Course 2

1. Atomic units

2. Basic concepts

3. Born-Oppenheimer approximation

1. Atomic Units

$$
\mathrm{m}_{\mathrm{e}}=1, \mathrm{e}=1, \mathrm{a}_{\mathrm{o}}=1, \mathrm{~h}=2 \pi, \mathrm{e}^{2} / 4 \pi \varepsilon_{0} \mathrm{ao}=1
$$

Symbol	Quantity	Value in a.u.	Value in SI units
$\mathrm{me}_{\text {e }}$	Mass (Electron mass)	1	$9.1094 \cdot 10^{-31 \mathrm{Kg}}$
e	Charge (Electron charge)	1	$1.6022 \cdot 10^{-19} \mathrm{C}$
a_{0}	Length (Bohr first radius (1	$0.52918 \cdot 10^{-10} \mathrm{~m}$
	$\hbar^{2} /\left(\mathrm{kme}^{2}\right)$)		
E_{H}	Energy ($\mathrm{E}_{\mathrm{H}}=\hbar^{2} / \mathrm{m}_{\mathrm{e}} \mathrm{a}_{0}{ }^{2}$)	1	$27.2114 \mathrm{eV}=4.3597 \cdot 10^{-18} \mathrm{~J}$
\hbar	Angular momentum	1	$1.0546 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}$
Vb	Velocity ($\alpha \cdot \mathrm{C}=\mathrm{e}^{2} / 4 \pi \varepsilon_{0} \hbar$)	1	$2.187691 \cdot 10^{6} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
τ_{0}	Time ($\tau_{0}=\hbar / \mathrm{E}_{\mathrm{H}}$)	1	$2.418884 \cdot 10^{-17} \mathrm{~s}$
$4 \pi \varepsilon_{0}$	Vacuum permittivity	1	$1.113 \cdot 10^{-10} \mathrm{C}^{2} /(\mathrm{Jm})$
d_{0}	Electric dipole moment (eao)	1	$8.478 \cdot 10^{-30} \mathrm{Cm}$
$\mathrm{e}^{2} \mathrm{a}_{0} \mathrm{E} \mathrm{H}^{-1}$	Electric polarizability	1	$1.649 \cdot 10^{-41} \mathrm{C}^{2} \mathrm{~m}^{2} \mathrm{~J}^{-1}$
	Derived units		
h	Planck's constant	2π	$\left.6.626 \cdot 10^{-34}\right] \mathrm{s}$
c	Speed of light ($\mathrm{c}=\mathrm{V}_{\mathrm{B}} / \alpha$)	137.036	$2.998 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
μ_{B}	Bohr magneton (e $\hbar / 2 \mathrm{~m}_{\mathrm{e}}$)	1/2	$9.274 \cdot 10^{-24} \mathrm{~J} / \mathrm{T}$
μ_{N}	Nuclear magneton	$2.723 \cdot 10^{-4}$	$\left.5.051 \cdot 10^{-27}\right] / \mathrm{T}$
μ_{0}	Vacuum permeability ($4 \pi / \mathrm{c}^{2}$)	$6.629 \cdot 10^{-4}$	$4 \pi \cdot 10^{-7} \mathrm{Js}^{2} /\left(\mathrm{mC}^{2}\right)$
E 0	Electric field strength	1	$5.1423 \cdot 10^{11} \mathrm{~V} / \mathrm{m}$

$$
m_{\text {proton }}=1836.15 \mathrm{au} \quad\left(1.6726 \times 10^{-27} \mathrm{~kg}\right)
$$

Energy: 1 a.u. $=27.212 \mathrm{eV}=627.51 \mathrm{Kcal} / \mathrm{mol}=219470 \mathrm{~cm}^{-1} \quad 1 \mathrm{Kcal} / \mathrm{mol}=4.184 \mathrm{KJ} / \mathrm{mol}$ Electric dipole moment: $\quad 1 \mathrm{ea}_{0}=2.54181 \mathrm{De} ; 1 \mathrm{D}_{\mathrm{e}}=0.3934 \mathrm{ea}_{0}$

Other fundamental constants:

Boltzmann's constant:
Avogadro's number:
Rydberg constant:
Compton wavelength of electron:
Stefan-Boltzmann constant:

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{B}}=1.38066 \cdot 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \mathrm{~N}_{\mathrm{A}}=6.02205 \cdot 10^{23} \mathrm{~mol}^{-1} \\
& \mathrm{R}_{\infty}=1.097373 \cdot 10^{7} \mathrm{~m}^{-1} \\
& \lambda_{\mathrm{C}}=2.426309 \cdot 10^{-12} \mathrm{~m} \\
& \sigma=5.67032 \cdot 10^{8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)
\end{aligned}
$$

Electric field unit:
Field=X+a => an electric field of $\mathbf{a}^{*} \mathbf{1 0}^{-\mathbf{4}}$ a.u. is applied along the X direction.
1.a.u. $=$ Hartree $/($ charge*bohr $)=27.2114^{*} 1.610^{-19} \mathrm{~J} /\left(1.610^{-19} \mathrm{C} * 5.2917710^{-11} \mathrm{~m}\right)$

1 a.u. $=5.142310^{11} \mathrm{~V} / \mathrm{m}$
1 a.u. $=51.423 \mathrm{~V} / \AA ̊$
$\mathrm{E}_{\mathrm{f}}(\mathrm{V} / \AA ̊)=51.423 \mathrm{E}_{\mathrm{f}}$ (a.u.)
Field $=\mathrm{X}+1000$ means a field of 0.1 a.u. (5.1423 V/Å) is applied along the X direction
For UV-Vis spectra:
$\mathrm{E}(\mathrm{eV})=$ const. $/ \lambda(\mathrm{nm}) \approx \mathbf{1 2 4 0} / \lambda(\mathrm{nm}) . \lambda(\mathrm{nm}) \approx 1240 / \mathrm{E}(\mathrm{eV})$

$$
=1239.9785 / \lambda(\mathrm{nm})
$$

Energy conversion factors

	Hartree (a.u.)	KJ/mol	Kcal/mol	$\mathbf{e V}$	$\mathbf{c m}^{\mathbf{- 1}}$
Hartree (a.u.)	1	$\mathbf{2 6 2 5 . 5}$	$\mathbf{6 2 7 . 5 1}$	$\mathbf{2 7 . 2 1 1 4}$	219470
KJ/mol	0.00038088	1	0.23901	0.010364	83.593
Kcal/mol	0.0015936	4.184	1	0.043363	349.75
$\mathbf{e V}$	0.036749	96.485	23.061	1	8065.5
$\mathbf{c m}^{\mathbf{- 1}}$	$4.5563 \mathrm{E}-06$	0.011963	0.0028591	0.00012398	1

Hamiltonian for the hydrogen atom:

SI units:

$$
-\frac{\hbar^{2}}{2 \mathrm{~m}_{\mathrm{e}}} \nabla^{2}-\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{r}}
$$

Atomic units: $\quad-\frac{1}{2} \nabla^{2}-\frac{1}{r}$

2. Basic concepts

$>$ molecular Hamiltonian
$>$ form of many-electron wave-functions
(Slater determinants (SD) and linear combinations of SD)
$>$ Hartree-Fock (HF) approximation
$>$ more sophisticated approaches which use the HF method as a starting point (correlated post-Hartree Fock methods)

Electronic Schrödinger equation
$\mathrm{H} \Psi_{\mathrm{F}}=\mathrm{E} \Psi_{\mathrm{E}}$

Hartree-Fock equations
$\mathrm{F}_{\mathrm{i}}[\Phi] \Phi_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \Phi_{\mathrm{i}}$

Matrix form of the Roothaan-Hall equations FC=SCE

Approximations made in the framework of the
Hartree-Fock-Roothaan-Hall theory

The Molecular Hamiltonian

The non-relativistic time-independent Schrödinger equation:
$\mathbf{H}|\Psi>=E| \Psi>$

$$
\begin{aligned}
& r_{i A}=\left|\vec{r}_{i A}\right|=\left|\vec{r}_{i}-\vec{R}_{A}\right| \\
& r_{i j}=\left|\vec{r}_{i j}\right|=\left|\vec{r}_{i}-\vec{r}_{j}\right| \\
& R_{A B}=\left|\vec{R}_{A B}\right|=\left|\vec{R}_{A}-\vec{R}_{B}\right|
\end{aligned}
$$

i, j - electrons (N)
A, B - nuclei (M)
$\nabla_{i}^{2}=\left(\frac{\partial^{2}}{\partial \mathbf{x}_{i}^{2}}+\frac{\partial^{2}}{\partial \mathbf{y}_{i}^{2}}+\frac{\partial^{2}}{\partial z_{i}^{2}}\right)$
$M_{A}-$ the ratio of the mass of nucleus A to the mass of an electron
Z_{A} - the atomic number of nucleus A
$H=\underbrace{-\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2}}_{T_{e}}-\underbrace{\sum_{A=1}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}}_{T_{N}}-\underbrace{\sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{i A}}}_{V_{e N}}+\underbrace{\sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{i j}}}_{V_{e e}}+\underbrace{\sum_{A=1}^{M-1} \sum_{B>A}^{M_{A}} \frac{Z_{A} Z_{B}}{R_{A B}}}_{V_{N N}}$
Major challenge in solving the SE !!!
T_{e} - the operator for the kinetic energy of the electrons
T_{N} - the operator for the kinetic energy of the nuclei
V_{eN} - the operator for the Coulomb attraction between electrons and nuclei
$\mathrm{V}_{\text {ee }}$ - the operator for the repulsion between electrons
V_{NN} - the operator for the repulsion between nuclei

$$
\begin{equation*}
H=\underbrace{-\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2}}_{T_{e}}-\underbrace{\sum_{A=1}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}}_{T_{N}}-\underbrace{\sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{i A}}}_{V_{e N}}+\underbrace{\sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{i j}}}_{V_{e e}}+\underbrace{\sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}}}_{V_{\text {NN }}} \tag{1}
\end{equation*}
$$

- represents the general problem

Exact solution for systems containing more than one electron is unknown!
-> approximations, approximations, ...
\rightarrow (1) must to be separated in two parts: electronic and nuclear problems
Born-Oppenheimer Approximation
$\Psi=\Psi\left(\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{M}}\right)$

The term $V_{\text {eN }}$ in the Hamiltonian prevents any wave-function $\Psi(\mathbf{x}, \mathbf{X})$ from being written as a product of an electronic and a nuclear wavefunction.

Thus, we need approximations so that we can factorize the wavefunction!

Assumptions:

The nuclei are much heavier than electrons ($\mathrm{m}_{\text {proton }}=1836 \mathrm{~m}_{\mathrm{e}}$)
\rightarrow they move much more slowly

\rightarrow can be considered frozen in a single arrangement (molecular conformation)
\rightarrow the electrons can respond almost instantaneously to any change in the nuclear position

The electrons in a molecule are moving in the field of fixed nuclei.

$$
\begin{aligned}
& \Psi=\Psi_{\mathrm{e}}(\mathbf{x},\{\mathbf{R}\}) \bullet \Psi_{\mathrm{N}}(\mathbf{R}) \\
& \text { - factorized (separable) form }
\end{aligned}
$$

$>\Psi_{\mathrm{e}}$ is parametrically dependent on the positions of the nuclei (\{R\})
$>$ SE is separated in 2 SEs, one for electrons and one for nuclei

two Hamiltonians

Assumption: For each value of the nuclear positions, the electronic system is in the electronic ground state, corresponding to the lowest $\mathrm{E}_{\mathrm{e}}(\mathbf{R})$.

Electronic Hamiltonian:

$>$ describes the motion of N electrons in the field of M fixed point charges (nuclei)

$$
\begin{equation*}
H_{e}(R)=-\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2}-\sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{i A}}+\sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{i j}} \tag{2}
\end{equation*}
$$

$H_{e}(\mathbf{R})$ means that H_{e} depends on the nuclei positions (R coordinate does not appear in H_{e} but $r_{i A}$)
Electronic Schrödinger equation:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{e}}(\mathbf{R}) \Psi_{\mathrm{e}}(\mathbf{x} ; \mathbf{R})=\mathrm{E}_{\mathrm{e}}(\mathbf{R}) \Psi_{\mathrm{e}}(\mathbf{x} ; \mathbf{R}) \tag{3}
\end{equation*}
$$

$\Psi_{\mathrm{e}}=\Psi_{\mathrm{e}}(\mathbf{x} ; \mathbf{R})$

- the electronic wave-function which describes the motion of the electrons
- describes electronic states for fixed nuclear coordinates $\{R\}$
- explicitly depends on the electronic coordinates
- parametrically depends on the nuclear coordinates because H is a function of the positions \mathbf{R} of the nuclei
- a different electronic wave-function is obtained for each nuclear configuration

$$
\begin{equation*}
\mathrm{E}_{\mathrm{e}}=\mathrm{E}_{\mathrm{e}}(\mathbf{R}) \tag{5}
\end{equation*}
$$

Total energy:

$$
\begin{equation*}
E_{\text {tot }}^{\text {pot }}(R)=E_{e}+\sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \tag{6}
\end{equation*}
$$

Equations (2) - (6) $\equiv \mathrm{H}_{\mathrm{e}}(\mathbf{R}), \Psi_{\mathrm{e}}, \mathrm{E}_{\mathrm{e}}$ = electronic problem
The geometry dependent electronic energy

- plays the role of the potential energy in the Schrodinger equation for the nuclear motion
- it is generally termed potential energy surface (PES).

Potential energy surface (PES) examples

Fig. 1 Calculated potential energy curves for the stacked PTCDI dimer at different levels of theory, fitted to a Murrell-Sorbie potential function.
M. Oltean et al., Phys. Chem. Chem. Phys., 15 (2013) 13978-13990

Fig. 2. PES of PAN scanned at PM6 level of theory.
L. Szabó et al. / Spectrochimica Acta Part A 93 (2012) 266-273

If the electronic problem is solved

- we can solve for the motion of the nuclei using the electronic energy $\mathrm{E}(\mathbf{R})$ as the potential energy in Schrödinger equation for the nuclear motion.
Since the electrons move much faster than the nuclei
- we can replace the electronic coordinates by their average values (averaged over the electronic wave-function)

Nuclear Hamiltonian

$>$ describes the motion of the nuclei in the average field of the electrons

$$
\begin{aligned}
H_{N} & =-\sum_{A=1}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}+\left\langle-\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2}-\sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{i A}}+\sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{i j}}\right\rangle+\sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \\
& =-\sum_{A=1}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}+E_{e}(\{\mathbf{R}\})+\sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \\
& =-\sum_{A=1}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}+E_{\text {tot }}^{p o t}(\{\mathbf{R}\})
\end{aligned}
$$

or:

$$
H_{N}=-\sum_{A=1}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}+\int_{r} \Psi(r, R) H_{\text {elec }} \Psi(r, R) d r+\sum_{A=1}^{M-1} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}}
$$

- the integral corresponds to the potential energy of nuclei in the field of electrons.

Nuclear Schrödinger equation

$$
\mathrm{H}_{\mathrm{N}}\left|\Psi_{\mathrm{N}}>=\mathrm{E}\right| \Psi_{\mathrm{N}}>
$$

$\Psi_{\mathrm{N}} \quad$ - nuclear wavefunction

- solution of the ro-vibrational problem for the nuclear coordinates, in the presence of an electronic potential energy surface
- describes the vibration, rotation and translation of a molecule

E - total energy of the molecule (in the Born-Oppenheimer approximation)

- includes:
- electronic energy
- vibrational energy
- rotational energy
- translational energy

Total wave-function in the Born-Oppenheimer approximation:

$$
\Psi(x, R)=\Psi_{e}(x,\{R\}) \cdot \Psi_{N}(R)
$$

Born-Oppenheimer approximation

$>$ usually a good approximation
$>$ bad approximation for:

- excited states (high energy for the nuclear motion)
- degenerate or cuasidegenerate states

Requirements for the wave function

we assume the Born-Oppenheimer approximation and will only be concerned with the electronic Schrödinger equation.

1. Normalization

Ψ is normalized to unity:

$$
\int \Psi^{*}(\mathbf{r}) \Psi(\mathbf{r}) \mathrm{dr}=1
$$

Integration is performed over the coordinates of all N electrons.
The wavefunction must also be single-valued, continuous and finite.

2. Antisymmetry with respect to the permutation of two electrons

Electrons are fermions -> the electron wave-function must be antisymmetric with respect to the interchange of the coordinate \mathbf{x} (both space and spin) of any two electrons.

$$
\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{i}}, \ldots, \mathbf{x}_{\mathrm{j}}, \ldots, \mathbf{x}_{\mathrm{N}}\right)=-\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{j}}, \ldots, \mathbf{x}_{\mathrm{i}}, \ldots, \mathbf{x}_{\mathrm{N}}\right)
$$

3. The electronic wavefunctions must be eigenfunctions of S_{z} and S^{2} operators

The electronic Hamiltonian

- does not contain any spin operators
- it commutes with the operators S_{z} and $S^{2} \quad\left[H, S_{z}\right]=0 \quad\left[H, S^{2}\right]=0$
corresponding eigenvalues: M_{S} and $S(S+1)$, respectively.

$$
S_{z}=\sum_{i}^{N} s_{z_{i}} \rightarrow M_{S} \quad S^{2}=\sum_{i}^{N} s_{i}^{2} \rightarrow S(S+1)
$$

We take care of spin by using spin-orbitals instead of pure spatial orbitals. $\alpha(\sigma)$ and $\beta(\sigma)$ - spin functions (complete and orthonormal)

$$
\begin{aligned}
& \int \alpha(\sigma) \alpha(\sigma) d \sigma=\int \beta(\sigma) \beta(\sigma) d \sigma=1 \\
&\langle\alpha \mid \alpha\rangle=\langle\beta \mid \beta\rangle=1 \\
& \text { and } \\
& \int \alpha(\sigma) \beta(\sigma) d \sigma=\int \beta(\sigma) \alpha(\sigma) d \sigma=0 \\
&\langle\alpha \mid \beta\rangle=\langle\beta \mid \alpha\rangle=0
\end{aligned}
$$

The electrons are described by a set of spatial (\mathbf{r}) and spin (σ) coordinates:

$$
\mathbf{x}=\{\mathbf{r}, \sigma\}
$$

Homework

Write a C program to calculate the coordinates of the atoms in a graphene sheet (10×10 atoms) whose structure is given below.
The C-C bond length in graphene is $1.42 \AA$.

The Nobel prize in physics for 2010 was awarded to Andre Geim and Konstantin Novoselov at the University of Manchester "for groundbreaking experiments regarding the two-dimensional material graphene".

