
Course 2 1. Atomic units  
2. Basic concepts 
3. Born-Oppenheimer approximation 
 1. Atomic Units  

 me=1,  e=1, ao=1, h = 2, e2/4πε0ao = 1 



mproton = 1836.15 au  (1.6726 x 10-27 kg)  
 

Energy:  1 a.u. = 27.212eV = 627.51 Kcal/mol = 219470 cm-1      1Kcal/mol = 4.184KJ/mol 
Electric dipole moment:  1ea0 = 2.54181De; 1De=0.3934ea0 

Other fundamental constants: 
Boltzmann’s constant:   kB=1.38066·10-23J/K 
Avogadro’s number:  NA=6.02205·1023mol-1 
Rydberg constant:   R∞=1.097373·107m-1 
Compton wavelength of electron: λC=2.426309·10-12m 
Stefan-Boltzmann constant:  σ=5.67032·108W/(m2K4) 

Electric field unit: 
Field=X+a  => an electric field of a*10-4 a.u. is applied along the X direction. 
1.a.u.=Hartree/(charge*bohr) = 27.2114*1.6 10-19 J/(1.6 10-19 C * 5.29177 10-11 m) 
1 a.u. = 5.1423 1011  V/m 
1 a.u. = 51.423 V/Å 
Ef(V/Å)=51.423Ef (a.u.) 
Field=X+1000 means a field of 0.1a.u. (5.1423 V/Å) is applied along the X direction 

For UV-Vis spectra: 
E(eV)=const./ (nm)  1240/ (nm).   (nm)  1240/E (eV) 
       = 1239.9785/ (nm) 



Energy conversion factors 

  Hartree (a.u.) KJ/mol Kcal/mol eV cm-1 

Hartree (a.u.) 1 2625.5 627.51 27.2114 219470 

KJ/mol 0.00038088 1 0.23901 0.010364 83.593 

Kcal/mol 0.0015936 4.184 1 0.043363 349.75 

eV 0.036749 96.485 23.061 1 8065.5 

cm-1 4.5563E-06 0.011963 0.0028591 0.00012398 1 
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Hamiltonian for the  hydrogen atom:  

SI units: 



Approximations made in the framework of the  
Hartree-Fock-Roothaan-Hall theory 

2. Basic concepts 
 molecular Hamiltonian 
 form of many-electron wave-functions 
  (Slater determinants (SD) and linear combinations of SD) 
 Hartree-Fock (HF) approximation 
 more sophisticated approaches which use the HF method as a starting point  
  (correlated post-Hartree Fock methods) 

 

 

 



The Molecular Hamiltonian 

  
NNeeeNNe V

M

A

M

AB AB

BA

V

N

i

N

ij ij

V

N

i

M

A iA

A

T

M

A

A
A

T

N

i

i
R

ZZ

rr

Z

M
H 



 



  



1

1

1

11 11

2

1

2 1

2

1

2

1
(1) 






























2

2

2

2

2

2
2

iii

i
zyx

MA -  the ratio of the mass of nucleus A to the mass of an electron 
ZA – the atomic number of nucleus A 
Te – the operator for the kinetic energy of the electrons 
TN – the operator for the kinetic energy of the nuclei 
VeN – the operator for the Coulomb attraction between electrons and nuclei 
Vee – the operator for the repulsion between electrons 
VNN – the operator for the repulsion between nuclei 

A molecular coordinate system 

i, j – electrons (N) 
A, B – nuclei (M) 
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The non-relativistic time-independent Schrödinger equation: 
  H|Ψ>=E|Ψ> 

Major 
challenge 
in solving 
the SE !!! 
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- represents the general problem 

Exact solution for systems containing more than one electron is unknown! 
 -> approximations, approximations, … 

 (1) must to be separated in two parts: electronic and nuclear problems 

Born-Oppenheimer Approximation 
Ψ=Ψ(x1,…,xN, X1,…,XM) 
 
The term VeN in the Hamiltonian prevents any wave-function Ψ(x,X) from being written as a 
product of an electronic and a nuclear wavefunction. 
 
Thus, we need approximations so that we can factorize the wavefunction! 

Assumptions: 
The nuclei are much heavier than electrons (mproton=1836me) 

  they move much more slowly 
  can be considered frozen in a single arrangement (molecular conformation) 
   the electrons can respond almost instantaneously  
        to any change in the nuclear position  



The electrons in a molecule are moving in the field of fixed nuclei.  
 

Ψ=Ψe(x,{R})  ΨN(R)  
 – factorized (separable) form 
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 Ψe is parametrically dependent on the positions of the nuclei ({R}) 
 SE is separated in 2 SEs, one for electrons and one for nuclei 



Electronic Hamiltonian: 
 describes the motion of N electrons in the field of M fixed point charges (nuclei) 

two Hamiltonians 
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He(R) means that He depends on the nuclei positions (R coordinate does not appear in He but riA) 

Electronic Schrödinger equation: 

He(R)Ψe(x;R)=Ee(R)Ψe(x;R)   (3) 

Ψe=Ψe(x;R)  (4) 
 - the electronic wave-function which describes the motion of the electrons 
 - describes electronic states for fixed nuclear coordinates {R} 
 - explicitly depends on the electronic coordinates 
 - parametrically depends on the nuclear coordinates because H is a function of the 
 positions R of the nuclei 
 - a different electronic wave-function is obtained for each nuclear configuration 
 
Ee = Ee(R)  (5) 

Assumption: For each value of the nuclear positions, the electronic system is in the 
electronic ground state, corresponding to the lowest Ee(R). 



Total energy: 
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 Equations (2) – (6) ≡ He(R), Ψe, Ee  
   = electronic problem 
The geometry dependent electronic energy  
 - plays the role of the potential energy in the Schrodinger equation for the nuclear 
 motion  
 - it is generally termed potential energy surface (PES). 

(6) 



Potential energy surface (PES) examples 

M. Oltean et al., Phys. Chem. Chem. Phys., 15 (2013) 13978-13990 





If the electronic problem is solved 
 ► we can solve for the motion of the nuclei using the electronic energy E(R) as the 
 potential energy in Schrödinger equation for the nuclear motion. 
Since the electrons move much faster than the nuclei 
 ► we can replace the electronic coordinates by their average values (averaged over the 
 electronic wave-function) 

Nuclear Hamiltonian 
 describes the motion of the nuclei in the average field of the electrons 
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- the integral corresponds to the potential energy of nuclei in the field of 
electrons. 

or: 



Nuclear Schrödinger equation 

  HN|ΨN> = E|ΨN> 

  ΨN  - nuclear wavefunction 
 - solution of the ro-vibrational problem for the nuclear coordinates, in the 
 presence of an electronic potential energy surface 
 - describes the vibration, rotation and translation of a molecule 

  E     - total energy of the molecule (in the Born-Oppenheimer approximation) 
 - includes:  
  - electronic energy 
  - vibrational energy 
  - rotational energy 
  - translational energy 

Total wave-function in the Born-Oppenheimer approximation: 
   

   Ψ(x,R) = Ψe(x,{R})·ΨN(R) 

Born-Oppenheimer approximation 
 usually a good approximation 
 bad approximation for:  

 excited states (high energy for the nuclear motion) 
 degenerate or cuasidegenerate states 



Requirements for the wave function 
 we assume the Born-Oppenheimer approximation and will only be concerned with 
 the electronic Schrödinger equation. 

1. Normalization 
  is normalized to unity: 
 

1 rrr d)()(*

Integration is performed over the coordinates of all N electrons. 
The wavefunction must also be single-valued, continuous and finite. 

2. Antisymmetry with respect to the permutation of two electrons 
Electrons are fermions -> the electron wave-function must be antisymmetric with respect to 
the interchange of the coordinate x (both space and spin) of any two electrons. 
 

 Ψ(x1, x2, ... , xi, ..., xj, ...,xN) = -Ψ(x1, x2, ... , xj, ..., xi, ...,xN) 
 

3. The electronic wavefunctions must be eigenfunctions of Sz and S2 operators 
      
The electronic Hamiltonian  
 - does not contain any spin operators 
 - it commutes with the operators Sz and S2  
  corresponding eigenvalues: MS and S(S+1), respectively. 
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[H,Sz]=0 [H,S2]=0 



We take care of spin by using spin-orbitals instead of pure spatial orbitals.  
α(σ) and β(σ) – spin functions (complete and orthonormal) 
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The electrons are described by a set of spatial (r) and spin (σ) coordinates: 
    x={r,σ} 

Homework 

Write a C program to calculate the coordinates of the atoms in a graphene 
sheet (10 x 10 atoms) whose structure is given below.  
The C-C bond length in graphene is 1.42 Å. 

The Nobel prize in physics for 2010 was awarded to 
Andre Geim and Konstantin Novoselov at the University 
of Manchester "for groundbreaking experiments 
regarding the two-dimensional material graphene". 

Deadline: April 9-th, 2015 


