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1. Atomic Units
m_ =1, e=1,a,=1, h=2m, e’/4nejao = 1

Symbol Quantity Valuein a.u. Valuein SI units

Me Mass (Electron mass) 1 9.1094-10-31Kg

e Charge (Electron charge) 1 1.6022-10-13C

ao Length (Bohr first radius ( 1 0.52918-1019m
#*/(kme2))

En Energy (Ex= /i 2/meac?) 1 27.2114eV=4.3597-10-18]

3] Angular momentum 1 1.0546-10-34]s

VE Velocity (o-c=e?/dneofi ) 1 2.187691-108m-s1

To Time (o= /Ex) 1 2.418884-10Vs

Anep Vacuum permittivity 1 1.113-10-12C2%/(Im)

do Electric dipole moment (eag) 1 8.478-10-3Cm

elag?Ex-!  Electric polarizability 1 1.649-10-41C2m?2]-1

Derived units

h Planck’s constant 2n 6.626-103]s

C Speed of light (c=ve/a) 137.036 2.998-108m/s

He Bohr magneton (e 1 /2m.) a 9.274-10-23/T

Hn Nuclear magneton 2.723-10¢  5.051-1027)/T

Ho Vacuum permeability (4n/c?) 6.629-10¢ 4x-10-731s%/(mC2)

Eo Electric field strength 1 5.1423-101%/m




Moroton = 1836.15 au  (1.6726 x 10?7 kg)

Energy: 1a.u.=27.212eV =627.51 Kcal/mol =219470 cm? 1Kcal/mol = 4.184K]/mol
Electric dipole moment: lea, = 2.54181De; 1D _=0.3934ea,

Other fundamental constants:

Boltzmann'’s constant: k;=1.38066-10-23] /K
Avogadro’s number: N,=6.02205-10%*mol?
Rydberg constant: R_=1.097373:10"m!
Compton wavelength of electron: A:=2.426309-10"1?m
Stefan-Boltzmann constant: 0=5.67032-108W/(m?K*)

Electric field unit:

Field=X+a => an electric field of a*10-* a.u. is applied along the X direction.
1.a.u.=Hartree/(charge*bohr) = 27.2114*1.6 10-1°J /(1.6 101 C* 5.29177 1011 m)
1a.u.=5.1423 10" V/m

1au.=51.423V/A

E(V/A)=51.423E, (a.u.)

Field=X+1000 means a field of 0.1a.u. (5.1423 V/A) is applied along the X direction

For UV-Vis spectra:
E(eV)=const./A (nm) = 1240/A (nm). A (nm) = 1240/E (eV)
=1239.9785 /A (nm)



Energy conversion factors

Hartree (a.u.) | KJ/mol | Kcal/mol eV cm?!
Hartree (a.u.) 1 2625.5 627.51 27.2114 219470
KJ/mol 0.00038088 1 0.23901 0.010364 83.593
Kcal/mol 0.0015936 4,184 1 0.043363 349.75
eV 0.036749 96.485 23.061 1 8065.5
cm! 4.5563E-06 | 0.011963 | 0.0028591 | 0.00012398 1
Hamiltonian for the hydrogen atom:
2 2
h 1 e
_ Ve _
SI units: 2Mg Angy T
Atomic units: . E VZ _1
2 r




2. Basic concepts

» molecular Hamiltonian

» form of many-electron wave-functions
(Slater determinants (SD) and linear combinations of SD)

» Hartree-Fock (HF) approximation

» more sophisticated approaches which use the HF method as a starting point
(correlated post-Hartree Fock methods)

General Schrodinger equation
HW=EW

ﬂ <::| Born-Oppenheimer approximation

Electronic Schrodinger equation
HUJE=EHJE

ﬂ <::| W = Slater determinant

Hartree-Fock equations
Fi[®]D=Ed;

ﬂ <@ Introducing the basis sets (0=LCBF)

Matrix form of the Roothaan-Hall equations
FC=SCE

Approximations made in the framework of the
Hartree-Fock-Roothaan-Hall theory



The Molecular Hamiltonian

The non-relativistic time-independent Schrodinger equation:
H|W>=E|¥>

3

Z

Major
challenge
in solving
the SE !!!

i,j — electrons (N)
A, B - nuclei (M)

H=-)» ZV:i-» —— Vi - ZA Sl I A<B (
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M, - the ratio of the mass of nucleus A to the mass of an electron
Z, - the atomic number of nucleus A
9 5 5 T, - the operator for the kinetic energy of the electrons
VIZ — T\ - the operator for the kinetic energy of the nuclei
V. — the operator for the Coulomb attraction between electrons and nuclei
V.. - the operator for the repulsion between electrons
Vy — the operator for the repulsion between nuclei
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- represents the general problem
Exact solution for systems containing more than one electron is unknown!
-> approximations, approximations, ...
-> (1) must to be separated in two parts: electronic and nuclear problems
Born-Oppenheimer Approximation

W=W(X{, Xy XppeenXpy)

The term V_ in the Hamiltonian prevents any wave-function ¥(x,X) from being written as a
product of an electronic and a nuclear wavefunction.

Thus, we need approximations so that we can factorize the wavefunction!

Assumptions:

The nuclei are much heavier than electrons (m =1836m,)

proton

—> they move much more slowly .-
—> can be considered frozen in a single arrangement (molecular conformation)
—> the electrons can respond almost instantaneously
to any change in the nuclear position



The electrons in a molecule are moving in the field of fixed nuclei.

Y=Y (x,{R}) e« ¥\ (R)

— factorized (separable) form

T N

» WY is parametrically dependent on the positions of the nuclei ({R})
» SE is separated in 2 SEs, one for electrons and one for nuclei




» two Hamiltonians

Assumption: For each value of the nuclear positions, the electronic system is in the
electronic ground state, corresponding to the lowest E (R).

Electronic Hamiltonian:
» describes the motion of N electrons in the field of M fixed point charges (nuclei)

N-1 N
H.(R) = Z V2 - ;Azl +.21:JZ.:T (2)

H.(R) means that H, depends on the nuclei positions (R coordinate does not appear in H, but r;,)

Electronic Schréodinger equation:

H.(R)¥ (x;R)=E.(R)¥.(X;R) (3)

V¥R (4)
- the electronic wave-function which describes the motion of the electrons
- describes electronic states for fixed nuclear coordinates {R}
- explicitly depends on the electronic coordinates
- parametrically depends on the nuclear coordinates because H is a function of the
positions R of the nuclei
- a different electronic wave-function is obtained for each nuclear configuration

E.=E.(R) (5)



» Total energy:

Efot (R) =

Z
<

(6)

Equations (2) - (6) = H.(R), ¥, E,
= electronic problem
The geometry dependent electronic energy
- plays the role of the potential energy in the Schrodinger equation for the nuclear
motion
- it is generally termed potential energy surface (PES).



Potential energy surface (PES) examples
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Fig. 1 Calculated potential energy curves for the stacked PTCDI dimer at different levels of theory, fitted to a Murrell-Sorbie potential function.

M. Oltean et al., Phys. Chem. Chem. Phys., 15 (2013) 13978-13990
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Fig. 2. PES of PAN scanned at PM6 level of theory.

L. Szabé et al. / Spectrochimica Acta Part A 93 (2012) 266-273



If the electronic problem is solved
» we can solve for the motion of the nuclei using the electronic energy E(R) as the
potential energy in Schrodinger equation for the nuclear motion.

Since the electrons move much faster than the nuclei
» we can replace the electronic coordinates by their average values (averaged over the
electronic wave-function)

Nuclear Hamiltonian
» describes the motion of the nuclei in the average field of the electrons

R IR WIS N IES WA
M, i1 2 i-1 Ac1 lia i1 )i B A16-A Rag
M1 MM 7 7
=—» —Vi+E ATB
ZZMA -{R}) + AZlé R

M
1 0
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or:

H, =—Z {j F(r, R)Hee, P (r, R)dr|+ ZZ

Al A=1B>A

- the integral corresponds to the potentlal energy of nuclei in the field of
electrons.



Nuclear Schrodinger equation
Hy|Wy> = E[WPy>

Yy - nuclear wavefunction
- solution of the ro-vibrational problem for the nuclear coordinates, in the
presence of an electronic potential energy surface
- describes the vibration, rotation and translation of a molecule

E - total energy of the molecule (in the Born-Oppenheimer approximation)
- includes:
- electronic energy
- vibrational energy
- rotational energy
- translational energy

Total wave-function in the Born-Oppenheimer approximation:

W(x,R) = ¥, (x,{R})- ¥y (R)

Born-Oppenheimer approximation
» usually a good approximation
» bad approximation for:
= excited states (high energy for the nuclear motion)
= degenerate or cuasidegenerate states



Requirements for the wave function
we assume the Born-Oppenheimer approximation and will only be concerned with
the electronic Schrodinger equation.

1. Normalization .
¥ is normalized to unity: J‘LP (r)¥(r)dr =1

Integration is performed over the coordinates of all N electrons.
The wavefunction must also be single-valued, continuous and finite.

2. Antisymmetry with respect to the permutation of two electrons
Electrons are fermions -> the electron wave-function must be antisymmetric with respect to
the interchange of the coordinate x (both space and spin) of any two electrons.

Y(x, Xy, ) X, sy X, -Xy) = -P (X, Xy, -, X, oy Xy Xy
3. The electronic wavefunctions must be eigenfunctions of S, and S? operators

The electronic Hamiltonian
- does not contain any spin operators
- it commutes with the operators S, and S? [H,S,]=0 [H,5%]=0
corresponding eigenvalues: M¢ and S(S+1), respectively.

N N
S, =) s, > Ms S? =) 'sf >S(S+1)
i i



We take care of spin by using spin-orbitals instead of pure spatial orbitals.
a(o) and (o) - spin functions (complete and orthonormal)

[a(o)a(o)do =[ B(o)B(o)do =1
(a|a)=(B|B)=1

and
j a(c)B(c)do = j B(c)a(c)do =0
(| B)=(Ba)=0

The electrons are described by a set of spatial (r) and spin (o) coordinates:
x={r,0}

Homework

Write a C program to calculate the coordinates of the atoms in a graphene
sheet (10 x 10 atoms) whose structure is given below.

The C-C bond length in graphene is 1.42 A.
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