Effect of Milling and Annealing Conditions on the Interphase Exchange Coupling of \(\text{Nd}_2\text{Fe}_{14}\text{B}/\alpha\text{-Fe} \) Magnetic Nanocomposites

Sever Mican, Răzvan Hirian, Viorel POP
Babeş-Bolyai University, Faculty of Physics, 400084 Cluj-Napoca, Romania

Olivier ISNARD
Institut Néel, CNRS, Joseph Fourier University, BP 166X, 38042 Grenoble, Cédex 9, France

Ionel CHICINAŞ
Materials Sciences and Engineering Dept., Technical University of Cluj-Napoca, 103-105 Muncii ave., 400641 Cluj-Napoca, Romania

This contribution was supported by the Romanian Ministry of Education and Research, Grants:
PN-II-ID-PCE-2012-4-0470,
PN-II RU-TE-2011-3-0048

International Workshop on Rare Earth and Future Permanent Magnets and Their Applications
REPM, Annapolis 2014
Outline

• Introduction
• Experimental details
• Structure and microstructure
• Inter-phase magnetic coupling
• Conclusions
Outline

• Introduction
• Experimental details
• Structure and microstructure
• Inter-phase magnetic coupling
• Conclusions
Nanophased materials behave differently from their macroscopic counterparts because their characteristic sizes are smaller than the characteristic length scales of physical phenomena occurring in bulk materials.

\[l_{sc} = \sqrt{\frac{2A_{sc}}{\mu_0 M_s^2}} \]

\[l_{sc} \sim 3 - 7 \text{ nm} \]

\[\delta = \pi \sqrt{\frac{A}{K}} \]

\[\delta \sim 30 \text{ nm} \]

\[N_{d}Fe_{14}B : \delta \sim 5 \text{ nm} \]

\[\delta \sim 4 - 100 \text{ nm} \]

Fe : \[\delta \sim 30 \text{ nm} \]

Nd_{2}Fe_{14}B : \[\delta \sim 5 \text{ nm} \]

Magnetocrystalline anisotropy

Energy dependent of \(\theta \)

Magnetic configuration in magnetic nanostructures: domains, walls, vortex, configuration magnetic anisotropy, etc

Theoretical predictions:

- Best magnets on the market:
 \((BH)_{\text{max}} \approx 500 \text{ kJ/m}^3\)

- \((BH)_{\text{max}} = 1090 \text{ kJ/m}^3\) for nanostructured multilayers \(\text{Sm}_2\text{Fe}_{17}\text{N}_3/\text{Fe}_{65}\text{Co}_{35}\)

Experimental realisations: ????????????

Kronmuller & Coey *Magnetic Materials*, in *European White book on Fundamentel Research in Materials Science*
high anisotropy
+
large magnetization

exchange

hard phase

soft phase

Exchange spring magnets
Structure Microstructure \rightarrow Soft-hard exchange hardness

- High anisotropy
- Large magnetization

- Hard phase
- Soft phase

Exchange

Exchange spring magnets

$D_{cr} \geq 2h$

$\delta_h = \pi \sqrt{A_h / K_h}$

$D_{cr} =$ soft phase critical dimension

$\delta_h =$ width of domain wall in the hard phase

A_h and K_h are the exchange and anisotropy constants
Nanocomposites prepared by mechanical milling (MM)

- hard magnetic phases of $\text{Nd}_2\text{Fe}_{14}\text{B}$
- soft magnetic phases of α-Fe (10 wt%)

Different milling energy:
1. Different milling balls: Φ 10 mm and 15 mm
2. Different milling time: 6 h and 8 h of MM
Nanocomposites prepared by mechanical milling (MM)

- hard magnetic phases of $\text{Nd}_2\text{Fe}_{14}\text{B}$
- soft magnetic phases of α-Fe (10 wt%)

Different milling energy:
1. Different milling balls: Φ 10 mm and 15 mm
2. Different milling time: 6 h and 8 h of MM

Milling energy

Size of α-Fe crystallites

Crystallinity of the hard phase

Size of α-Fe crystallites

Interphase exchange coupling

Crystallinity of the hard phase
Outline

• Introduction
• Experimental details
• Structure and microstructure
• Inter-phase magnetic coupling
• Conclusions
Material preparation

- milling of the powders in a high energy planetary mill
- heat treatments (temperatures and duration)

Starting materials:

- hard magnetic phases of:
 \(R_2Fe_{14}B, \text{ ingots} \) – prepared by melting
- soft magnetic phases of:
 Fe NC 100.24 powder (Höganäs), (< 40 μm)

Mechanical milling experiments:

- hard magnetic phases – crushed under 500 μm
- hard + soft magnetic powders – milled in Ar atmosphere for 2 – 8 h

Annealing:

- short time annealing: in argon/700, 750 or 800 °C for 0.5 to 3 min.
By Mössbauer spectroscopy we detected an inter-diffusion between the two phases during milling or annealing.*

Some previous studies:

Some previous studies:

Atom probe tomography (APT) suggested that the observed Fe/Co inter-diffusion is initiated during the milling process and further increased by the annealing treatments.*

Nanoscale analysis of the SmCo$_5$/Fe powder milled for 8h:
(a) 3D image of Fe-rich clusters
(b) Concentration profile through a Fe-rich cluster along the black dashed arrow in panel (a).

Material characterisation

- X-ray diffraction (XRD)
- DSC measurements
- Magnetic measurements
Outline

• Introduction
• Experimental details
• **Structure and microstructure**
• Inter-phase magnetic coupling
• Conclusions
- The milled powders present poor crystallinity and a high defect density.

- The recrystallization temperature of the soft magnetic phase is smaller than the recrystallization temperature of the hard magnetic phases.

- By annealing we intended to recover the crystallinity of the hard phase and, in the same time, to hinder the growth of Fe crystallites during annealing.

- In order to complete both objectives simultaneously, a good crystallinity for the hard phase and fine crystallite (smaller than 20 nm) for Fe phase, we also investigate the effects of short time annealing (0.5 to 3 min at 700, 750 and 800 °C) on the structure, microstructure, and magnetic properties of the hard/soft Nd$_2$Fe$_{14}$B/α-Fe magnetic composite.
Classical annealing
(450-650 °C for 0.5 up to 10 h)

Short time annealing
(700, 750 or 800 °C for 0.5 to 3 min)

<table>
<thead>
<tr>
<th>Annealing temperature (°C)</th>
<th>Annealing time (min)</th>
<th>FWHM (°)</th>
<th>D (nm) α-Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>1.0</td>
<td>0.88</td>
<td>12 (±2)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.77</td>
<td>14 (±2)</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.66</td>
<td>16 (±2)</td>
</tr>
<tr>
<td>800</td>
<td>1.0</td>
<td>0.61</td>
<td>17 (±2)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.50</td>
<td>21 (±2)</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.43</td>
<td>25 (±2)</td>
</tr>
<tr>
<td>550</td>
<td>90</td>
<td>0.40</td>
<td>26 (±2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annealing temperature (°C)</th>
<th>Annealing time (min)</th>
<th>D (nm) α-Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>1.0</td>
<td>15 (±2)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>19 (±2)</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>24 (±2)</td>
</tr>
<tr>
<td>750</td>
<td>1.0</td>
<td>19 (±2)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>22 (±2)</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>28 (±2)</td>
</tr>
<tr>
<td>800</td>
<td>1.0</td>
<td>24 (±2)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>27 (±2)</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>30 (±2)</td>
</tr>
<tr>
<td>450</td>
<td>90</td>
<td>14 (±2)</td>
</tr>
<tr>
<td>550</td>
<td>90</td>
<td>26 (±2)</td>
</tr>
<tr>
<td>650</td>
<td>90</td>
<td>38 (±2)</td>
</tr>
</tbody>
</table>

Nd$_2$Fe$_{14}$B + 22% α-Fe

Nd$_2$Fe$_{14}$B + 10% α-Fe

8h MM

Different diameters of the milling balls

Different energy of milling
Different diameters of the milling balls

Different energy of milling

<table>
<thead>
<tr>
<th>Milling time (h)</th>
<th>Annealing temperature (°C)</th>
<th>Annealing time (min)</th>
<th>d (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (Ø 10 mm)</td>
<td>700</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2.5</td>
<td>20</td>
</tr>
<tr>
<td>6 (Ø 15 mm)</td>
<td>700</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>2.5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>550 [10]</td>
<td>90</td>
<td>34</td>
</tr>
<tr>
<td>8 [7]</td>
<td>700</td>
<td>1.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1.5</td>
<td>26</td>
</tr>
</tbody>
</table>

Different times of milling

Different energy of milling

Better crystallinity for 6 h MM
Different times of milling

Different energy of milling

Smaller crystallites for 8 h MM
Outline

• Introduction
• Experimental details
• Structure and microstructure
• **Inter-phase magnetic coupling**
• Conclusions
high anisotropy + large magnetization → hard phase ↔ exchange ↔ soft phase → Exchange spring magnets

Diagram:
- M vs. H
- Blue line: Hard - soft exchange coupled
- Green line: Hard - soft uncoupled
The filled and empty symbols correspond to the samples milled with Ø 10 mm and Ø 15 mm balls respectively.

The better crystallinity of the hard magnetic phase (for the less energetic MM) impose a better coupling.

<table>
<thead>
<tr>
<th>Milling time (h)</th>
<th>Annealing temperature (°C)</th>
<th>Annealing time (min)</th>
<th>d (nm)</th>
<th>$\mu_0 H_c$ (T)</th>
<th>M_r (Am2/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (Ø 10 mm)</td>
<td>700</td>
<td>1.5</td>
<td>10</td>
<td>0.42</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>15</td>
<td>0.44</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>20</td>
<td>0.38</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2.5</td>
<td>21</td>
<td>0.41</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>25</td>
<td>0.17</td>
<td>97</td>
</tr>
<tr>
<td>6 (Ø 15 mm)</td>
<td>700</td>
<td>2</td>
<td>17</td>
<td>0.48</td>
<td>114</td>
</tr>
<tr>
<td>750</td>
<td>2.5</td>
<td>20</td>
<td>0.41</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>2</td>
<td>16</td>
<td>0.51</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>550 [10]</td>
<td>90</td>
<td>34</td>
<td>0.55</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>1.5</td>
<td>16</td>
<td>0.51</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>8 [7]</td>
<td>800</td>
<td>26</td>
<td>0.54</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>
Higher coercivity for the 6h MM samples

Better Nd$_2$Fe$_{14}$B crystallinity

Lower milling energy

Higher milling energy

More Fe present due to Nd$_2$Fe$_{14}$B decomposition during milling

Slightly higher remanence for 8h MM
Different times of milling = Different energy of milling

Best exchange coupling for 6h MM + 750°C
Conclusions

- The structure and microstructure have a strong influence on the hard/soft exchange coupling.
- The crystallinity and the anisotropy of hard magnetic phases are strongly influenced by milling.
- The characteristic diffractions peaks of hard magnetic phases are restored during heat treatment. The annealing induces also a refinement of the soft magnetic phase structure.
- Lower milling energies increase the coercive field due to a reduced damaging of the hard phase crystal structure.
- Higher milling energies lead to a slight remanence increase due to a higher percentage of Fe present in the milled samples resulting from the Nd$_2$Fe$_{14}$B decomposition during milling.
- The hard/soft interphase exchange coupling is more sensitive to the crystallinity of hard phase than to the small variations of the crystallite size of soft phase.
Thank you for your attention

This contribution was supported by the Romanian Ministry of Education and Research, Grants: PN-II-ID-PCE-2012-4-0470, PN-II RU-TE-2011-3-0048