
Basis Sets 
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For UHF wave-functions two sets of coefficients are needed: 
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Basis functions 
• mathematical functions chosen to give the maximum flexibility to the molecular orbitals 

• must have physical significance 

• their coefficients are obtained variationally 

• Type: polynomials, Fourier series, spline, etc. 

Basis set 
• a set of mathematical functions used to expand the molecular orbitals in order to solve the 

HFR equations. 

• each function is centered (has its origin) at some point in the molecule (usually on the nuclei). 

• each function is a function of the x,y,z coordinates of an electron. 



Fitting a function with polynomials 
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STO  

• provide reasonable representations of atomic orbitals 

• however, they are not well suited to numerical (fast) calculations of especially two-electron integrals 

• their use in practical molecular orbital calculations has been limited 

Slater Type Orbitals (STO) 

 

- introduced by Slater in 1930 

- similar to atomic orbitals of the hydrogen atom 

- more convenient (from the numerical calculation point of view) than AO, 

especially when n-l≥2 (radial part is simply r2, r3, ... and not a polinom) 
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STO – are labeled like hydrogen atomic orbitals and their normalized form is: 
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STO 

Advantages: 

• Physically, the exponential dependence on distance from the nucleus is very close to the exact 

hydrogenic orbitals. 

• Ensures fairly rapid convergence with increasing number of functions. 

 

Disadvantages: 

• Three and four center integrals cannot be performed analytically. 

• No radial nodes.  These can be introduced by making linear combinations of STOs. 

 

Practical Use: 

• Calculations of very high accuracy, atomic and diatomic systems. 

• Semi-empirical methods where 3- and 4-center integrals are neglected. 

 



Gaussian Type Orbitals (GTO) 
-introduced by Boys (1950) 

-powers of x, y, z multiplied by 

-α is a constant (called exponent) that determines the size (radial extent) of the function 
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or: 

N - normalization constant 

f - scaling factor 

scale all exponents in the related gaussians in molecular calculations 

l, m, n are not quantum numbers 

L=l+m+n - used analogously to the angular momentum quantum number for 

atoms to mark functions as s-type (L=0), p-type (L=1), d-type (L=2), etc 

(shells) 



The absence of rn-1 pre-exponential factor restricts single Gaussian primitives 

to approximate only 1s, 2p, 3d, 4f, ... orbitals. 

However, combinations of Gaussian primitives are able to approximate 

correct nodal properties of atomic orbitals 

GTO – uncontracted gaussian function (gaussian primitive) 

 
GTO  - contracted gaussian function (gaussian contraction) 

STO= GTO

GTOs are inferior to STOs in three ways: 

 

1. GTO’s behavior near the nucleus is poorly represented. 
At the nucleus, the GTO has zero slope; the STO has a cusp. GTOs 

diminish too rapidly with distance.   

2. The ‘tail’ behavior is poorly represented. 

3. Extra d-, f-, g-, etc. functions may lead to linear dependence of the 

basis set.  They are usually dropped when large basis sets are used. 

 

Advantage: 

Use a linear combination of GTOs to overcome these deficiencies.  



The first ten normalized gaussian primitives are: 
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There are 6 possible d-type cartesian gaussians while there are only 5 linearly 

independent and orthogonal d orbitals 

The gs, gx, gy and gz primitives have the angular symmetries of the four 

corresponding AO. 

The 6 d-type gaussian primitives may be combined to obtain a set of 5 d-type functions: 

gxy  dxy 

gxz  dxz 

gyz  dyz 
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The 6-th linear combination gives an s-type function: 

szzyyxxrr ggggg   )(5 2/1

In a similar manner, the 10 f-type gaussian primitives may be combined to 

obtain a set of 7 f-type functions 



GTOs are less satisfactory than STOs in describing the AOs close to the 

nucleus. The two type functions substantially differ for r=0 and also, for very 

large values of r. 

cusp condition: 

for STO:      [d/dr e-ξr]r ≠ 0 
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With GTO the two-electron integrals are more easily evaluated. The reason is that 

the product of two gaussians, each on different centers, is another gaussian 

centered between the two centers: 
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where: 

KAB=(2αβ/[(α+β)π])3/4exp(-αβ/(α+β)|RA-RB|2] 

The exponent of the new gaussian centered at Rp is: p=α+β 

 

and the third center P is on line joining the centers A and B (see the Figure below) 

RP=(αRA+βRB)/(α+β) 



The product of two 1s gaussian is a third 1s gaussian 

 allow a more rapidly and efficiently calculation of the two-electron integrals 

GTO 

 have different functional behavior with respect to known functional behavior of AOs. 
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L – the length of the contraction 

dpμ – contraction coefficients 

GTOs are obtained from HF calculations on isolated atoms by varying the exponents to obtain the minimum 

energy. 

It is normally to assume that these GTOs are not suited for molecular calculations.  

 CGTOs are used for molecular calculations 

Since GTOs from different shells are orthogonal, such primitives will not be combined in a given CGTO. 



How the gaussian primitives are derived? 

by fitting the CGF to an STO using a least square method 

varying the exponents in quantum calculations on atoms in order to 

minimize the energy 
Example 

STO-3G basis set for H2 molecule 

 

Each BF is approximated by a STO, which in turn, is fitted to a CGF of 3 primitives 

hydrogen 1s orbital in STO-3G basis set 

For molecular calculations, first we need a BF to describe the H 1s atomic orbital 

 then: MO(H2) = LCBF 

 

3 gaussian primitives: 

exponent  coefficient 

0.222766  0.154329 

0.405771  0.535328 

0.109818  0.444636 

2
3

2
2

2
1

332211
3

1
rrrGSTO

s ecNecNecN
 

If we use a scaling factor: 

22
3

22
2

22
1

332211
3

1
rfrfrfGSTO

s ec'Nec'Nec'N
 



βi=αif
2 

 43
2

/

i
i'N 












 71270540

2
43

.

/












! Using normalized primitives we do not need a normalization factor for the 

whole contraction 

If the primitives are not normalized, we have to obtain a normalization factor. 

For this, we use the condition: 
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In the general case of a contraction of dimension n, the above expression become: 
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The 1s hydrogen orbital in STO-3G basis set will be: 
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2.227660 3.425250 0.154329 1.794441 0.276934 

0.405771 0.623913 0.535328 0.500326 0.267839 

0.109818 0.168856 0.444635 0.187736 0.083474 

N=1.0000002 



Explicitly: 
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Segmented contractions  

- usually structured in such a way that the most diffuse primitives ((with the smallest exponent) are left 

uncontracted (i.e. one primitive per basis function)  

- more compact primitives (those with larger exponents) are used to construct one or more contractions which 

are subsequently renormalized  

 

Notations for segmented contractions  

Examples:  

( ) – contains the number of primitives that are given in the order of angular number  

(12s,9p,1d) ≡ (12,9,1)  

[ ] – used to specify the number of resulting contractions  

[5,4,1] – means that s-shell has 5 contractions, p-shell has 4 contractions and d-shell has only one contraction  

To denote how contractions were performed the following notation is used:  

(12,9,1) → [5,4,1]  

or  

(12,9,1)/[5,4,1]  

or  

(12s,9p,1d) → [5s,4p,1d]  

→ 12 s-type primitives were contracted to form 5 s-type contractions (BF)  

9 p-type primitives were contracted to form 4 p-type contractions (BF)  

(actually 12 BF were created because each p-type BF has 3 variants)  

1 d-type primitive was used as a BF by its self  

(5 d-type BF were created because each d-type BF has 5 variants)  



A more complete notation  

- explicitly list the number of primitives in each contraction  

(63111,4311,1)  

 means that:  

  from 12 s-type primitives (6+3+1+1+1) 5 s-type BF were formed:  

   one consists from 6 primitives  

   one consists from 3 primitives  

   three consists from 1 primitive  

  from 9 p-type primitives (4+3+1+1) 4 (12) p-type BF were obtained  

   one consists from 4 primitives  

   one consists from 3 primitives  

   two consists from 1 primitive  

  from 1 d-type primitive 1 (5) d-type BF was (were) formed  

Equivalent notations  

(63111/4311/1)  

(633x1,432x1,1)  

s(6/3/1/1/1), p(4/3/1/1), d(1)  

(6s,3s,1s,1s,1s/4p,3p,1p,1p/1d)  

(6,3,1,1,1/4,3,1,1/1)  

When specifying the structure of the basis set for the entire molecule, slashes are used to separate 

information for different atoms. The information is given starting from the heaviest atom.  

 

Example  

water molecule  
(10s,5p,1d/5s,1p) → [4s,2p,1d/2s,1p]  

→ contractions for oxygen atom: (10,5,1)/[4,2,1]  

→ contractions for hydrogen atoms (5,1)/[2,1]  

    → 19 BFs for water. Explain! 

further reading  

Jan Labanowski http://www.ccl.net/cca/documents/basis-sets/basis.html 



Minimal basis sets  
-one basis function for every atomic orbital that is required to describe the free atom 

 

For carbon, the minimal basis set consists of a ‘1s’ orbital, a ‘2s’ orbital and the full set of three ‘2p’ 

orbitals. 

 The minimal basis set for the methane molecule consists of 4 ‘1s’ orbitals - one per hydrogen atom, and 

the set of ‘1s’, ‘2s’ and ‘2p’ as described above for carbon. The total basis set comprises 9 basis 

functions. 

 

 

H – 1s orbital  

C – 1s, 2s, 2px, 2py, 2pz  

→ for CH4 molecule: 4 x H1s orbitals  

  C1s, C2s and 3 x C2p orbitals  

  → 9BF  

 

STO-nG  

STO-3G  

- a linear combination of 3 GTOs are fitted to an STO  

-for CH4 molecule → 9BF → 27 primitives  

 

Each basis function is a contraction of three primitive Gaussian.  

The exponents and expansion coefficients for the primitives are obtained from a least squares fit to Slater 

type orbitals (STOs).  

 



STO-3G basis set example 

http://www.chem.utas.edu.au/staff/yatesb/honours/modules/mod5/c_sto3g.html 

This is an example of the STO-3G basis set for methane in the format produced by the "gfinput" command in the 

Gaussian computer program. The first atom is carbon. The other four are hydrogens.  

 Standard basis: STO-3G (5D, 7F) Basis set in the form of general basis input:  

  1 0  //C atom 

 S    3 1.00 

   .7161683735D+02   .1543289673D+00 

   .1304509632D+02   .5353281423D+00 

   .3530512160D+01   .4446345422D+00 

 SP   3 1.00 

   .2941249355D+01  -.9996722919D-01   .1559162750D+00 

   .6834830964D+00   .3995128261D+00   .6076837186D+00 

   .2222899159D+00   .7001154689D+00   .3919573931D+00 

 **** 

  2 0  // H atom 

 S    3 1.00 

   .3425250914D+01   .1543289673D+00 

   .6239137298D+00   .5353281423D+00 

   .1688554040D+00   .4446345422D+00 

 **** 

  3 0 // H atom 

 S    3 1.00 

   .3425250914D+01   .1543289673D+00 

   .6239137298D+00   .5353281423D+00 

   .1688554040D+00   .4446345422D+00 

 **** 

  4 0 // H atom 

 S    3 1.00 

   .3425250914D+01   .1543289673D+00 

   .6239137298D+00   .5353281423D+00 

   .1688554040D+00   .4446345422D+00 

 **** 

  5 0 // H atom 

 S    3 1.00 

   .3425250914D+01   .1543289673D+00 

   .6239137298D+00   .5353281423D+00 

   .1688554040D+00   .4446345422D+00 

 **** 

The energy decreases by increasing the number of 

primitives used. 

The limit of an infinite basis set is known as the Hartree-

Fock limit. 

 This energy is still greater than the exact energy that 

follows from the Hamiltonian because of the 

independent particle approximation. 

http://www.chem.utas.edu.au/staff/yatesb/honours/modules/mod5/c_sto3g.html


Split valence basis sets 

http://www.chem.utas.edu.au/staff/yatesb/honours/modules/mod5/split_bas.html 

 
Valence orbitals are represented by more than one basis function, (each of which can in turn be composed of a fixed linear 

combination of primitive Gaussian functions). Depending on the number of basis functions used for the reprezentation of 

valence orbitals, the basis sets are called valence double, triple, or quadruple-zeta basis sets. Since the different orbitals of 

the split have different spatial extents, the combination allows the electron density to adjust its spatial extent appropriate to 

the particular molecular environment.  

Split is often made for valence orbitals only, which are chemically important.  

 

3-21G basis set 

The valence functions are split into one basis function with two GTOs, and one with only one GTO. (This is the "two one" 

part of the nomenclature.) The core consists of three primitive GTOs contracted into one basis function, as in the STO-3G 

basis set.  

 
  1 0  //C atom 

 S    3 1.00 

   .1722560000D+03   .6176690000D-01 

   .2591090000D+02   .3587940000D+00 

   .5533350000D+01   .7007130000D+00 

 SP   2 1.00 

   .3664980000D+01  -.3958970000D+00   .2364600000D+00 

   .7705450000D+00   .1215840000D+01   .8606190000D+00 

 SP   1 1.00 

   .1958570000D+00   .1000000000D+01   .1000000000D+01 

 **** 

  2 0  //H atom 

 S    2 1.00 

   .5447178000D+01   .1562850000D+00 

   .8245472400D+00   .9046910000D+00 

 S    1 1.00 

   .1831915800D+00   .1000000000D+01 

 **** 

 

 The split-valence (SV) basis set uses one function 

for orbitals that are not in the valence shell and 2 

functions for those in the valence shell. 

 The double-zeta (DZ) basis set uses two basis 

functions where the minimal basis set had only one 

function. 

http://www.chem.utas.edu.au/staff/yatesb/honours/modules/mod5/split_bas.html


Extended basis sets 
The most important additions to basis sets are polarization functions and diffuse basis functions.  

 

Polarization basis functions 
The influence of the neighboring nuclei will distort (polarize) the electron density near a given nucleus. In order to 

take this effect into account, orbitals that have more flexible shapes in a molecule than the s, p, d, etc., shapes in 

the free atoms are used.  

 

An s orbital is polarized by using a p-type orbital 

A p orbital is polarized by mixing in a d-type orbital 

6-31G(d) – “spectroscopic” basis set 

 a set of d orbitals is used as polarization functions on heavy atoms 

 

6-31G(d,p) 

 a set of d orbitals are used as polarization functions on heavy atoms  

 and a set of porbitals are used as polarization functions on hydrogen atoms  

 A set of Gaussian functions one unit higher in angular momentum than what are present in the 

ground state of the atom are added as polarization functions, again increasing the flexibility of 

the basis set in the valence region in the molecule. 

 Orbital polarization phenomenon may be introduced well by adding ‘polarization functions’ to the 

basis set. 

Let’s polarize! 

"D-polarization function" by Rifleman 82 - Own work. Licensed under CC BY-SA 3.0 via 

Wikimedia Commons - http://commons.wikimedia.org/wiki/File:D-

polarization_function.png#mediaviewer/File:D-polarization_function.png 

http://www.chem.utas.edu.au/staff/yatesb/honours/modules/mod5/polar_bas.html
http://www.chem.utas.edu.au/staff/yatesb/honours/modules/mod5/diffuse_bas.html


Diffuse basis functions 

For excited states and anions where the electronic density is more spread out over the molecule, some 

basis functions which themselves are more spread out are needed (i.e. GTOs with small exponents).  

These additional basis functions are called diffuse functions. They are normally added as single GTOs.  

6-31+G - adds a set of diffuse sp orbitals to the atoms in the first and second rows (Li - Cl).  

6-31++G - adds a set of diffuse sp orbitals to the atoms in the first and second rows (Li- Cl) and a set of 

diffuse s functions to hydrogen.  

Diffuse functions can also be added along with polarization functions.  

This leads, for example, to the 6-31+G(d), 6-31++G(d), 6-31+G(d,p) and 6-31++G(d,p) basis sets.  

Standard basis: 6-31+G(d) (5D, 7F) 
 AO basis set in the form of general basis input: 
      1 0 
 S   6 1.00 
      0.5484671660D+04  0.1831074430D-02 
      0.8252349460D+03  0.1395017220D-01 
      0.1880469580D+03  0.6844507810D-01 
      0.5296450000D+02  0.2327143360D+00 
      0.1689757040D+02  0.4701928980D+00 
      0.5799635340D+01  0.3585208530D+00 
 SP   3 1.00 
      0.1553961625D+02 -0.1107775495D+00  0.7087426823D-01 
      0.3599933586D+01 -0.1480262627D+00  0.3397528391D+00 
      0.1013761750D+01  0.1130767015D+01  0.7271585773D+00 
 SP   1 1.00 
      0.2700058226D+00  0.1000000000D+01  0.1000000000D+01 
 SP   1 1.00 
      0.8450000000D-01  0.1000000000D+01  0.1000000000D+01 
 D   1 1.00 
      0.8000000000D+00  0.1000000000D+01 
 **** 
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Number of primitives and basis functions for 1,2-Benzosemiquinone free radical with the STO-3G 
basis set 
 
 
Primitives: 
atom C: nr.primitives = 15 x nr. atoms = 6 → 90 
atom H:  nr.primitives = 3 x nr. atoms   = 4 → 12 
atom O:  nr.primitives = 15 x nr. atoms = 2 → 30 
    TOTAL: 132 GTO primitives 
Basis functions: 
atom C: nr. BF = 5 x nr.atoms = 6 → 30 
atom H:  nr. BF = 1 x nr.atoms = 4 → 4 
atom O:  nr. BF = 5 x nr.atoms = 2 → 10 
    TOTAL: 44BF 

How many basis functions? 
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How many basis functions? 

Number of primitives and basis functions for 1,2-
Benzosemiquinone free radical with the 6-31+G(d) basis set 
 
Primitives: 
atom C: nr.primitives = 32 x nr. atoms = 6 → 192 
atom H:  nr.primitives = 4 x nr. atoms   = 4 → 16 
atom O:  nr.primitives = 32 x nr. atoms = 2 → 64 
   TOTAL: 272 GTO 
primitives 
Basis functions: 
atom C: nr. BF = 19 x nr.atoms = 6 → 114 
atom H:  nr. BF = 2 x nr.atoms = 4 → 8 
atom O:  nr. BF = 19 x nr.atoms = 2 → 38 
   TOTAL: 160BF 



Pople Style Basis Sets 

 

• k primitive GTOs for core electrons 

n primitive GTOs for inner valence orbitals 

l primitive GTOs for medium valence orbitals 

m primitive GTOs for outer valence orbitals 

 

• + means 1 set of P (SP) diffuse functions added to heavy atoms. 

++ means 1 set of P (SP) diffuse functions added to heavy atoms and 

1 s diffuse function added to H atom. 

 

• * means 1 set of d polarization functions added to heavy atoms. 

** means 1 set of d polarization functions added to heavy atoms and 

1 set of p (sp) polarization functions added to H atom. 

 

• idf means i d sets and 1 f set of polarization functions added to 

heavy atoms. 

idf,jpd means i d sets and 1 f set polarization functions added to 

heavy atoms and j p sets and 1 d set of polarization functions added 

to H atom. 

E.g., 3-21G, 6-31G,  

and 6-311G 

E.g., 6-31+G, 

6-31++G 

E.g., 6-31G* or  

6-31G(d)  

E.g., 6-31+G(d,p) 

k-nlm++G** or k-nlm++G(idf,jpd)  



Common Basis Sets 
•Pople’s Basis Sets 

•3-21G 

3 primitive GTO for core electrons, 2 for inner and 1 for outer  

valence orbitals 

Preliminary geometry optimization; Poor for energy 

 

Common moderate basis set 

•6-31G    

•6-31G(d) -> “spectroscopic” basis set 

•6-31G(d,p) 

 

More flexible basis sets 

•6-31+G(d,p)     Good for geometry and energy 

•6-311+G(2df,2p) Good for geometry and accurate energy 

 



Plane wave basis sets-In addition to localized basis sets, plane wave 

basis sets can also be used in quantum chemical simulations. 

Typically, a finite number of  plane wave functions are used, below a 

specific cutoff energy which is chosen  for a certain calculation.   

 

 -  used (recommended) for periodical calculations 

Dunning’s Correlation-consistent Basis Sets 

The basis sets are designated as either: 

•cc-pVXZ  Xmax=8  

•aug-cc-pVXZ. 

 ‘cc’ means “correlation consistent”. 

 ‘p’ means “polarization functions added”. 

 ‘aug’ means “augmented” with (essentially) diffuse functions. 

 ‘VXZ’ means “valence-X-zeta” where X could be any one of the following 

 D’ for “double”, ‘T’ for “triple”, Q for “quadruple”, or 5 or 6, etc. 

 

• Systematically converge the correlation energy to the basis set limit.  

• Work typically with high-level electron-correlated wave function methods. 
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Complete basis 
set extrapolation 
Example 



Effective core potentials (ECPs) 
 
Core electrons, which are not chemically very important, require a large number of basis 
functions for an accurate description of their orbitals. This normally applies to third and higher 
row elements. 
 

Core (inner) orbitals are in most cases not affected significantly by changes in chemical 
bonding. Effective Core Potential (ECP) approaches allow treatment of inner shell electrons as if 
they were some averaged potential rather than actual particles.  
This separation suggests that inner electrons can be ignored in a large number of cases. 
The use of a pseudo-potential that approximates the potential felt by the valence electrons was 
first proposed by Fermi in 1934. In 1935 Helman suggested the following potential for the 
valence electron of potassium: 

Using pseudo-potentials, the need for core basis functions, which usually require a large number 
of primitives to describe them is eliminated. 

It is quite easy to incorporate relativistic effects into ECP, while all-electron relativistic computations 
are very expensive. The relativistic effects are very important in describing heavier atoms, and 
luckily ECP's simplify calculations and at the same time make them more accurate with popular non-
relativistic ab initio packages.  
For the rest of electrons (i.e. valence electrons), basis functions must be provided.  
These are special basis sets optimized for the use with specific ECP's.  








p

1i

rξn
0iECP

2
0iierd(r)U

ECP potentials are specified as parameters of the following equation: 

where p is the dimension of the expansion di are the coefficients for the expansion terms, r0 is the distance 

from nucleus and  ξi represents the exponents for each term. 

• Saving computational effort  

• Taking care of relativistic effects 

• Important for heavy atoms, e.g., transition metal 

atoms 

Examples:  

CEP-4G, CEP-31G, CEP-121G, LANL2MB (STO-3G 1st row), LANL2DZ (D95V 1st 

row), SHC (D95V 1st row), SDD 

Example:  

Ag with Lanl2DZ basis set and ECP 

Ag: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s1, 4d10 

Valence electrons: 4s2, 4p6, 4d10, 5s1 

 19 valence electrons 

 22 valence basis functions Explain!! 
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complexPd1.chk 

#P Opt B3LYP/gen pseudo=read 

  

complex Pd v1 

  

0 2 

 C 8.89318310    9.90388210    6.72569337 

 C 9.52931379    8.77525770    6.27102032 

 H 9.29586123    7.93893890    6.60431879 

 C 10.52592748    8.89096200    5.30965653 

 H 10.95942133    8.13380930    4.98695425 

 C 10.85850598   10.13123090    4.84438728 

 H 11.51852449   10.22866610    4.19609286 

 C 10.20972534   11.23549650    5.34144511 

etc.  

 H 4.15752044   17.83312399   10.48668123 

 H 5.63848578   17.14049639   11.10318367 

 

N C O H 0 

6-31G(d) 

**** 

Pd 0 

CEP-121G 

**** 

 

Pd 0 

CEP-121G 

Type  of ECPs 
CEP-4G, CEP-31G, CEP-121G, LANL2MB, LANL2DZ, SDD 



Recomendations for basis set selection 
 
• Always a compromise between accuracy and computational cost! 

 
• With the increase of basis set size, calculated energy will converge (complete basis set (CBS) limit). 

 
• Special cases (anion, transition metal, transition state) 

 
• Use smaller basis sets for preliminary calculations and for heavy duties (e.g., geometry optimizations), 

and use larger basis sets to refine calculations.  
 

• Use larger basis sets for critical atoms (e.g., atoms directly involved in bond-breaking/forming), and use 
smaller basis sets for unimportant atoms (e.g., atoms distant away from active site). (ONIOM method) 
 

• Use popular and recommended basis sets. They have been tested a lot and shown to be good for 
certain types of calculations. 
 

• Special properties:  
• IGLO basis sets for NMR spectra 
• EPR style basis sets for EPR spectra (EPR-II, EPR-III of Barone et al.) 
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Do you need a basis set? 
EMSL Gaussian Basis Set Exchange 
http://www.emsl.pnl.gov/forms/basisform.html 
 

http://www.emsl.pnl.gov/forms/basisform.html




Molecular properties as derivatives of the energy 
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See: G. Gauss, Modern Methods and Algorithms of Quantum Chemistry, 

J. Grotendorst (Ed.), John von Neumann Institute for Computing, 

Julich, NIC Series, Vol. 1, ISBN 3-00-005618-1, pp. 509-560, 2000. 

Example: 



Interaction energy in a complex or cluster is computed as the 

difference between the energy of the complex and the total energy 

of the (noninteracting) monomers, which form the complex.  

A+B->AB       ΔE=EAB-EA-EB      (ΔE<0) 

 

ΔE – often too large for weakly (H-bond, dispersion) bound systems 

       - more evident for small basis sets 

Basis Set Superposition Error 
See C. David Sherrill, http://vergil.chemistry.gatech.edu/notes/cp.pdf 

He dimer – interaction energy 

method   r(A)   Eint (kJ/mol) 

RHF/cc-pVDZ 3.211 -0.0038 

RHF/cc-pVTZ 3.662 -0.0023 

RHF/cc-pVQZ 3.887 -0.0011 

RHF/cc-pV5Z 4.131 -0.0005 
Data from: H. Zipse, http://www.cup.uni-

muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html 

Basis set superposition error 

ΔE = f(#BFs) 

       - decreases by increasing the the #BFs (for non-correlated methods) 

 

When the two fragments approaches each other 

F1 is artificially stabilized because it uses extra BFs centered on F2 and vice-versa 

    => inside the complex, F1 and F2 are better described than in the case when they are infinitely separated 

               => inconsistent treatement of monomers = source of BSSE 

In the limit of CBS => BSSE -> 0 

http://vergil.chemistry.gatech.edu/notes/cp.pdf
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html
http://www.cup.uni-muenchen.de/oc/zipse/basis-set-superposition-error-bsse.html


Boys and Bernardi (Mol. Phys., 19, 553 (1970)) suggested an elegant method, which they named the 

counterpoise (CP) correction, to cope with this problem.  

According to this method, the individual monomers are calculated using the  basis set of the complex.  

Since the energies of the individual molecules usually are lower when computed within the composite basis 

of the interacting molecules rather than in the monomer’s own basis, it follows that the CP corrected 

interaction energies are smaller (in magnitude) than the uncorrected ones. 



Note:  
7 calculations are nedeed for obtaining CP corrected binding energy for a heterodimer only 4 in case of a homodimer 

d BSSE 



Basis set superposition error: 
 
 Tends to zero as the fragment’s basis set approaches completeness 
 It is a positive value 
 Depends on the geometrical parameters of the complex 



Quantum chemical calculations are frequently used to estimate strengths of hydrogen bonds. 
We can distinguish between intermolecular and intra-molecular hydrogen bonds. The first 
of these are usually much more straightforward to deal with. 
 
1. Intermolecular Hydrogen Bond energies 
In this case it is normal to define the hydrogen bond energy as the energy of the 
hydrogen bonded complex minus the energies of the constituent molecules/ions. 
Let us first consider a simple example with high (C3v) symmetry –   H3N...HF 

 Electronic energy (a.u.) 
NH3      -56.19554 
HF    -100.01169 
H3N…HF    -156.22607 
 
                                                                                                            
EHB 
                                                                                             
NH3 + HF  →  H3N…HF 
 
EHB  =    2625.5 x (156.22607  - 100.01169                                                                                                                    
- 56.19554)=  38.8 kJ/mol 
         -not corrected value 

Practical aspects 

1. Add in the section route: 
 Counter=n 
     where n - # of fragments 
2. Specify the groups (1, 2, …) to 
which the atoms belong) 

In the geometry specification section each atom’s line will be finished by an index specifying the 
fragment to which it belongs 
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Example 

%chk=MP2_D2h_2PTDCI_BSSE.chk 

%mem=4GB 

%nprocshared=4 

#p mp2/6-31g(d) Counter=2 

  

2PTCDI Popt BSSE correction 

  

0 1 

 C                 -1.99898000    1.18154000    0.99560500 1 

 C                 -1.26309500    0.11795300    1.60980400 1 

 C                  0.20480800    0.19836000    1.66469500 1 

 C                  0.86397000    1.33836500    1.10266300 1 

 C                  0.12808500    2.40195200    0.48846500 1 

 C                 -1.33981800    2.32154400    0.43357300 1 

 C                  0.98224400   -0.80350700    2.24885600 1 

...... 

C                 -0.86397000   -1.33836500   -1.10266300  2 

 C                 -0.12808500   -2.40195200   -0.48846500 2 

 C                  1.33981800   -2.32154400   -0.43357300 2 

 C                 -2.29155500   -1.41656400   -1.15604700 2 

 C                 -2.95995400   -2.54054700   -0.60314400 2 

 C                 -3.03552800   -0.36994800   -1.76176400 2 

 C                 -0.20480800   -0.19836000   -1.66469500 2 

 C                 -2.22846900   -3.55635000   -0.01463400 2 

 C                 -4.43889800   -2.64137300   -0.64791900 2 

2 

...... 



Exercise 
Calculate the interaction energies in the DNA base pairs Adenine-Thymine and Cytosine-Guanine. 
Consider the BSSE 

You can look for pdb files of DNA bases at: 
http://www.biocheminfo.org/klotho/pdb/ 

Adenine-Thymine base pair 

Guanine-Cytosine base pair 


