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Density Functional Theory (DFT)

DFT is an alternative approach to the theory of electronic structure; electron density plays a

central role in DFT.

Why a new theory?
HF method scales as K* (K - # of basis functions)
CI methods scale as Ke6-K10
MPn methods scale as >K>
CC methods scale as >K®6

=) Correlated methods are not feasible for medium and large sized molecules!

Alternative: DFT

Electron density is the central quantity in DFT!
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Probability of finding electron 1 in dx,, electron 2 in dx,, ..., electron N in dx,,:
W (xy, X5, ., Xxy) P dxdx, ... dxy

Integrating over the space and spin coordinates of electron 2, 3, ..., N and the spin
coordinate of electron 1 one obtaines the probability of finding electron 1 in volume
element dr; whilst the other electrons are anywhere:

(f ...J’Il}‘(xl,xz, o xy)|2ds, dx;, ...de) dry

Multiplying by N one obtaines the probability of finding any electronindr;:

N (f ...le(xl,xg, ., Xy)|?ds dx, ...dIN) dr, = p(ry)dny

The quantity p(r,) is the electron density:

Nf ...J‘|Lp(xl,x2,...,IN)F{iSldIE . dxy



p(7) is a non-negative function depending on only three variables

p(7) vanishes at infinity and integrates to the total number of electrons N:

_ - o p represents the density of
T!I_}Ig p(r)=10 f p(F)dr = N the electron cloud carying N
electrons

p(7) can be measured experimentally (e.g. by X-ray diffraction)

at the position of atoms, the gradient of p(7') has a discontinuity:

) . _2ar - Sp
Kato’s cusp condition rl-l_llllu [g + ZZA] p(#) =0| Forriy = 0,p ~e rli;lllog ~ = 2Z4p/%

Z being the nuclear charge and p(7) the spherical average of p(7)
decays exponentially for large distances from nuclei

For H atom:

- - 2,2,2
p(#)~exp(—2v2I|7|) —Ey=1=""%5 (inaw)z =2
0

| being the exact first ionization energy of the system

p() = ) mlB)I?
i Function: y=f(x) —> p=pEXyz)

Functional: y=F[f(x)] —> E=F[p(xyz)]



Hohenberg-Kohn Theorems P. Hohenberg, W. Kohn, Phys. Rev. 136, B 864 (1964)

The electronic Hamiltonian is
N

N N
: %8 e S — 1 2 - N 1
H="1T+ ‘v’ne + Lee = — szl + ZE: vir;) + 2 T—”
where the external potential is p(r')
v(r;) = Za
o " TAi jp(r‘)dr' =N
First HK Theorem (HK1) N > (r')

“The external potential V_(r) is (to within a constant) a

unique functional of p(r). Since, in turn V_(r) fixes H, we see

that the full many particle ground state is a unique

functional of p(r).” _

Z,,R,

p(r) — uniquely determines the Hamiltonian operator and
thus all the properties of the system. I’AN} 1 Eq}




A Chemist'’s Guide to Density Functional Theory. Second Edition
Wolfram Koch, Max C. Holthausen

The proof nues s follows and & based on reductio ad absusdum. We stagt by comsidering
two extemal potentials Vo, and Vo, which differ by more than a constant (sisce the wave
femction and hence the charge density 1 unaltered if a constant is added to the potential.
we mitn! requare from the outset that the fao external potentials differ not only by a con-
stant) but which both give rese 10 the sase eloctron denvity (1) assocsated with the cor-
1espandisg non-degenerate sround states of N particles (the lisnitation 1o son-degencrare
ground stares of the oniginal Hobesberg-Roln argunsent will later be lifted, see bedow)
anmlwul--emo(mvkm&mub&cdydm«uum
nal potential, H = T+ Vi, + Vo, and H' = T+ V + V,,. Obviously. the rwo Hamul-
tonsass H and W' belmmhvd:lk@umdnmqwmvh‘ﬁm?ﬂd‘r.aﬂ
corresponding grosmnd state energies, Ey and Eg . respestively. with Eg # Eg . However.
we asane that both wave famnctioss gnve nise 10 the samie ebectron deasiry (thas is very
well possible, simce the prescription of how a density 15 comstructed from a wane fanction

by quadeature, i e. p(r)-\j I!?txp.t‘ ..... xq)lds,dx.. .y . is of course not
unsque ). We express this sl v following ovr notation from Sectson 1.2 as

Vu=HaV¥=a o e¥Yaleal,,

(+2)

Eq < Ep + [NV ~ Vi) 6F (4:3)

the unpansed with the prmed quantitses and repeatmg the above seps of
equations (4-1) 1o (4-3) we anmve af the commesponding equation

Ep < Eg = [ i)V = Vil & - (44
After adding equations (4-3) and (4-4), thas Jeaves us with the clear contradition

Eo+Ej < Ep +Eg 0r0<0 (4-5)

Thes conchudes the prood that there cannot be two different V, that yeeld the same
ground state elestron demsity, ox, mn other words, that the grovesd state dexmaty umiquely
specafies the extenmal potential Vo, Using agamn the tenuinology of Section 1.2 we ¢an
samply add p, as the property whach contains the mformsaton about [N. Z, R} and vuun-
marize thas as

Pe= (N.Z\.R,) == H = ¥, = Eq (and all other propertics).


HK1_proof.pdf

Eplpol = Tlpg]l + EeelPol + EnelPol-

Eplpol= _[F*u[:f}ﬁ”rmedf + Tlpol+ EealPol -
mtemEpEudent unry ;Fil.'t_'r' vahd

Eolpo] = [ po(F)Vawdf + Fe[po]

Fxlp] = T(P)+ Enlp] = (WT + VW) <00

Eulp) = [ [P0 g, + £ [0 = Jp] + Eplp]
ik

Only J[p] is known!
The explicit form of T[p] and E,__,.4[p] is the major challenge of DFT



Variational Principle in DFT
Second HK Theorem (HK2)

“The functional that delivers the ground state energy of the system, delivers the lowest
energy if and only if the input density is the true ground state density.”

Eo < E[p] =T[p] + Enel] + Eecl?] . yariational principle

For any trial density p(r), which satisfies the necessary boundary conditions such as:

p(r)=0 and jp(r)dr =N

and which is associated with some external potential V,,,, the energy obtained from the

functional of F, represents an upper bound to the true ground state energy E,,.

(PHP) = T[] + Valpl + [PV = E[B] 2 Eqlpo] = (WolHW, )


comments_varprin_DFT.pdf

First attempt: Thomas-Fermi model (1927)

- 3 232/3[ 5/37=x 4= L.H. Thomas, Proc. Camb. Phil. Soc., 23, 542-548 (1927)
TTF[p(r')]:ﬁ(:an ) Ip (r)dr E. Fermi, Rend. Acad,, Lincei, 6, 602-607 (1927)
p(ryp(r:

(ry)o(r2) J
ri2

Approximation: the electrons are distributed uniformly in each small volume element 4V (i.e.
locally) but the electron density can still vary from one small volume element to the next.

rydr;

Its performance is really bad due to the: - poor approximation of the kinetic energy.
[ ] - no attempt to represent the exchange energy of the atom

Kohn and Sham (1965)
T[p] - kinetic energy of the system

Calculate the exact kinetic energy of a non-interacting system with the same density as for the
real interacting system:

1N ) Tks — Kinetic energy of a fictitious non-interacting system of the
e = _E Z(q}, ‘V ‘ L|J|> same density p(r)
i=1

Y. — are the orbitals for the non-interacting system (KS orbitals)

Tks is not equal to the true kinetic energy of the system but, however, contains the major fraction of it.

T=Tys+(T-Ts)

Hohenberg-Kohn (1964) and Kohn-Sham (1965) - modern DFT



Summary:

Flel= TPl +J[P]+E,, . lP]
Elp] = E\.[p]+ Tis[P]+ T[] +E,.[p] =

DALMY

i=1 A=l 1A

1& 5
_EZ«”&‘V )
i=1
1NN
+>222 [[le)f L 1o, () drych,
i=1 j=1 2
+E,.[]
E..[p] includes everything which is unknown:

- exchange energy
- correlation energy

- correction of Kinetic energy (T-Ty)



Question:

How can we uniquely determine the orbitals in our non-interacting reference system?
How can we define a potential such that it provides us with a Slater determinant which is
characterized by the same density as our real system?

Kohn-Sham Equations:

Minimize E[p] with the conditions: jp(r)dr* =N
(@ ‘¢J> =90,
1 . rp(ry) - Z
—=V°+ dr, +v,.(n)-> —2 |lp =€
> { 2 j e 1 ; Ma
with:
VXC (rl) — aExc [p]

6p
p(r)= 3 o ()



Kohn-Sham Formalism

Guess @
: W. Kohn, L.J. Sham, Phys. Rev. 140, A 1133 (1965)

Assume

[ 1 +v(r)+f p(r )dHch(p)] o = &0, [ ;V +V(r')+j‘p( )dr- —ZK:(P)} =i

Kohn-Sham | & |
equations o &
= 9.8 Hartree-Fock equations
Converged? Lo
Yes

Calculate

molecular
properties




Kohn-Sham orbitals

The orbitals satisfying the Kohn-Sham orbitals have no physical significance.
Their only connection to the real world is that the sum of their squares add up to the exact density.
However, many authors recommend the KS orbitals as legitimate tools in qualitative MO considerations
v’ associated with a one electron potential which includes all non-classical effects
v’ consistent with the exact ground state density

Thus, in a sense, these orbitals are much closer to the real systems than the HF orbitals that neither reflect
correlation effects nor do they yield the exact density.

In Kohn-Sham theory there is no equivalent of Koopmans’ theorem.

There is one exception: as a direct consequence of the long range behavior of the charge density (its asymptotic
exponential decay for large distances from all nuclei)

p(D) o= exp[-2y/21 [£]
E.omo Of the KS orbitals equals the negative of the exact ionization energy.
This holds strictly only for &,y resulting from the exact V., not for solutions obtained with approximations to

the exchange-correlation potential.

J. Am. Chem. Soc. 1999, 121, 3414—3420

What Do the Kohn—Sham Orbitals and Eigenvalues Mean?

Ralf Stowasser and Roald Hoffmann*


kohn_sham_orbitals.pdf

Exchange-correlation functionals
E.[p]=??

Local Density Approximation (LDA) - uniform electron gas

_ The exchange energy is about ten times larger than
E"C [p]= j P (l")&xc (p (r.))dr‘ correlation in “standard” systems

&, - the exchange-correlation energy per particle of a uniform electron gas of density p(r)
- only depends on the density atr

exc(p() = ex (p(7)) + ec(p(7)). split into exchange and correlation contributions

ey = —

3 (3p(7) 1/3  represents the exchange energy of an electron in a uniform
— ( ) electron gas of a particular density

m

1/3
33\
Y 4/3 N . Y. .
Ex = CXx / p(r)d Cx = 1 (:) Slater exchange functional (S)

For the correlation part:
Monte-Carlo simulations of the homogenous electron gas energy - Ceperley and Alder

- interpolation of these results — analytical expressions for &
D. M. Ceperley and B.]. Alder (1980). "Ground State of the Electron Gas by a Stochastic Method". Phys. Rev. Lett. 45 (7): 566-569

Vosko, Wilk & Nusair (1980) most widely used LDA - SVWN
Perdew &Wang (1992)



The VWN correlation functionalis,

eYWN = C0[Iln C1 + C2arctan C3 — C4(In C5 + C6 arctan C7)]

where A o 0
T
Co=—, Cl= C2=— , C3=
2 X(zx) ' Q 2r — b
bz (x — x0)? 2(b + 2x0) Q
C4 = , Cb=—-—— , (C6= , CT=
X(zp) X(x) Q ' 2r + b

the functions z, X, and () are respectively,

E_?uz

. X(z)=2*+br+c Qz(élc—bz)lfﬂ

and the constants are A = 0.0621814, rq = —0.409286, b = 13.0720, and ¢ = 42.7198.

The r, parameter (Wigner-Seitz radius)

4 -1/3
s = (gnﬁ)

radius of a sphere with constant charge density p and a total charge of one electron

Perdew and Wang (PW92) correlation functional
eFW92 — _2ap(1 + anrs) In{1 + [2a(Birl/? + Bors + B3rd/? + Bur?)] 1}
a = 0.0310907, ay = 0.21370, 3; = 7.5957, [y = 3.5876, B3 = 1.6382, and 34 = 0.49204.



Local Spin Density Approximation (LSDA)
- variant of LDA for unrestricted formalism (open-shell systems)
Two spin-densities:
P, (1) and pp(L)
P(r)=po (1) + pp(T)
ELSD

XC [pmpﬂ] = J.p(f)ﬁxc(llja(l")qpﬂ(1:)) dr

Performance of LDA (LSDA)

e for atoms and molecules the exchange energy is usually underestimated by 10%, but this is
compensated by an overestimation of correlation by 2 or 3 times.

e underbind core electrons and overbind atoms in molecules

 not able to reproduce the effects of bond breaking and forming

Because molecules do not resemble a uniform electron gas!



Generalized Gradient Approximation (GGA)

_ to account for the non-homogeneity of the
E"C [p]= jp(r)sxc (p(r'), Vp(r)"'°)dr true electron density — gradient

&, depends on the density and its gradientatr

GGA E, is usually split into its exchange and correlation contributions:

GGA _ ~GGA GGA
Exc =Ex  +E¢

ER%% = EXP* - 3 [Fso) pg *(1) di
0

_ - the reduced gradient density
< (1;) _ | Vpg(l') | - interpreted as a local inhomogeneity parameter
o p4 /3 (1;) - it has large values for large gradients and in regions of small densities
o - it is zero for the homogenous electron gas




Forms of F for exchange functionals

2
BSG

1+ 6Bs, sinh™' s i

B=0.0042 - empirical
Derlved functionals: FT97, PW91, CAM(A) and CAM(B)

|
. D. Becke, ]. Chem. Phys 84,4524, 1 ; J. P. Perdew, Phys. Rev.B 33, , ;
Second class a ke, J. Chem. Phys 84, 4524, 1986 dew, Ph 33,8822, 1986
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett 77, 3865, 1996)

: 2 - 4 - 6 |
| FP86 | 141296 — >0 +14[ %o +0.2[ 0

(2411‘.2)”3 (24?‘[2)”3 (247 )1;’3
Derived functionals: B86, P, PBE

Correlation functionals
P86, PW91, LYP



Exchange-correlation functionals

B?
B :
: ! 21/3A,(1 4 63z sinh~(x))
:‘21;!3 \,—r 3 3 1;';3
af=% , Ax=—(—) , 3 =0.0042
p 4\

R Ty {p+ bp=2/% [CF ot 4 St + 1?%)} e—CP‘”S}
P 1 + d‘g—lf:—j’ . w 9 i 2

1 {|Vp|? 9 3 o 2\2/3
t,=———V Cr=—(3 /

a = 0.04918 b=0.132 |, ¢e=0.2533 , d=0.349

1

L e
PWOL _ [LDA[ 1 + say sinh—!(say) + (ag + age1905%)s2
} ! 1+ saq sinh_l(mz) + axsd

a; = 0.19645 |, a; =7.7956 , a3z =0.2743 | a4 = —0.1508 | a5 =0.004

e =Pl + pHlp, s, 1

[

g 2a(t” + AtY) " T 2 _—100s2
H=3 [1 Bl+AR + A28 | T Ceo[Celp) + Calt’e

_ 2a LDA 22 -1 _(m\YE vy

A== [exp (—2@56 (p)/(pB )) _ 1] t=(3) o

a=009 , 5=0.0667263212 , C, = 157559 , C. = 0.0035521



Hybrid Functionals

Since E,>>E, an accurate expression for the exchange functional is a prerequisite for obtaining
meaningful results from density functional theory.

Exc = EX™ +EC
E™°[p]=0E +(1-a)E

E,X5-the exact exchange calculated with the exact KS wave function
a - fitting parameter

Shooting star — B3LYP (A. D. Becke, J. Chem. Phys. 98, 5648, 1993)
ESX —(1-a) EPP +a B + b ER® + c EEYP + (1- o) EEFP

corresponds to the exchange contribution of a Slater determinant

3000

B3LYP

(Source: www.scopus.com, May 18, 1|@)
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PBE1PBE (Perdew, J. P, Burke, K. & Ernzerhof, M. 1996 Phys. Rev. Lett. 77, 3865-3868, 1996)

hybrid GGA HF GGA
E}ECH = EXC. T OZS{EX - EK



Meta-GGAs

The natural next step is to introduce higher derivatives into the functional, namely

the density Laplacian, V?p and the kinetic energy density, 7 = . |[V,|?

In the meta-GGA'’s, the exchange-correlation potential becomes
orbital-dependent !

€. =€,.(p(r),[Vp(r)

Vip®). Y |Vo[)



SCIENCE'S COMPASS A A

Jacob’s ladder of DFT A ;

PERSPECTIVES: DENSITY FUNCTIONAL THEORY

In Pursuit of the
“Divine"” Functional

Ann E. Mattsson

Chemical accuracy

B3LYP, PBE1PBE
PKZB, TPSS

Vz r I eplicit dependence on kinetic energy densily

-
) )
Vr explicit dependence on density’s gradients
I L(S)DA I
r dependence on local density alone

Hartree world



divine_functional.pdf

Classification of Density Functionals: exchange, correlation

Exchange
functionals:
S

XA

PWI1

MPW

G96

Correlation
functionals
VWN

VWN5

LYP

P86

PW91

B95

PL

VP86
V5LYP



Classification of Density Functionals: GGA, hybrid, meta...

L(S)DA functionals:
SVWN, SVWN3, SVWNS5,
SPWL

Pure GGA functionals:

BP86, BLYP

BPWO91, OLYP, XLYP

G96LYP, PBEPBE

HCTH, BPBE

G96LYP, MPWLYP, MPWPWO1,

Pure meta GGA () functionals:

BB95, MPW1K
THCTH, VSXC, PBEKCIS
TPSS, TPSSKCIS, mPWB95

Hybrid GGA functionals

B3LYP, B3P86

B3PWO91, PBE1PBE

O3LYP, KMLYP

B98, B971, B972

MO052X, THCTH-HYB

TPSSH, BMK, MPW1K, MPW3LYP
BHandH, BHandHLYP
BHandHHYB, HSE2PBE
HSE1PBE, CAM-B3LYP

Hybrid meta-GGA functionals:
B1B95, BB1K

PBE1KCIS, VS98,

PKZB, BMK, TPSS1KCIS, TPSSh
MO05, M05-2X, MPW1B95
MPWB1K, MPW1KCIS

PW6B95, PWB6K



Comparison of methods: e.g. H,O

E. H-O |ZHOH vibrational modes [em™!] dipole moment

method [a.u.] [A] [7] bending sym. stretch asym. stretch [D]
HF -76.065 | 0.940 | 106.2 1751 4229 4130 | 084
M P2 76,408 | 0938 | 104.0 643 3978 3R35 1.852
CCSD(T) | -76.421 | 0.9538 | 104.1 1659 3952 3845 1.839
SVWN 75911 ) 0.970 | 1049 1571 3832 3737 1.930
RPBE -76.465 | 0968 | 104.0 1635 3RS 3722 1.863
BP&6 -76.477 | 0.970 | 104.1 1613 3789 3690 [.889
B3ILYP | -76.472 | 0.96] 105.1 1629 3905 3804 [.848
exp. -76.438 | (L9588 | 104.5 648 3943 3832 1.854

. _1-1:-“” . IIZ-” o l-il 0 " '_’J'I'Zl 0 - ll:- b




Different functionals for different properties

Structure: bond lengths, bond angles, dihedrals

Vibrational frequencies: wavenumbers, IR intensity, Raman activity

Kinetics: barrier heights

Thermochemistry: atomization energies, binding energies, ionization potentials,
electron affinities, heats of formation

Non-bonded interactions: stacking, hydrogen bonding, charge transfer, weak

interactions, dipole interactions, p-p interactions

What functional should I use?!




DFT-D

van der Waals interactions
- the sum of the attractive or repulsive interactions between molecules other
than those due to covalent bonds, hydrogen bonds, or the electrostatic

interaction of ions with one another or with neutral molecules or charged : nuclens

molecules. -

- include: ¥
- force between two permanent dipoles (Keesom force) : electrons

- force between a permanent dipole and a corresponding induced
dipole (Debye force)
- force between two instantaneously induced dipoles (London
dispersion force).
- control the structures of DNA and proteins, the packing of crystals, the
formation of aggregates, host-guest systems, or the orientation of
molecules on surfaces or in molecular films.

Eprr_p = Egs_ Eqgis
DFT-D KS—DFT + Edisp DFT-D - ORCA, Gaussian 09 (Stefan Grimme)

C-Pots (Gino DiLabio)

where

Nar—1 Ny ij

. 6
Edisp = —386 Z Z R_;_ﬁlmp(Rrj)

i=1 j=i+1 "1
with
I

fdmp (RU) =

| + o—dRj/R,—T)



Va

=H Modeling non-covalent interactions and
BABES-BOLYAI excited states by DF

UNIVERSITATEA

DFT-D

PTCDI and PTCDA Y dies

v’ electronic and optoelectronic devices (FET, OLEDS, [
v’ engineering of two-dimensional porous nanostructu
v building blocks sophisticated supramolecular archit
nce, 2009, 325, 1110.

Potential energy curves

Scie
5@ T ‘ _ ! - ,_a a9

-------- 7 [x % MP2/6-31G(d) CP

g : v v B3LYP-D2/6-31G(d) CP
A A B3LYP-D3/6-31G(d) CP
= , ® e B97-D2/6-31G(d) CP
............ o . o.i.......|® ® B97-D3/6-31G(d) CP

: : © ¢ PBE0-D2/6-31G(d) CP

@ @ PBE0-D3/6-31G(d) CP
<« < PBEO0-D2/6-31+G(d,p) CP
> » PBE0-D3/6-31+G(d,p) CP

—10f-- AW . W T s MP2/6-31G(d) CP H
1 : 7 B3LYP-D2/6-31G(d) CP
B3LYP-D3/6-31G(d) CP
X $ : B97-D2/6-31G(d) CP
BT . B A o s e e B97-D3/6-31G(d) CP ]
: © ¢ PBE0-D2/6-31G(d) CP
@ @ PBE0-D3/6-31G(d) CP
<« <« PBE0-D2/6-31+G(d,p) CP ; : :
> » PBEO0-D3/6-31+G(d,p) CP || =20 ameamanonaesion R e

Interaction Energy (kcal/mol)
Interaction Energy

L 7 | SR . i == S, S———— R

: ¢ ¢ PBEO-DCP/6-31+G(d,p)
E ¢ ¢ PBEO-DCP/6-31+G(d,p) : ; ; ® e B971-DCP3/6-31G(d) CP
; : ® ® B971-DCP3/6-31G(d) CP . . i . .
' L ' ' ' 3.0 35 4.0 45 5.0 5.5 |
3.0 35 4.0 45 5.0 55 6.0 R A

R (A)
» PBEO-D2 - much less binding than the other meth
» B97-D3 and B971-DCP3 -> overbinding

M. Oltean, G. Mile, M. Vidrighin, N. Leopold, V. Chis, » No BSSE correction for PBEQ-DCP method
Phys. Chem. Chem. Phys., 15 (2013) 13978-13990



Vasile Chis
BABES-BOLYAI Why Computing Molecules?

DFT-DCP

Benzene dimer and Benzene-water complex

Be IVAS IS dimer T-shaped I I Equilibrium

energy

benzene (kcal /mol) distance (A)
Experimental * -2.40 4.960
PBEO-DCP/
6-31+G(d,p) -2.35 5.000

*E. Arunan, H. Gutowsky, J. Chem. Phys. 1993, 98, 4294;

J.R. Grover, E.A. Walters, E.T. Hui, J. Phys. Chem. 1987, 91, 3233.

Water - Benzene complex LTt N Equilibrinm

Water-benzene energy

UNIVERSITATEA

(A) (kcal /mol) distance (A)
Experimental* -3.25+-3.40 3.32-+-3.35
CCSD(T)/CBS -3.34 +-

PBE0-DCP/

> quantitative results for De and Re  6-31+G(dp)
*Y. Zhao, O. Tishchenko, D.G. Truhlar, J. Phys. Chem. B, 2005, 109, 19046.

> no "Structural dependence" **S. Li, V.R. Cooper, T. Thonhauser, A. Puzder, D.C. Langreth, J. Phys. Chem. A, 2008,
112,9031

-3.72 3.340
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DFT-D

CD-propranolol inclusion complexes

8 | NIVERSITATEA

v-CD-R v-CD-S
Rares Stiufiuc, Cristian lacovita, Gabriela Stiufiuc, Ede Bodoki, Vasile Chis, Constantin M. Lucaciu
Phys. Chem. Chem. Phys., 2015, 17, 1281-1289.
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Modeling non-covalent interactions and molecular

excited states by DFT methods

DFT-D

Binding energies of the inclusion complexes
calculated B3LYP-D/6-31G(d) and B97-D/6-

31G(d)

| B3LYP-D | B97-D
B-CD-R 67.6 36.2
B-CD-S 64.7 -32.8

Rares Stiufiuc, Cristian lacovita, Gabriela Stiufiuc, Ede Bodoki, Vasile Chis, Constantin M. Lucaciu
Phys. Chem. Chem. Phys., 2015, 17, 1281-1289.
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Absorption spectrum if imatinib

Conformational study

ONCH v @

Optimized molecular structures of the most stable conformer
of imatinib (IMT) in water at B3LYP/6-31+G(d,p) level of
theory, with the atom numbering scheme

’ .@/ o 5
@0 0c - @, ’

 used in the treatment of chronic
myelogenous leukemia and
gastrointestinal stromal tumors

e conformational changes of IMT
are crucial for understanding the
ligand-receptor interaction and its
mechanism of action

 of interest if the lowest energy
conformer of the free molecule
resembles the 3D structure of the
bioactive conformations found in
different ligand-receptor

« IMT crystallize in two
polymorphic forms, a and 3, with
triclinic P-1 symmetry

Conformational landscape and low lying excited states of imatinib, Emil Vinteler, Nicoleta-Florina Stan, Raluca
Luchian, Calin Cainap, Joao P. Prates-Ramalho, Vasile Chis, Journal of Molecular Modeling, 2015, 21, 84
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3.094 203

Concentration
2.5 1 (10° M)
—10

2.0 1

Ahsorbance

1.5

1.0

0.5 1

T T T T T T T T T T T T T T T T T T

0.0

Wavelength (nm)

B3LYP/6-31G(d), water

—T—
200 220 240 260 280 300 320 340 360 380 400

Vasile Chis
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3.0 1

25/

204
1.5-
1.0 -

0.5 4

258

Concentration
(10° M)

0.0

Wavelength (nm)

180 200 220 240 260 280 300 320 340 360 380 400

cam-B3LYP/6-31+G(d,p), water
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3. 3%
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important charge transfer character
=> need for range-separated functionals (cam-B3LYP)
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i Monomers: ;
i P - i
i ml_cx \ m1l_c2 m2_cx || ml_c2_t2 i
Ny WA | | ————\|] /PN S l
| Dimers: |
i dimx dimHB1 ﬁ dimHB2 dimStack | I

M. Chis, C. Cainap, A. Gabudean, M. Focsan, N. Leopold, V. Chis
Manuscript in preparation
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TD-DFT Electronic absorption spectra of Dacarbazine
DCB monomers - what's their energetic order?

70.00 -
60.00 - Relative energies (AEy; - light color, AG - dark color) of the DTIC
' monomers calculated at B3LYP/6-31+G(2d,2p) level of theory, in gas
50.00 - (grey) and water (blue)
40.00 -
30.00 - %f %S’}
20.00 -
1000 1 _ .o o
©oaos
_AE Ik - -
Pi(%) —AE; /KT 0.00 I !
Ze m2_cx ml_cx ml_c2 ml_c3 m2_c2 m2_c3 ml_c2_t2

Relative Gibbs free
energy in water 0.00 0.8 0.8 4.5 6.5 8.0 55.02
(kcal/mol)

Boltzmann
population at RT 69.14 15.41 15.41 0.03 0.00 0.00 0.00
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DCB - UV-Vis spectrum 328 nm: SO-> S1 transition

i 2 ——C=10"M B3LYP/6-31+G(2d,2p) Gas-phase
C=10"M A\
C=5*10"M System (nm) f | Transitions | Contributions
——C=10"M
-
RS,
=
Q.
-
uo-, B3LYP/6-31+G(2d,2p) Water
< A
< System f | Transitions | Contributions
(nm)
———T . 323 | 0.61 | H-L 90%
ml_cx
200 400 600 800 =" | 224 |0.20|H-4-L 73%
Wavelength (nm)
1 320 | 0.68 |H-L 99%
u u m
UV-Vis absorption = | 224 |0.18 |H-4L 76%

chnactFriim nF nararhavinn
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TD-DFT Electronic absorption spectra of Dacarbazine

HOMO-LUMO gap —
284 nm (gas-phase) @
290 nm (water)

Conformer contributions

averaged by the Boltzmann @s
populations =N
314 nm (water)

328 nm - Experimental
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TD-DFT Electronic absorption spectra of Dacarbazine

DCB - UV-Vis spectrum - pH dependence

204

> a new excitated state is active for

electronic transition at high pH

» both peaks suffer a red shift by increasing

pH

» the bathochromic shift is due to the presence
of different species at different pH values:
a) protonated at low pH

b) neutral at medium pH
c) deprotonated species at high pH

pH 13
- | I P
E pH 10 ’P ./iﬂ "J "'J’ JJ:/ ?
) il %o %o ® 9
0%y P o Al ce®y IR > > J-:M
pH 6 ‘) b4 e 9 e
Eﬂ ; a) b) C)
pH 2
200 300 w00 500 m2 species of dacarbazine found at different pH values:

Wavelength (nm) a) protonated; b) neutral; ¢) deprotonated
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TD-DFT Electronic absorption spectra of Dacarbazine
DCB - UV-Vis spectrum - pH dependence

Absorption

.
204

pH 13
pH 12

pH 11

pH 10
pH7

pH 6

pH 4

pH3

pH 2

| ! |
300 400
Wavelength (nm)

T
500

—— m2_cx (water)

—— m1_cx (water)

— protonated (water)
—— deprotonated (water)

Absorption (a.u.)

o

-

200 250 300 350

Wavelength (nm)

Deprotonated
Protonated

» Calculations reproduce not anly the shifts of the
transitions but also their relative intensities




