finanțare: 23/01.09.2016 POC: P_37_245, mySMIS: 104004

Beneficiar: SPITALUL CLINIC JUDEȚEAN DE URGENȚĂ CLUJ-NAPOCA Director de proiect: Dr. Zoltán Bálint

Acțiunea 1.1.4 Atragerea de personal cu competențe avansate din străinătate pentru consolidarea capacității de CD

17/03/2017

Proiect co-finanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Competitivitate 2014-2020