
Electron Correlation Methods 

HF method: electron-electron interaction is replaced by an average interaction 

HF
HF
c EEE  0

E0 – exact ground state energy 
EHF – HF energy for a given basis set 

0HF
cE - represents a measure for the error introduced by the HF approximation 

Dynamical correlation – related to the movements of the individual electrons 
     - short range effect 
     - due the overestimation of short-range electron repulsions in Hartree-
        Fock wavefunctions 
 
Non-dynamical correlation - related to the fact that in certain circumstances the single 
reference ground state SD wave-function is inadequate to describe a given molecular state 
(i.e. in the case of near degeneracy between different configurations) 
   - long range effect 

Frank Jensen, Introduction to Computational Chemistry, John Wiley and Sons, New York, 1999 



Correlation Energy: Is it important? 
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N2 molecule: 
 CE ~ 0.5% of the EE 
      ~ 50% of the binding energy! 



Potential energy curves for H2 molecule 

wrong dissociation behavior for RHF wavefunction! 
 

Long-range correlation 



multideterminantal wave-function 
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Short-range correlation 
Consider the Hamiltonian for He atom: 
 

Close to r12 = 0, the term 1/r12 becomes infinite; however, the energy is finite.  
 
there must be an additional singularity in the Hamiltonian which cancels 1/r12 
term for r12 ≈ 0. The only candidate for this canceling term is the kinetic energy. 
 
The RHF wavefunction overestimates the probability of finding the two electrons 
close together (the electrons are avoided to get too close to each other because 
the electrostatic interaction is treated in only an average manner), and this in turn 
implies an overestimate of the electron repulsion energy.  
This is a dynamical effect (related to the electron movements) characteristic for 
short range distances and the corresponding energy is called correlation energy. 
For electrons with parallel spins, the exchange interaction (Fermi hole) contributes 
significantly to the reduction of the overestimation of 1/r12; the electrons are 
already kept apart by the Pauli principle, and the effects of electron correlation 
neglect are fairly minor. 
 



Excited Slater Determinants (ESD) 

Suppose we have N electrons and K basis functions used to expand the MOs 

RHF formalism will give N/2 occupied MOs and K-N/2 virtual MOs 

ESD – obtained by replacing MOs which are occupied in the HF determinant  
            by unoccupied MOs 
 - singly, doubly, triply, quadruply, etc. excited relative to the HF determinant 

Total number of ESD depends on the size of the basis set 
If all the possible ESD (in a given basis set) are included then all the electron correlation 
energy is recovered 



Methods including electron correlation are two-dimensional !! 

In many cases the interest is only in calculating the correlation energy associated with the 
valence electrons 

Frozen Core Approximation (FCA) 

= limiting the number of ESD to only those which can be generated by exciting the 
valence electrons 

- it is not justified in terms of total energy because the correlation of core electrons 
gives substantial contribution. However, it is essentially a constant factor which drops 
out when relative energies are calculated 

Methods for taking the electron correlation into account: 
 Configuration Interaction (CI) 
 Many Body Perturbation Theory (MBPT)               Moller-Plesset (MP) Theory 
 Coupled Cluster (CC) 



Configuration Interaction (CI) 

-based on the variational principle, the trial wave-function being expressed as a 
linear combination of Slater determinants 
 

The expansion coefficients are determined by imposing that the energy should be a 
minimum. The MOs used for building the excited determinants are taken from HF 
calculation and held fixed 
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In the large basis set limit, all electron correlation methods scale at least as K5 

Example  
Molecule: H2O 
Basis set: 6-31G(d)  => 19BF => 38 spin MOs (10 occupied, 28 virtual) 
 
The total number of excited determinants will be  
Many of them will have different spin multiplicity and can therefore be left out in the 
calculation. 
Generating only the singlet Configurational State Functions (CSF) we still obtain 
1002001 determinants!!! 
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Full CI method is only feasible for quite small systems!!! 



Configuration State Functions 

Consider a single excitation from the RHF 
reference. 

FRHF F(1) 

Both FRHF and F(1) have Sz=0, but F(1) is not an 
eigenfunction of S2. 

Linear combination of singly excited 
determinants is an eigenfunction of S2.   
 
Configuration State Function, CSF 
(Spin Adapted Configuration, SAC) 

Singlet CSF 

Only CSFs that have the same multiplicity 
as the HF reference 
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F 1,2 1(1)2(2)1(2)2(1)



Truncated CI methods 

Truncating the expansion given above at level one =>  
 
CIS - CI with only single excited determinants 
CID - CI with only doubly excited determinants 
CISD - CI with Singles and Doubles (scales as K6) 
CISDT - CI with Singles, Doubles and Triples (scales as K8) 
CISDTQ - CI with Singles, Doubles, Triples and Quadruples (scales as K10) 
 - gives results close to the full CI 
 - can only be applied to small molecules and small basis sets 
 
CISD - the only CI method which is generally feasible for a large variety of systems 
 - recovers 80-90% of the available correlation energy 
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Multi-Configuration Self-Consistent Field Method (MCSCF) 

- is the CI method in which the MOs are also varied, along with the coefficients of the CI 
expansion 

MCSCF methods - are mainly used for generating a qualitatively correct wave-function 
  - recover the static part of the correlation (the energy lowering is  
  due to the greater flexibility in the wave-function) 
 
dynamic correlation – the correlation of the electrons’ motions 

In MCSCF methods the necessary configurations must be selected 

CASSCF (Complete Active Space SCF) 

- the selection of the configurations is done by partitioning the MOs into active 
and inactive spaces 

active MOs  - some of the highest occupied and some of the lowest unoccupied MOs 
Within the active MOs a full CI is performed 

A more complete notation for this kind of methods is: 
[n,m]-CASSCF 
   - n electrons are distributed in all possible ways in m orbitals 
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HF

H2O MOs 

Carry out Full CI and orbital optimization within a small active 
space.   

Six-electron in six-orbital MCSCF is shown (written as [6,6]-
CASSCF) 

Complete Active Space Self-consistent Field (CASSCF) 

Why?   
1. To have a better description of the ground or excited 

state.  Some molecules are not well-described by a 
single Slater determinant, e.g. O3. 

2. To describe bond breaking/formation; Transition 
States. 

3. Open-shell system, especially low-spin. 
4. Low lying energy level(s); mixing with the ground 

state produces a better description of the electronic 
state. 



Alternative to CASSCF  Restricted Active Space SCF (RASSCF) 

 
RASSCF – the active MOs are further divided into three sections: RAS1, RAS2 and RAS3 

RAS1 space  – MOs doubly occupied in the HF reference determinant 
 
RAS2 space – both occupied and virtual MOs in the HF reference 
determinant 
 
RAS3 space – MOs empty in the HF reference determinant 

Configurations in RAS2 are generated by a full CI 
Additional configurations are generated by allowing for example a 
maximum of two electrons to be excited from RAS1 and a maximum 
of two electrons to be excited to RAS3 

RASSCF combines a full CI in a small number of MOs (RAS2) and a 
CISD in a larger MO space (RAS1 and RAS3) 



MØller-Plesset Perturbation Theory 

- a perturbational method in which the unperturbed Hamiltonian is chosen as a sum over Fock operators 
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The sum of Fock operators counts the average electron-electron repulsion twice and the perturbation 
is chosen the difference: 

eeee VV 2 where Vee represents the exact operator for the electron-electron repulsion 

It can be shown (Jensen, pag.127) that the zero order wave-function is the HF determinant while the 
zero order energy is just the sum of MO energies. Also, the first order energy is exactly the HF energy 
so that in this approach  
the correlation energy is recovered starting with the second order correction (MP2 method) 
 
In addition, the first contribution to the correlation energy involves a sum over doubly excited 
determinants which can be generated by promoting two electrons from occupied MOs i and j to virtual 
MOs a and b. The explicit formula for the second order Moller-Plesset correction is: 
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MP2 method  - scales as K5 

  - accounts for cca. 80-90% of the correlation energy 
  - is fairly inexpensive (from the computational resources perspective) for 
  systems with reasonable number of basis functions (100-200) 



Coupled Cluster (CC) Methods 

The idea in CC methods is to include all corrections of a given type to infinite order. 
The wave-function is written as: 
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with the cluster operator given by: 
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Acting on the HF reference wave function, the Ti operator generates all i-th excited Slater 
determinants: 
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The exponential operator may be rewritten as: 
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First term generates the reference HF wave-function 
Second term generates all singly excited determinants 
First parentheses generates all doubly excited states (true doubly excited states by T2 or 
product of singly excited states by the product T1T1 



The second parentheses generates all triply  excited states, true (T3) or products triples 
(T1T2, T1T1T1) 
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The energy is given by: 

So, the coupled cluster correlation energy is determined completely by the singles and 
doubles amplitudes and the two-electron MO integrals 

Truncated Coupled Cluster Methods 

If all TN operators are included in T the CC wave-function is equivalent to full CI wave-
function, but this is possible only for the smallest systems. 

Truncation of T 

Including only the T1 operator there will be no improvement over HF, the lowest level of 
approximation being T=T2 ( CCD=Coupled Cluster Doubles) 

If T=T1+T2  CCSD  scales as K6 the only generally applicable model 
If T=T1+T2+T3  CCSDT  scales as K8 

 


