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A new second order perturbation approach for evaluating the splittings and shifts of the vibrational
bands of homogeneous molecular clusters, consistently treating degenerate normal modes, is
described. The Hamiltonian of the system comprises harmonic and anharmonic intramolecular
vibration terms, and the intermolecular potential. The anharmonic intramolecular contributions and
the intermolecular potential are treated as a perturbation. A new site-site intermolecular potential
model for SF6 , featuring exchange, dispersion, electrostatic and induction terms, is presented. The
new potential, with the parameters adjusted according to the observed monomer transition dipole
moment and reproducing the experimental temperature dependence of the second virial coefficient,
is used to determine SF6 cluster structures up to the hexamer and, by means of the new line shift
formalism, to calculate the corresponding IR-spectra in the region of then3 vibrational mode~at
947.968 cm21). The contributions of the various potential terms to the frequency shifts are analyzed
and the leading interaction mechanism is confirmed to be the electrostatic one~implicitly the
resonant dipole-dipole coupling!. The theoretical spectra are shown to fairly describe the
experimental evidence when considering only exchange, dispersion and electrostatic interactions.
With the available atomic polarizabilities, induction seems to lead to a systematic redshift of the
entire spectrum for all cluster sizes. The structure of the cluster vibrations is investigated in terms
of the individual monomer vibrations and is correlated with the found geometrical cluster
configurations. ©1995 American Institute of Physics.
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I. INTRODUCTION

Investigation of the structure and dynamics of molecu
clusters by spectroscopic methods, especially through mic
wave and IR techniques, has achieved outstanding adva
in the last few years. However, the profound understand
of the intermolecular interaction mechanisms could not ha
been possible without the assistance of complex theoret
approaches, developed in order to facilitate the analysis
the observed spectra.

Over the last two decades there has been quite a g
experimental and theoretical interest in the S6
clusters,1–7,29,30 and especially in the spectroscopy of th
bands attributed to then3 vibrational mode of the monome
(n35947.968 cm21). Obviously, the particular interest in the
n3 mode has been mainly a consequence of the similari
between SF6 and the more challenging UF6 system.

Since the threefold degeneraten3 vibrational mode of
SF6 is IR-active, it can be excited by CO2 laser radiation in
IR predissociation experiments.1–6 Typically, in such experi-
ments a beam of clusters containing IR-active molecules
formed in a supersonic nozzle and expanded into a vacu
chamber, where an intramolecular mode of vibration is e
cited by the IR-radiation. Energy relaxation may subs
quently lead to predissociation of the clusters, causing a
crease in the beam signal. As a direct result of the mut
interaction of the molecules within the cluster, the spect
bands that have been found appear shifted~and sometimes
also split! with respect to the corresponding gas phase
sorption frequencies. The information gained from such e

a!On leave from the University of Cluj-Napoca, Department of Theoretic
Physics, 3400 Cluj-Napoca, Romania.
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periments is even more interesting when combined with
cluster size selection method, allowing for a more detail
theoretical interpretation. In their measurements on SF6 clus-
ters, Huiskenet al.5 have used the size-selection techniqu
introduced by Buck and Meyer,8 which is based on the de-
flection of the molecular beam by scattering from a secon
ary noble gas beam.

Unfortunately, quite often the observed IR
predissociation spectra display broad, rather poorly stru
tured peaks. To reduce the congestion of lines and the pa
overlapping of the cluster spectra, Heijmenet al.6 have per-
formed two-laser experiments. In such ‘‘pump and prob
experiments, the fixed-frequency probe laser labels clus
levels for a certain cluster species, while the pump laser
scanned to identify IR-predissociation frequencies connec
with the labeled cluster states.

The most successful theoretical model employed up
now to quantitatively describe the frequency shifts of th
n3 vibrational mode in the SF6 clusters, has been the dy
namical dipole-dipole interaction model of Geraedtset al.1

This model explains the~22l):l ratio of the shifts of the
observed parallel and perpendicular bands of the SF6 dimer
by simply adjusting the quantityl, resulting from the ana-
lytical diagonalization of the dipole-dipole interaction. B
using the monomer transition dipole momentm0150.388 D
of Fox et al.,9 the model predicts a realistic intermolecula
separation, although it operates with structureless monom

In the elaborate approach of van Bladelet al.,7 the ana-
lytical formalism has been developed specifically for treatin
dimer frequency shifts in the first order of perturbatio
theory, with the focus on the SF6 , SiF4 , and SiH4 dimers.
The model potential calculations for~SF6)2 , based on atom-
atom exchange, dispersion, electrostatic and induction ter
l
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6395T. A. Beu and K. Takeuchi: Small SF6 clusters
result in a realistic dimer structure, confirm the domina
character of the resonant dipole-dipole coupling, but und
estimate the corresponding line shifts, and do not estab
any correlations between the obtained theoretical spectra
individual monomer normal modes, and the found dim
structure. The main reason for the underestimation of
frequency shifts lies, in our opinion, in the inappropriate e
fective charges assigned to the atoms, which reproduce
monomer transition dipole moment of Foxet al. rather than
the more recent and accurate value due to Kimet al.10 Fur-
thermore, the potential model of van Bladelet al. has not
been fitted to any macroscopic properties~such as virial co-
efficients or viscosities!. These very deficiencies have bee
the stimulus for our attempt to establish an SF6-SF6 potential
model that more accurately describes the experimental
dence.

Recently we have published a second order perturba
approach for evaluating the frequency shifts of homogene
molecular clusters.11 The formalism consistently treats th
degeneracy of the cluster states emerging from the identit
the constituent monomers, however, degenerate vibratio
modes of the monomers are not being taken into acco
The underlying idea, extracted from early publications
Buckingham12 concerning the frequency shifts in the IR o
Raman spectra of chromophores under the influence o
solvent, is to treat the anharmonic contributions to the
tramolecular force field and the intermolecular potential a
quantum mechanical perturbation of the molecular vibratio
~described in the normal mode representation!. The resulting
first order formulas are equivalent to those of Bucket al.,13

nevertheless, in the more complex second order, substa
differences arise by considering the complete basis set of
state space.

In Sec. II B we present the generalized formulation
our previously published approach, which now also tak
into account the degeneracy of the monomer vibratio
states, an essential aspect for correctly calculating the
quency shifts of the SF6 clusters corresponding to the three
fold degeneraten3 mode. The potential model we employ t
determine the geometrical structures and line shifts of
SF6 clusters, comprising exchange, dispersion, electrost
and induction contributions, is described in Sec. II C.

Basic input data for the cluster structure and frequen
shift calculations~the harmonic monomer frequencies, th
displacementl -matrix, and the transformed cubic force con
stantsf rst) are derived as part of the normal mode analy
of the monomer. The accurate treatment of the SF6 monomer
spectroscopy implies the refinement of the intramolecu
force field and the result of this approach, as well as
transformation principles of the cubic force constants
SF6 from valence to normal coordinates, are presented
Sec. III A.

The details of the adjustment procedure of the interm
lecular potential parameters are described in Sec. III B.
though our potential model has a functional form similar
that of van Bladelet al., the effective charges we have a
signed to the atoms reproduce the more accurate mono
transition dipole moment valuem0150.437 D of Kim
et al.,10 and the dispersion coefficients have been determin
J. Chem. Phys., Vol. 103,
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by fitting the calculated second virial coefficient to experi-
mental data. In order to elucidate the role played by the
induction coupling in the case of the SF6 clusters, we employ
two variants of our potential model: one neglecting the in-
duction interactions, hereafter referred to as ‘‘potential I,’’
and the other one including them, hereafter called ‘‘potentia
II.’’

Section III C is devoted to the description of the struc-
tures we have obtained for the SF6 clusters ranging from
dimer to hexamer by using the two variants of the new po-
tential model. The results, regarding binding energy, symme
try properties and geometrical size, are compared with thos
obtained by using other potential models from the literature
and the incremental binding energy of the clusters is exam
ined.

In Sec. III D, the results of our frequency shift calcula-
tions, performed by means of the new perturbation formal-
ism, are described in detail. The contributions to the fre-
quency shifts from the various interaction mechanisms ar
analyzed and the theoretical spectra are compared with th
experimental evidence and previous theoretical results. Th
appropriateness of the inclusion of the induction interactions
in the potential model is also discussed. Finally, in Sec. III E
the contributions of the individual monomer vibrational
modes to the overall cluster vibrations are investigated, an
the shifted spectral lines are correlated with vibrations of
particular morphological monomer groupings within the
clusters.

II. THEORETICAL MODEL

A. The Hamiltonian

The total cluster Hamiltonian may be written as

H5
hc

2 (
r51

3N26

(
m51

M

v r~prm
2 1qrm

2 !

1
hc

6 (
r ,s,t51

3N26

(
m51

M

f rstqrmqsmqtm1U, ~1!

where the first sum describes the uncoupled harmonic osci
lations, the second sum is the anharmonic correction, whil
U represents the intermolecular potential. Herev r andf rst

are the harmonic frequencies and the cubic force constants
units of wave numbers, respectively.qrm and prm are posi-
tion and momentum operators associated with the norma
moder of moleculem. M stands for the number of identical
N-atomic molecules. The first two sums of the Hamiltonian
~1! describe the conventional normal mode approach for th
individual molecules including cubic anharmonicities.

The intermolecular potentialU is a function of both the
geometrical arrangement of the molecules within the cluste
and the vibrational coordinates of each molecule. Taking into
account the different orders of magnitude of the vibrationa
displacements of the atoms and the intermolecular separ
tions, the interaction energyU may be cast in the form of a
power series with respect to the normal coordinates
No. 15, 15 October 1995
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6396 T. A. Beu and K. Takeuchi: Small SF6 clusters
U5U01 (
r51

3N26

(
m51

M
]U

]qrm
qrm

1
1

2 (
r ,s51

3N26

(
m,l51

M
]2U

]qrm]qsl
qrmqsl1•••, ~2!

whereU0 is the interaction energy of the molecules frozen
their equilibrium position and all derivatives are express
with respect to this position keeping all but the explicit
implied normal coordinates constant.

In view of the fact that the Hamiltonian~1! is dominated
by the harmonic term~first sum!, which in addition allows
for a full analytical diagonalization, providing a basis set f
the Hilbert space of the cluster states, the anharmonic t
and the intermolecular potential can be treated as a pertu
tion

W5
hc

6 (
r ,s,t51

3N26

(
m51

M

f rstqrmqsmqtm1U. ~3!
a

r

i

i

o
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This approach is ultimately legitimated by the differen
orders of magnitude of the intra and intermolecular intera
tion forces, reflected by the generally higher intramolecul
vibration frequencies~with typical values of 1000 cm21)
than the intermolecular vibration frequencies~with typical
values of 10–100 cm21).

B. Perturbation approach for cluster frequency shifts

In order to evaluate the fundamental frequency shift of
particular monomer normal mode due to the interaction
the molecules within the cluster, one has to determine t
shifts of the ground state and of the first excited state of th
specific normal mode. Within the framework of the station
ary perturbation theory,14 both the first and second order en
ergy corrections are expressed in terms of the perturbat
matrix elements, which, for further convenience, can be d
tailed in the present case as follows:
^ap
j uWuan

i &5U0dnpd i j1 (
r51

3N26

(
m51

M
]U

]qrm
^ap

j uqrmuan
i & 1

1

2 (
r51

3N26

(
m51

M
]2U

]qrm
2 ^ap

j uqrm
2 uan

i &

1
1

2 (
r ,s51
r5s

3N26

(
m,l51
mÞ l

M
]2U

]qrm]qsl
^ap

j uqrmqsluan
i &1

hc

6 (
r51

3N26

(
m51

M

f rrr ^ap
j uqrm

3 uan
i &

1
hc

2 (
r ,s51
rÞs

3N26

(
m51

M

f rrs^ap
j uqrm

2 qsmuan
i &1

hc

6 (
r ,s,t51
rÞsÞt

3N26

(
m51

M

f rst^ap
j uqrmqsmqtmuan

i &. ~4!
,

al
-

m

The eigenvectors of the unperturbed Hamiltonian m
be set up as products of the state vectors for all harmo
normal modes of all molecules:

uan
i &5 )

r51

3N26

)
m51

M

ua rm
ni &, ~5!

where, for each energy staten and degeneracyi , the set of
integers$a rm

ni % describes a particular combination of excit
tions of the individual normal modes of each molecule. U
fortunately, due to the fact that the degeneracygn differs for
the different energy states, the notationuan

i & is neither sug-
gestive nor useful. Bearing in mind the typically low numb
of individual excitations that result in non-vanishing cont
butions to the matrix elementŝap

j uWuan
i &, a notation sug-

gesting only the individual oscillator quantum states wh
differ from the ground state seems more eloquent. For
ample, the total cluster state in which ther th mode of the
mth molecule is simply excited and thesth mode of thel th
molecule is doubly excited could be represented
u1rm2sl&.

As already pointed out, to determine fundamental l
shifts, only the shifts of the ground stateu0& and of simply
excited statesu1ni& need to be evaluated, i.e. in expressi
~4! uan

i & is either of formu0& or u1ni&. In view of the fact that
ay
nic

-
n-

er
i-

ch
ex-

by

ne

n

the only non-vanishing matrix elements forqrm ,qrm
2 , and

qrm
3 imply states which differ by not more than three quanta
the only candidates foruap

j & in formula ~4! are of the form:

u0&,

u1rm&,

u2rm&,u1rm1sl&, ~6!

u3rm&,u2rm1sl&,u1rm1sl1tk&,

u4rm&,u3rm1sl&,u2rm1sl1tk&,u1rm1sl1tk1u j&.

The relevant matrix elements of the powers of the individu
normal coordinatesqrm are obtained by means of the stan
dard harmonic oscillator algebra,15 and are given in Appen-
dix A.

In order to simplify notations by omitting the limits of
the indices, the following convention will be used~except
where otherwise specified!: indices i throughm stand for
molecules, running over values from 1 toM , while indicesn
throught designate normal modes, running over values fro
1 to 3N26.
No. 15, 15 October 1995
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6397T. A. Beu and K. Takeuchi: Small SF6 clusters
The first order correction to the non-degenerate gro
state energy is readily obtained as the mean value of
perturbation in the ground state

e0
~1!5^0uWu0&5U01

1

4(r (
m

]2U

]qrm
2 . ~7!

Since the present approach is conceived for cluster
identical polyatomic molecules with eventually degener
vibrations, the degeneracy of a simply excited energy le
En equals the product between the numberM of molecules
in the cluster and the degeneracygn of the implied monomer
state, and under the influence of the intermolecular poten
the energy level is shifted and split up intognM sublevels
Eni . The corresponding first order energy correctionseni

(1)

result in eigenvalues of the perturbation matrix in the rep
sentation defined by the vectorsu1ni& which span the sub
spaceG of the considered energy state. The perturbation m
trix elements are given by

Wni,n8 i 8[^1niuWu1n8 i 8&

5SU01
1

4(r (
m

]2U

]qrm
2 D dnn8d i i 81

1

2

]2U

]qni]qn8 i 8
.

Observing that the expression within parenthesis is tha
the first order ground state correction,e0

(1) , and defining the
reduced perturbation matrix elements

W̃ni,n8 i 8[Wni,n8 i 82e0
~1!dnn8d i i 85

1

2

]2U

]qni]qn8 i 8
, ~8!

the corresponding eigenvalue problem,

(
n8PG

(
i 851

M

@W̃ni,n8 i 82hcDnni
~1!dnn8d i i 8#cn8 i 8,ni50,

i51,2,...,M ,nPG, ~9!

directly yields the first order frequency shif
Dnni

(1)5(eni
(1)2e0

(1))/hc for the fundamental excitation from
the ground state to the simply excited levelsEni . As is ap-
parent from definition~8! of the reduced perturbation matri
elements, the first order line shifts are independent of
intramolecular force constants, depending only on the cu
ture of the intermolecular potential. The diagonalization
the reduced perturbation matrix provides, besides the
order frequency shifts, the coefficientscni,n8 i 8 ~as eigenvec-
tor components!, which satisfy the completeness relatio
(n8PG( i 8ucn8 i 8,niu

251, and which further enter the expre
sions of the second order line shifts.

The first order frequency shifts derived so far refer
principle to the harmonic monomer frequencies, which a
characterize the unperturbed state of the cluster, i.e. the i
state with harmonically vibrating independent monomers
order to evaluate cluster line shifts with respect to obser
monomer frequencies, only terms describing the influenc
the intermolecular potentialU have to be retained, eliminat
ing terms dependingonly on the cubic intramolecular forc
constants, which merely account for the anharmonicity of
monomer frequencies. The first order line shifts, depend
J. Chem. Phys., Vol. 103,
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through the reduced perturbation matrix elements solely o
the curvature of the intermolecular potential, hence refe
both to the harmonic and observed frequencies, which tur
out to be equally shifted to first order. Consequently, sticking
to the convention to denote harmonic frequencies byv, and
anharmonic or observed frequencies byn, the notation,
Dnni

(1) , is justified.
The second order energy correction for non-degenerat

states can be formally written in the case of the ground state

e0
~2!52 (

pÞ0
(
j51

gp u^ap
j uWu0&u2

Ep
0 ,

being, as one may notice, essentially negative. Replacing i
the above relation the non-vanishing perturbation matrix el
ements of the form̂ ap

j uWu0& given in Appendix A, one
obtains after some term rearrangements:

e0
~2!52

1

2hc(r (
m

1

v r
S ]U

]qrm
1
hc

4 (
t

f ttr D 2
2

1

8hc(r ,s (
m,l

1

v r1vs
S ]2U

]qrm]qsl
D 2

2
Mhc

48 (
r ,s,t

f rst
2

v r1vs1v t
.

The terms depending only on the cubic force constantsf rst

~describing, as already pointed out, the anharmonic correc
tions of the monomer frequencies! have to be eliminated
explicitly in the above relation. Thus, the expression of the
second order ground state correction simplifies to

e0
~2!52

1

2hc(r (
m

1

v r
S ]U

]qrm
1
hc

4 (
t

f ttr D 2
2

1

8hc(r ,s (
m,l

1

v r1vs
S ]2U

]qrm]qsl
D 2. ~10!

In the case of simply excited states,u1ni&, the general
second order energy correction for degenerate excited stat
takes the form14

eni
~2!5 (

n8,n9PG
(
i 8,i 9

cn8 i 8,nicn9 i 9,ni
* en8 i 8,n9 i 9

~2! ,

nPG,i51,2,...,M ,

with

en8 i 8,n9 i 9
~2!

5 (
p¹G

(
j51

gp ^1n9 i 9uWuap
j &^ap

j uWu1n8 i 8&
En
02Ep

0 .

Replacing the non-vanishing perturbation matrix elements o
the form^ap

j uWu1ni& listed in Appendix A, and employing in
principle the same techniques as for the second order groun
state correction, one obtains foren8 i 8,n9 i 9

(2) after some quite
cumbersome calculations:
No. 15, 15 October 1995



en8 i 8,n9 i 9
~2!

52
dn8n9d i 8 i 9

4 (
r

32d rn8
v r

S ]U

]qri 8
1
hc

4 (
t

f ttr Dfn8n8r2
~12dn8n9!d i 8 i 9

8 (
r

41d rn81d rn9
v r

3S ]U

]qri 8
1
hc

4 (
t

f ttr Dfn8n9r1
1

4hc(r¹G
(
m

1

vn2v r

]2U

]qn8 i 8]qrm

]2U

]qn9 i 9]qrm

2
1

4hc(r (
m

1

vn1v r

]2U

]qn8 i 8]qrm

]2U

]qn9 i 9]qrm
2

dn8n9d i 8 i 9
2hc (

r
(
m

1

v r
S ]U

]qrm
1
hc

4 (
t

f ttr D 2
2

dn8n9d i 8 i 9
8hc (

r ,s
(
m,l

1

v r1vs
S ]2U

]qrm]qsl
D 2. ~11!

Eliminating the terms depending only on the cubic force constantsf rst , and observing thate0
(2) given by Eq.~10! cancels out

the last two sums in the expression ofen8 i 8,n9 i 9
(2) , the second order line shift,Dnni

(2)5(eni
(2)2e0

(2))/hc, may be finally cast in the
form

Dnni
~2!5 (

n8,n9PG
(
i 8,i 9

cn8 i 8,nicn9 i 9,ni
* Dnn8 i 8,n9 i 9

~2! , ~12!

where

Dnn8 i 8,n9 i 9
~2!

52
dn8n9d i 8 i 9
4hc (

r

32d rn8
v r

]U

]qri 8
fn8n8r2

~12dn8n9!d i 8 i 9
8hc (

r

41d rn81d rn9
v r

]U

]qri 8
fn8n9r

1
1

4~hc!2(r¹G
(
m

1

vn2v r

]2U

]qn8 i 8]qrm

]2U

]qn9 i 9]qrm
2

1

4~hc!2(r (
m

1

vn1v r

]2U

]qn8 i 8]qrm

]2U

]qn9 i 9]qrm
. ~13!
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Generally, the most significant contributions to the se
ond order line shifts are due to the first term of Eq.~13!,
coupling the generalized intermolecular forces2]U/]qri 8
with the intramolecular force constantsfn8n8r . It is notewor-
thy that the second order shifts do not depend onall cubic
force constants, but only on those implying states belong
to the subspaceG of the considered normal mode. The la
three sums in Eq.~13! are essentially less important due t
the presence of the cubic force constantsfn8n9r ~coupling
two different substratesn8,n9 P G with a third one! and of
the second order derivatives of the intermolecular potent
respectively. However, through the resonance terms c
tained in the third sum, close lying levels can sometim
substantially contribute to the frequency shift.

The total frequency shift of a particular cluster spectr
band obviously results from the sum of the correspond
first and second order shifts:Dnni5Dnni

(1)1Dnni
(2) .

An approach for the numerical evaluation of the inte
molecular potential derivatives with respect to the intern
coordinates, needed in the formulas of the frequency sh
is described in Appendix B.

The relative importance of the cluster spectral lines c
responding to a particular vibrational mode can be judged
the basis of the transition strength, which can be calcula
as the squared cluster transition dipole moment weighted
the degeneracy of the cluster state. In Appendix C we der
for the Cartesian components of the cluster transition dip
moment the approximate expression
J. Chem. Phys., Vol. 103,
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m01
a 5

1

A2 (
n8PG

(
m F(a qa(

a8
Aaa8
m l̃ aa8

n8 Gcn8m,ni* , ~14!

where qa are atomic charges,Aaa8
m is the rotation matrix

which characterizes the position of moleculem in the cluster,

and l̃ aa8
n8 are elements of the displacementl -matrix, which

results from the normal mode analysis of the monomer.

C. The intermolecular potential model

One of the crucial aspects in performing structure an
frequency shift calculations for clusters is the choice of
realistic intermolecular potential function. Due to the com
plexity of the calculations, it is desirable that the potentia
combines the ability of accurately describing various prope
ties of the system with a relative analytical simplicity. From
the potential energy hypersurfaces available in the literatu
site-site potentials seem to be competitive candidates f
tractable numerical solutions.

The functional form of the intermolecular potential we
have chosen for calculating the structures of the SF6 clusters
and the corresponding vibrational frequencies shifts com
prises exchange, dispersion, electrostatic, and inducti
terms. A similar model was previously employed by va
Bladel et al.7 for SF6 , SiF4 , and SiH4 dimer calculations.
One of the important features of this potential type, is th
being based on site-site interactions, it depends on the re
tive atom positions, thus implicitly depending on the interna
monomer vibrational coordinates.
No. 15, 15 October 1995
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6399T. A. Beu and K. Takeuchi: Small SF6 clusters
The repulsive exchange and the attractive dispersion
teractions are represented by standard~exp-6! terms:

Uexch5 (
m51

M21

(
m85m11

M

(
iPm

(
jPm8

Ai j exp~2Bi j r i j !, ~15!

and

Udisp52 (
m51

M21

(
m85m11

M

(
iPm

(
jPm8

Ci j

r i j
6 , ~16!

respectively, wherer i j is the distance between atomi be-
longing to monomerm and atomj belonging to monomer
m8. The electrostatic term

Uelec5 (
m51

M21

(
m85m11

M

(
iPm

(
jPm8

qiqj
r i j

~17!

implies the fractional effective chargesqi placed on the at-
oms, such as to account for the vibrational transition dipo
moment of the monomer. The induction potential contain
three-body terms:

U ind52
1

2(
m51

M

(
m851
m8Þm

M

(
m951
m9Þm

M

(
iPm

(
jPm8

(
kPm9

a iqjqk
r i j
2 r ik

2 ~ r̂ i j • r̂ ik!,

describing the interaction between the chargeqj from mol-
eculem8 and the dipole induced at sitei of moleculem by
the chargeqk from moleculem9. In a simplified writing,
which takes advantage of the interchangeable roles of t
‘‘inducing’’ charge qj and of the ‘‘probing’’ chargeqk , evi-
dencing at the same time the total induction field, the indu
tion potential may be conveniently described by fourfol
rather than sixfold sums:

U ind52
1

2(
m51

M

(
iPm

a iU (
m851
m8Þm

M

(
jPm8

qj r̂ i j
r i j
2 U2. ~18!

In our calculations, we employ two variants of the abov
potential model: the first one, designated in what follows a
‘‘potential I,’’ does not include the induction term, while the
second, denoted as ‘‘potential II,’’ includes all the interac
tions.

III. RESULTS

A. Intramolecular force field of SF 6

As shown in Appendix B, for the evaluation of the inter
molecular potential derivatives with respect to the vibration
coordinates (]U/]qrm , ]2U/]qrm

2 , and ]2U/]qrm]qsl) oc-
curring in the frequency shift expressions, the so-calle
l -matrix of the monomer is needed. Thel -matrix describes
the linear relationship between the Cartesian displaceme
and the normal coordinates of the atoms and results as par
the normal mode analysis of the monomer, performed a
cording to the well-known G-F method of Wilson.15 Within
the present approach, thel -matrix ~besides the cubic force
constantsf rst) thus models the coupling between the intra
and intermolecular force fields.

The molecules and ions of the type XY6 have been
proved to possess in most casesOh symmetry. The SF6
J. Chem. Phys., Vol. 103, N
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monomer conforms to this symmetry and, according to the
irreductible representations of theOh point group,

16 it fol-
lows ~by applying the selection rules! that such a structure
will give rise to one nondegenerate typeA1g vibration
(n1), one doubly degenerate typeEg vibration (n2), two
coupled triply degenerate typeF1u vibrations (n3 , n4), one
triply degenerate typeF2g vibration (n5), and one triply de-
generate typeF2u vibration (n6). The F1u vibrations are
IR-active, while theA1g , Eg , andF2g vibrations are Raman
active. The symmetry coordinates corresponding to the
above symmetry species are described by Pistorius.17

In our calculations on the SF6 monomer, we have em-
ployed the S-F bond length of 1.564 Å found by Ewing
et al.18 in an electron diffraction study, and the quadratic
intramolecular force field derived by McDowellet al.19 from
conventional IR-, diode laser-, and Raman spectra. Regard
ing the force field, the accuracy of the listed symmetry force
constantsF11, F22, F33, F34, F44, F55, and F66 is not
sufficient to allow for the observed frequencies to be exactly
reproduced. Moreover, since the second order frequenc
shifts of then3 vibrational mode of SF6 , on which we focus
in this work, typically amount to several tenths of a cm21, as
will be shown in Sec. III D, implying the decimal digits of
the resulting frequencies, a previous refinement of the force
constants provided by McDowellet al. is necessary. The re-
finement procedure was accomplished using theASYM20 pro-
gram of Hedberg and Mills20 and the resulting force con-
stants are listed, along with the observed frequencies, in
Table I.

In Table II we give thel -matrix elements yielded by the
normal mode analysis of the SF6 monomer, and correspond-
ing to one of the substates of the threefold degeneraten3
mode ~for the two other substates, the same non-zero ele
ments occupy they and z columns, respectively!. They
should be regarded as Cartesian displacements of the implie
atoms for the unitary increment of the normal coordinate.

In order to accomplish the transformation of the force
constants from symmetry to normal coordinates, obtaining

TABLE I. Experimental vibrational frequenciesn i @McDowell et al.~Ref.
19!# and refined quadratic symmetry force constantsFi j for the SF6 mono-
mer.

i Gi ni ~cm21! Fi j ~mdyn/Å!

1 A1g 773.6 6.69896
2 Eg 642.1 4.61508
3,4 F1u 947.968 5.30319

615.03 20.89981 1.03430
5 F2g 522.9 0.76516
6 F2u 346.0 0.67003

TABLE II. Displacementl-matrix for the n3 mode of the SF6 monomer
~dimensionless!.

l x l y l z

S atom 20.78799 0.0 0.0
axial F atoms 0.43164 0.0 0.0
equatorial F atoms 0.04011 0.0 0.0
o. 15, 15 October 1995
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6400 T. A. Beu and K. Takeuchi: Small SF6 clusters
the cubic force constantsf rst which enter the expressions
the second order line shifts, we have applied theL-tensor
method of Hoy and co-workers.21 The internal valence~or
symmetry! coordinatesRi can be expressed in terms of no
mal coordinatesQr by a non-linear transformation

Ri5(
r
Li
rQr1(

r ,s
Li
rsQrQs1(

r ,s,t
L i
rstQrQsQt1•••,

where the elements of theL-tensor,Li
r , Li

rs , Li
rst ,..., have to

be interpreted as first, second, and third order derivative
the internal coordinateRi with respect to the normal coord
nates. In particular, the formula for the transformation of
cubic force constants from symmetry to normal coordina
is:

f rst5(
i , j ,k

Fi jkLi
rL j

sLk
t 1(

i , j
Fi j ~Li

rsL j
t1Li

rtL j
s1Li

stL j
r !.

Since for the SF6 monomer only quadratic symmetry forc
constants,Fi j , are available, the transformed cubic for
constantsf rst merely account for the nonlinearity of th
transformation of the quadratic force field of the monom
from symmetry to normal coordinates.

B. Intermolecular potential adjustment

In Sec. II C we have presented the two intermolecu
potential models we have used in our structure and line
calculations for the SF6 clusters: potential I, neglecting th
induction interactions, and potential II, including them.
order to make our models as realistic as possible, we
adjusted their parameters in accordance with two ma
scopic aspects: the monomer transition dipole moment
the temperature dependence of the second virial coeffic

Our first concern in modeling the intermolecular pote
tials was to choose the effective atomic chargesqi in such a
way as to exactly reproduce the observed transition stre
of the n3 vibration in the SF6 monomer.

Up to now, irrespective of the approach used to desc
the structures and frequency shifts of the SF6 clusters, all the
published results1–7 were based on the monomer transiti
dipole momentm0150.38860.02 Debye reported by Fo
et al.,9 ignoring the more recent and accurate value
0.43760.005 D of Kim and co-workers.10 Historically, the
preference for the value of Foxet al. has probably been du
to the fair explanation of the dimer spectrum obtained w
the dipole-dipole interaction model of Geraedtset al.1,2

Since in this approach for the description of the cluster sp
trum it is sufficient to fit a global parameterl, in terms of
which the line shifts can be expressed as22l andl, and
which formally depends on the transition strengthm01

2 , the
accuracy of the actual transition dipole moment is evide
not critical. This conclusion holds, however, only for t
particular model of Geraedtset al.

The same monomer transition dipole moment value
been used later on in the more sophisticated approach o
Bladelet al.,7 based on a site-site potential similar to the o
we are employing. Since this approach deals with a di
built up from monomers showing a realistic structure,
possibility arises to treat the normal mode vibrations by
J. Chem. Phys., Vol. 103
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placements of the atoms, which can contribute through ass
ciated effective charges to the description of the observe
transition dipole moment. The effective charges assigned
the atoms in order to reproduce the experimental monom
transition dipole moment~0.388 D! have been20.565e for
the fluorine atoms and, correspondingly, 3.39e for the sul-
phur atom.

As a reference for determining the effective atomic
charges of the SF6 monomer for both our potential models,
we have considered the transition dipole moment valu
m0150.437 D of Kimet al.The effective charges have been
calculated accordingly from the expression of the monome
transition dipole moment derived in Appendix C,

m01
a 5

1

A2(a qal̃ aa
n ,

by imposing the additional condition of monomer neutrality.
In the above relationa is the atom index anda is the Car-
tesian coordinate index. Thel̃ aa

n components result from the
l -matrix elements given in Table II by applying Eq.~B2!.
Thus, we obtain for the effective charges of the fluorine an
sulphur atoms the values20.637e and 3.822e, respectively.
Since they are intended to describe a monomer property, th
same charges can be employed in both our potential mode

As regards the coefficientsAi j , Bi j , andCi j , defining
the exchange and dispersion potentials given by Eqs.~15!
and ~16!, they can be constructed from the coefficients
Aii , Bii , and Cii of the individual atomic species by
applying the standard combination rules,Ai j5AAiiAj j ,
Bi j5(Bii1Bj j )/2, andCi j5ACiiCj j . For sulphur and fluo-
rine, among other atomic species, such coefficients hav
been reported by Spackman,22 and have been used by van
Bladel et al. in their dimer structure and line shift calcula-
tions. ForAii andBii , describing the short range repulsive
atom-atom interactions, we have considered the same valu
obtained by Spackman from fits to accurate calculation
based on the Gordon-Kim electron gas model.23 As for the
dispersion coefficientsCii , describing the long range inter-
action of two non-polar species, they have been derived from
experimental and theoretical atomic dipole polarizabilities
and C6 constants and are claimed to be accurate to onl
5–15%. Moreover, in an attempt to model the fluorine and
sulphur atom interactions within the SF6 clusters, the disper-
sion coefficients of both atomic species are most likely to
change due to the additional polarization effects, and thu
become the main candidates to be adjusted in a fit procedu
against experimental virial coefficients.

The second virial coefficient is a valuable synthetic
quantity for the characterization of intermolecular potentials
and many successful empirical and semi-empirical potentia
models have been obtained by fitting to experimental data fo
this property. The pair potential for two molecules is in gen-
eral a function of 12 coordinates, three position coordinate
and three Euler angles for each molecule. It is always pos
sible to choose a coordinate frame in which one of the mo
ecules is placed~unrotated! at the origin and thus, the second
virial coefficient may be expressed as a sixfold integral ove
, No. 15, 15 October 1995
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6401T. A. Beu and K. Takeuchi: Small SF6 clusters
the relative positionr[(r ,u,w) and rotationV[(F,Q,C)
of the second molecule:24

B~T!52
Na

16p2E
0

`

r 2drE
0

p

sinuduE
0

2p

dwE
0

2p

dF

3E
0

p

sinQdQE
0

2p

dC$exp@2U~r,V!/kBT#21%.

With a view to evaluating the second virial coefficient o
SF6 , we have investigated two classes of numerical a
proaches for high-dimensional integration: Monte Car
techniques and deterministic non-product methods. Wher
non-product methods have turned out to be more efficie
we have extensively used the variants due to Stroud25 and
Evans and Watts.26 However, showing a higher degree o
accuracy, we have employed the method of Stroud, brie
outlined in what follows, to produce all our final results.

Let Sn
(k)[(s1

(k) ,s2
(k) , ...,sn

(k)) for k51,2,...,2n be inte-
gration points in then-dimensional Euclidean spaceEn, with
components

s i
~k!5HA2/3 cos~ ikp/n! for odd i

A2/3 sin~ ikp/n! for even i
,

andsn
(k)5(21)k/A3 for oddn. According to the method of

Stroud, an integral over then-dimensional hypercube
Sn[@21,1#3@21,1#3•••3@21,1# may be evaluated by
the formula

E
Sn
f ~x!dx.

2n

2n(k51

2n

f ~Sn
~k!!. ~19!

The second virial coefficient is best evaluated by express
it as a sum of integrals over finite subregions ofE6, which
can be scaled toS6 such that Eq.~19! can be applied.

Taking advantage of theOh symmetry of the SF6 mono-
mer, by halving each angular integration interval one c
reduce the relevant space of relative orientations for tw
molecules, implying the positional (u,w)—and the Euler
(F,Q,C) angles, by a factor of 32. For obtaining our fina
results for the second virial coefficient, we have used a u
form spatial mesh, with the radial coordinate restricted to t
interval @2,34# ~Å!, outside of which the integrand has bee
negligible for the considered potential models. The rad
spacing has been taken equal to 2 Å, and the angular sp
ings equal top/8, resulting in 13107200 integration points
which have been proved to ensure the convergence of
virial coefficient values with five exact digits for all tempera
tures.

Since, as can be seen from Fig. 1, the temperature
pendence of the second virial coefficient we have obtain
by considering the potential of van Bladelet al. ~represented
with squares! underestimates by 50 to 100 cm3/mol the ob-
served values, it is obvious that this potential is not suf
ciently attractive in its long-range components. Cons
quently, in order to reproduce the observed temperatu
dependence of the second virial coefficient, the SF6-SF6 po-
tential has to be made more attractive by increasing the d
persion coefficients,Ci j , which, besides, are quite inaccu
rate, as shown above. Unfortunately, in an attempt to fit t
J. Chem. Phys., Vol. 103, N
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theoretical virial coefficients to the experimental evidence
one is faced with the difficulty of having to adjust the coef-
ficientsCii for both sulphur and fluorine~the coefficient for
the S-F interaction automatically results from the combina
tion rule!. Because no supplementary prescription is avail
able, we have found it reasonable to vary both dispersio
coefficients proportionally.

In the case of potential I, we have achieved the best fit o
the observed temperature dependence of the second vir
coefficient by considering a 10.5% increase in theCii coef-
ficients, yielding 8621.0 kJ/mol Å6 for sulphur and 665.9
kJ/mol Å6 for fluorine. For potential II, the increase ofCii

for an optimal fit amounts to 9.2%, resulting in 8519.6 kJ/
mol Å6 for sulphur and 658.0 kJ/mol Å6 for fluorine. It is to
be noted that the increase of the dispersion coefficients lie
for both potential models within the error limit of 15% esti-
mated by Spackman. The resulting root mean square devi
tions of 1.59 and 1.71 cm3/mol, respectively, provide excel-
lent fits in both cases. In Fig. 1, the temperature dependen
of the virial coefficient resulting from potential I~plotted
with continuous line! can be seen to nicely pass through the
experimental error bars.27 The corresponding curve for po-
tential II cannot be practically distinguished.

For the polarizabilitiesa i appearing in the induction
termU ind given by Eq.~18!, we use the same values as van
Bladelet al.

All relevant data for the description of our potential
models, along with the parameters for the potential of va
Bladelet al. are summarized in Table III.

In order to more clearly emphasize the decisive impor
tance of the electrostatic terms in the description of the SF6

cluster structures and line shifts, we have also investigate
the Lennard-Jones type potential due to Powellet al.,28

FIG. 1. Temperature dependence of the second virial coefficient of SF6 .
With circles—the experimental values~Ref. 27!; with squares—the values
obtained using the potential of van Bladelet al. ~Ref. 7!; with continuous
line—the dependence resulted using potential I.
o. 15, 15 October 1995



TABLE III. Parameters for intermolecular potential models.

Potential model Aii ~kJ/mol! Bii ~Å
21! Cii ~kJ/mol Å

6! qi(e) ai(a0
3)

Potential I S 540857 3.132 8621.0 3.8250
F 336133 4.128 665.9 20.6375

Potential II S 540857 3.132 8519.6 3.8250 7.2
F 336133 4.128 658.0 20.6375 5.1

van Bladelet al. ~Ref. 7! S 540857 3.132 7801.8 3.390 7.2
F 336133 4.128 602.6 20.656 5.1
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characterized bye50.14 kcal/mol ands52.8591 Å . This
potential implies interaction sites only at the fluorine atom
not involving the sulphur atoms in any way. Lately it h
been extensively used by Boutinet al.29,30 in MD simula-
tions concerning the structure and dynamics of~SF6)M clus-
ters in the size rangeM57255. Nevertheless, even thoug
this potential has been accurately fitted to the experime
virial coefficients, not only does it not produce any releva
line shifts~not possessing any charges!, but, as will be shown
in Sec. III C, it results in an incorrect structure for the dim

In Figs. 2 and 3 we have plotted the atom-atom inter
tion potentials of Powellet al., van Bladelet al., and of this
work for the fluorine and sulphur atoms. It should be cle
that these potentials describe the atom-atom interact
within the SF6 clusters, rather than those of the free atom
species, and can be regarded as projections of the SF6-SF6
potential energy hypersurface onto the respective atom-a
coordinates. In the case of our potential and of the poten
of van Bladelet al., we have not included the induction
which, as it will be later shown, is neither dominant for t
cluster structures nor for the frequency shifts. As can be s
from Fig. 2, the F-F potential of Powellet al. is much more
attractive than our potential and that of van Bladelet al.This

FIG. 2. Fluorine-fluorine interaction potentials within the SF6 clusters~in-
duction contributions are not included!. With dotted lines—the potentials o
Powellet al. ~Ref. 28! and van Bladelet al. ~Ref. 7!.
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behavior is partly caused by the fact that the F-F interaction
have to account for all the interactions within the forme
model, including the very attractive S-F interactions. On th
other hand, our potential and that of van Bladelet al.contain
the repulsive contributions due to the charges assigned to t
atoms with a view to reproducing the observed monome
transition dipole moment—our potential being slightly more
attractive in the short-range region and more repulsive in th
long-range region. Regarding the S-S and the S-F intera
tions depicted in Fig. 3, our curves lie outside those corre
sponding to the potential of van Bladel et al., that is, our S-
potential is more repulsive, while our S-F potential is mor
attractive.

C. Cluster structures

Cluster structure calculations can be straightforwardl
performed by minimizing the total interaction energy of the
cluster components. Taking into account the different natu
of the interaction forces and the different orders of magn
tude of the corresponding binding energies for the intra- an
intermolecular degrees of freedom, a reasonable approach
to consider the molecules ‘‘frozen’’ in their equilibrium ge-
ometries and to minimize the intermolecular potential with
respect to their relative positions. Moreover, such a tech
nique is consistent with the overall philosophy of our ap

FIG. 3. Sulphur-sulphur and sulphur-fluorine interaction potentials withi
the SF6 clusters~induction contributions are not included!. With a dotted
line—the potential of van Bladelet al. ~Ref. 7!.
No. 15, 15 October 1995



6403
TABLE IV. Calculated cluster structures by using the potential of van Bladelet al. ~Ref. 7! potential I and
potential II of this work.E represents the total binding energy~in kJ/mol!, anddSS is the average S-S distance
~in Å!. The second lowest dimer and tetramer~configurations 28 and 48! and the third lowest pentamer~59! are
included. The hexamer for the potential of van Bladelet al. does not show any symmetry.

M

van Bladelet al. Potential I Potential II

SymmetryE dSS E dSS E dSS

2 25.37 4.97 26.68 4.90 26.71 4.89 D2d

28 25.02 5.08 26.23 5.03 26.33 5.01 C2h

3 214.96 5.07 218.45 5.02 218.79 5.00 D3d

4 227.27 5.24 233.90 5.18 234.49 5.16 D2

48 227.11 5.23 233.69 5.17 234.30 5.16 C3

5 240.28 5.24 249.93 5.18 250.88 5.16
59 239.93 5.22 249.36 5.16 250.12 5.15 C3h

6 254.63 5.21 267.74 5.18 268.69 5.16 C4h
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proach for frequency shifts. The positions and orientations
the molecules are specified by their center of mass Carte
coordinates and Euler angles, which are optimized with
constraints starting from randomly chosen initial configur
tions using the NAG library routineE04JAF. Typically, sev-
eral hundreds~for the dimer! up to 5–6 thousands~for the
hexamer! of minimizations are required to yield the globa
minimum, and a quite voluminous bookkeeping of the clu
ter configurations is necessary.

The results of our cluster structure calculations, by us
the potential of van Bladelet al., and the potentials I and II
proposed in this work, are summarized in Table IV, whe
the binding energies and the mean S-S bond length of
clusters ranging from dimer to hexamer are listed. The me
S-S bond length is intended to give an idea about the ‘‘co
pactness’’ of the clusters. For all cluster sizes we have lis
the data for the most stable~energetically lowest! isomer.
However, since, as will be later emphasized, the second l
est dimer and tetramer configurations~28 and 48! also show a
remarkable symmetry, being energetically very close to
most stable isomers, we have considered them too. For
pentamer, the first symmetrical isomer is the third one~59!,
and it is included as well. The geometrical configurations
all the listed cluster structures are presented in Figs. 4–8
should be noted that the shape of the cluster structure
alike for all three discussed potential models with one exc
tion: the hexamer resulted for the potential of van Blad
et al., which, in addition, does not possess any symmetry

We have depicted in Fig. 4 the two found dimers, th
lowest havingD2d symmetry and the second,~reduced!
C2h symmetry. TheC2h symmetry structure offers a tempt
ing explanation for the geared internal rotation of the dim
in which it could play the role of intermediate configuratio
Figure 5 shows the most stable trimer, exhibitingD3d sym-
metry. Each monomer is connected to its neighbors
double S-F bonds, overlapping in the figure and providing
reminder of those of the second lowest dimer.

The two lowest tetramers, belonging to theD2 andC3

point groups, respectively, are represented in Fig. 6. The
culations of Geraedtset al.,1 operating with structureless
monomers, prescribe aTd symmetry tetramer, which is the
most compact structure resulting from four rigid spheres
should be noted, however, that for both our tetramer confi
J. Chem. Phys., Vol. 103,
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rations the positions of the sulphur atoms correspond to
slightly distortedTd symmetry.

The most stable pentamer~Fig. 7! has no symmetry
properties, being a distorted bi-pyramid. The first pentam
isomer with a well-defined (C3h) symmetry~same figure!,
having a regular bi-pyramid shape, corresponds to only t
third lowest configuration and a further manifestation of th
peculiarity is its smaller average S-S distance as compared
the one for the most stable isomer.

The most stable hexamer, depicted in Fig. 8, again e
hibits a niceC4h symmetry for both of our potential models,
unlike the hexamer resulting from the model of van Blade
et al., which is unsymmetrical. Taking into account the quit
close values of the in-plane distances between the S ato
contained in the ring and the out-of-plane S-S distances,
follows that the sulphur atoms are organized according to
slightly distortedOh symmetry.

A general remark, which emerges from Table IV, is tha
for potentials I and II, the binding energies never differ b
more than 1%, with the corresponding average S-S distan
differing even less~at most by 0.4%!. This indicates that the
induction contributions, which differentiate our two models
are not determining for the cluster structures. As for the co
figurations obtained by using the potential of van Blade
et al., their energies are typically more than 20% lower a
compared to the ones obtained with our potentials. Howev
it is interesting to observe that the S-S distances again dif
much less than the binding energies, being by only about 2
larger for the model of van Bladelet al.Thus, the geometri-
cal size of the clusters shows little sensitivity to the electro
static terms, evidencing the fact that SF6 forms true van der
Waals clusters, mainly bound by the dispersion attraction.

Irrespective of the potential model, dissimilar to the mo
notonous energy increase, there is a clear saturation tende
of the mean S-S distances with increasing cluster size, su
gesting that for clusters larger than the tetramer, further a
cumulation of binding energy does not occur at the expen
of enhanced ‘‘compactness.’’

In order to emphasize the tremendous differences whi
arise from different potential models, even if reproducing th
temperature dependence of the experimental second vi
coefficient, we show in Fig. 9 the only dimer structure whic
results from using the potential of Powellet al. It hasD3d
No. 15, 15 October 1995



TABLE V. Contributions of the various potential terms to the dimer line shifts of then3 mode ~in cm21).
Within parenthesis are given the first order results.

Band Exchange Dispersion Electrostatic Induction Total

Potential I i 0.20~0.28! 20.12~20.16! 214.38~214.72! 214.32~214.60!
' 20.12~20.01! 0.07~0.02! 8.41~8.19! 8.36~8.20!

Potential II i 0.20~0.29! 20.12~20.16! 214.45~214.79! 22.00~22.01! 216.30~216.68!
' 20.13~20.01! 0.07~0.02! 8.45~8.23! 20.54~20.55! 7.80~7.64!
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symmetry~a threefold axis is in contradiction to the structur
of the experimental spectra!, its binding energy of26.04
kJ/mol lies between the values obtained with our potentia
and that of van Bladelet al., whereas its average S-S dis
tance is much lower~4.65 Å!. This very compact structure is
determined by the absence of the repulsive S-S interactio

It is instructive to plot the incremental binding energ
EM2EM21 of the most stable isomers as a function of th
cluster sizeM ~Fig. 10!. The pentamer does not conform to
the general tendency of the curves, showing a reduced
ergy increment relative to the tetramer. This once more is
consequence of the reduced symmetry of the lowest p
tamer. Although implying lower energy increments, th
curve for the potential of van Bladelet al. has the same
shape, evidencing the same specific behavior of the p
tamer, whereas the curve obtained with the potential of Po
ell et al. suggests a very compact and stable pentamer,
spite of the fact that it possesses no symmetry at all.

D. Frequency shifts

In our band shift calculations for the SF6 clusters, we
have focused on the fundamental excitation of then3 vibra-
tional mode~at 947.968 cm21!.

The most successful, and straightforward, of the the
retical models employed up to now to describe the frequen
shifts of then3 mode of the SF6 dimer, has been the dynami-
cal dipole-dipole interaction model of Geraedtset al.1 The
n3 absorption band is split up according to this model in

FIG. 4. Geometrical structures of the two dimer isomers found using pot
tial I (D2d is the lowest energy configuration!. The shape of the correspond-
ing isomers for potential II and the potential of van Bladelet al. ~Ref. 7! is
identical.
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parallel band shifted byl and a perpendicular band shifted
by 22l, the unit quantityl5(4pe0)

21m01
2 ^R23& resulting

from the analytical diagonalization of the dipole-dipole cou-
pling. Here,R corresponds to an averaged intermolecular
separation andm0150.388 D is the monomer transition di-
pole moment value reported by Foxet al.9 In order to be
consistent with their experimental data, Geraedtset al. have
considered the unit value to bel56.8 cm21, this choice also
resulting in a reasonable value for the unknown intermolecu-
lar separationR. Unfortunately, being based on structureless
monomers, and not yielding comparatively good results for
the frequency shifts of the higher clusters, this model does
not allow for interpretations correlated with realistic cluster
structures.

On the other hand, the more elaborate first order pertur
bation approach of van Bladelet al.7 yields a realistic dimer
structure. The corresponding line shifts however underesti
mate the experimental findings, even though they are en
hanced by adding induction contributions. In order to empha-
size the crucial importance of the choice of the potential
parameters, we will also discuss the line shifts we have ob
tained using the potential of van Bladelet al., in spite of the
increasing disagreements this model produces with increas
ing cluster size.

We have summarized in Table V the results of our fre-
quency shift calculations for the most stable SF6 dimer, both
for potential I ~including exchange, dispersion, and electro-
static terms! and potential II~additionally including induc-
tion contributions!. As a result of the mutual interaction of
the monomers within the dimer, then3 vibrational mode is
split up into a redshifted parallel band (i) and a doubly de-
generate blueshifted perpendicular band ('). In Sec. III E it

n-
FIG. 5. Geometrical structure of the lowest trimer for potential I. Potential II
and the potential of van Bladelet al. ~Ref. 7! yield an identically shaped
trimer.
No. 15, 15 October 1995
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6405T. A. Beu and K. Takeuchi: Small SF6 clusters
will be shown that the parallel band implies collective vibr
tions of the monomers along the longitudinal symmetry a
of the dimer, while for the perpendicular band, the resulti
vibration takes place predominantly in a perpendicular pla
The differences between the line shifts corrected up to
second order and the first order results~added between pa-
renthesis! represent the second order corrections, which ty
cally amount to less than 0.4 cm21. The small second orde
corrections are a result of the relatively reduced anharmon
ity of the normal monomer vibrations, but also of the sm
intermolecular potential curvature in the vicinity of the glo
bal minimum ~the mixed second order derivative
]2U/]qni]qrm hardly exceed 0.7 cm21!.

In order to identify the interaction mechanism which
mainly responsible for the frequency shifts, the individu
contributions of the various potential terms to the line shi
have been evaluated by switching off the rest of the inter
tions, but considering the same dimer structure~obtained
with the full potential model!. It can be easily noticed tha
the electrostatic contributions are by far dominant, and
performing the molecular multipole analysis of the electr
static interactions, taking into account theOh symmetry of
the monomer, it becomes clear that the vibrational dipo
dipole interaction, held responsible for the vibrational spl
tings in the literature,1–7 indeed represents the leadin
mechanism. Furthermore, the effects of the exchange
dispersion couplings can be seen to be completely negligi

FIG. 6. Geometrical structure of the two lowest tetramers for potentia
~ D2 is the lowest energy configuration!. The shape resulted for potential I
and the potential of van Bladelet al. ~Ref. 7! is identical.
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Whereas for the parallel band the exchange interaction pr
duces a small blueshift and the dispersion an even smal
redshift~partially cancelling out the first one!, in the case of
the perpendicular band, the signs of the shifts are reverse
The induction, considered in potential II, contributes abou
12% to the total frequency shifts, but as it will be further
shown, its inclusion leads to a systematic redshift of th
bands for all cluster sizes, turning out to be inappropriat
with the available atomic polarizabilities. The implicit domi-

l I
FIG. 7. Geometrical structure of the lowest and third lowest pentamers f
potential I~the lowest energy configuration does not belong to any symme
try group!. Potential II and the potential of van Bladelet al. ~Ref. 7! yield
identically shaped pentamers.

FIG. 8. Geometrical structure of the lowest hexamer for potential I. Poten
tial II yields an identically shaped hexamer.
No. 15, 15 October 1995
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6406 T. A. Beu and K. Takeuchi: Small SF6 clusters
nance of the dipole-dipole resonance mechanism is, ob
ously, the ultimate explanation for the remarkable success
the simple model of Geraedtset al.

We have gathered in Table VI both experimental a
theoretical data regarding the frequency shifts and line int
sities for SF6 clusters up to the hexamer. As experimen
reference data we have chosen the results of the two m
recently reported sets of measurements: the IR-IR dou
resonance experiments of Heijmenet al.,6 and the vibrational
predissociation experiments with size-selected clusters
Huisken et al.5 The discrepancies between the estimat
band positions are mainly due to the less sharper peaks in
predissociation spectra of Huiskenet al. Nevertheless, the
size-selectivity of the two-laser spectra of Heijmenet al.
seems to be less effective. Unfortunately, no size-selec
observed data for clusters higher than tetramer are availa

As a theoretical counterpart for our calculations, w
have chosen the initial results of Geraedtset al.,1 because the

FIG. 9. Geometrical structure of the dimer found using the potential mo
of Powellet al. ~Ref. 28!.
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subsequently reported variants of their model did not bri
any substantial improvements. For this model we have n
included the hexamer, which, as a consequence of the
that a compact symmetrical structure cannot result fro
spherical monomers, shows an unstructured spectrum of
interest for further comparison. We have not considered
results for the dimer obtained by van Bladelet al.7 either,

el

FIG. 10. Incremental binding energy of small SF6 clusters. Open circles and
open squares plot the values obtained using the potential of van Bladelet al.
~Ref. 7! and that of Powellet al. ~Ref. 28!, respectively.
the
l

TABLE VI. Experimental and computed line shiftsDn3 ~in cm21), and total transition strengthsgum01u2 ~in D2, within parenthesis! for SF6 clusters up to the
hexamer. For our calculations with the potential of van Bladelet al., potential I and potential II, we give the results corrected up to the second order. In
case of the pentamer, we present the data for the third lowest isomer 59, the first to show a well-defined symmetry.g represents the degeneracy of the spectra
line.

M Heijmena Huiskenb Geraedtsc van Bladeld Potential I Potential II g

2 214.1 213.7 213.6~0.30! 212.3~0.30! 214.3~0.38! 216.3~0.38! 1
8.4 7.7 6.8~0.60! 5.8~0.60! 8.4~0.76! 7.8~0.76! 2

3 213.1 213.0 213.1~0.65! 211.4~0.64! 213.2~0.83! 215.2~0.82! 2
7.2 7.1 9.7~0.25! 7.4~0.26! 10.8~0.31! 9.8~0.32! 2
15.3 15.3 13.6~0.45! 11.0~0.45! 16.3~0.57! 14.5~0.57! 1

4 213.0 212.9 212.8~1.00! 210.8~0.35! 212.7~0.46! 214.6~0.44! 1
7.0 5.7 16.2~0.80! 210.5~0.62! 212.1~0.82! 213.9~0.80! 2
15.3 14.0 11.2~0.25! 17.1~0.30! 14.8~0.32! 1

11.2~0.56! 17.1~0.69! 14.9~0.71! 2

59 213.9~0.40! 210.8~0.37! 212.3~0.50! 214.3~0.48! 2
213.4~0.67! 210.6~0.66! 212.3~0.90! 214.1~0.84! 1

25.8~0.30! 26.6~0.30! 27.6~0.40! 28.8~0.39! 2
17.9~0.80! 12.7~0.82! 19.8~1.00! 16.8~1.05! 2
23.9~0.07! 14.0~0.09! 22.5~0.10! 18.4~0.11! 1

6 212.3~0.24! 214.8~0.24! 2
28.0~0.68! 29.4~0.66! 1
27.6~1.44! 28.9~1.38! 2
17.8~0.46! 15.1~048! 1
22.6~0.60! 18.5~0.67! 2

aHeijmenet al. ~Ref. 6!.
bHuiskenet al. ~Ref. 5!.
cGeraedtset al. ~Ref. 1!; the tetramer lines are triply degenerate.
dComputed with the potential of van Bladelet al. ~Ref. 7!.
No. 15, 15 October 1995
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6407T. A. Beu and K. Takeuchi: Small SF6 clusters
since we have included the results of our calculations usi
this potential. It should be stressed, however, that our fir
order line shifts for this potential coincide up to the firs
decimal digit with those reported by van Bladelet al.

For the pentamer we have considered only the third low
est isomer~59!, the first one to show a well-defined symme
try and consequently a structured spectrum which may
subject to intuitive interpretations. The total splitting of the
n3 band of the most stable pentamer is for all potential mo
els sensitively larger and the spectrum consists of more no
vanishing lines.

Already when comparing the theoretical line shifts fo
the dimer with the frequency shifts of214.1 and 8.4 cm21

evidenced by the IR-IR double resonance experiments
Heijmenet al., it becomes apparent that the best agreeme
is achieved by using potential I~which does not include in-
duction!. It can be seen that the potential of van Bladelet al.
underestimates the total splitting by more than four wav
numbers, and the reason for this is obviously the small
~less accurate! monomer transition dipole moment of Fox
et al.,9 which has been used to determine the effective atom
charges. In order to clarify whether the underestimation
the splitting cannot also be attributed to the different dispe
sion coefficientsCi j , we have increased theCi j coefficients
in the potential of van Bladelet al. to the values correspond-
ing to potential I, but the changes in the frequency shif
have been minor. The crucial importance of the effectiv
charges assigned to the atoms thus becomes clear. On
other hand, the inclusion of the induction interaction in po
tential II yields a poorer agreement with the observed spe
tra, leading to an overall redshift. It is, however, interestin
to notice the same~2:1! intensity ratio of the perpendicular
and parallel bands for all theoretical models, indicating aga
the leading contribution of the dipole-dipole interaction.

The fair agreement between our results for the dimer a
the experimental evidence can also be noticed from Fig. 1
where we have depicted along with the two-laser spectrum
Heijmenet al., the stick spectra for the two dimer structure
found by considering potential I. The observed spectru
nicely accommodates the lines corresponding to both dim
isomers, suggesting that the experimental setup cannot d
criminate them and that they possibly coexist under the giv
experimental conditions. Even though the units for the e
perimental and calculated spectra differ, the ratios of the co
responding line strengths seem to support the coexisten
hypothesis, and this would further sustain the interpretatio
of the van der Waals geared rotation proposed in Sec. III
as part of which the second lowest dimer could play the ro
of intermediate structure.

More than from the listed frequency shifts, the agree
ment between our dimer spectrum and the measurements
Huiskenet al.becomes evident by inspecting Fig. 12, wher
the calculated lines seem to point to the highest attenuati
values rather than to the maxima of the Lorentzian fit of th
experimental points, the ratio of the calculated line strengt
reproducing quite well the corresponding attenuation ratio

In Fig. 13 we have plotted besides the two-laser spe
trum of Heijmenet al. for the trimer, the corresponding stick
spectrum resulted by using potential I. Although the structu
J. Chem. Phys., Vol. 103, N
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of the spectrum and the position of the outer lines is we
reproduced, the calculated middle line appears blueshifted
approximately 3.5 cm21. However, at about 955 cm21, where
the experimental peak is located, important contribution
from the dimer are likely to exist~see Fig. 11!. As regards
the results of Geraedtset al., the underestimation of the total
band splitting has become even more apparent than in
dimer case, as can be seen from Table VI. The same ho
also for our calculations using the potential of van Blade
et al., but to an even more critical extent. As for the result
based on potential II, the lines are again redshifted too muc

Going to the tetramer~Fig. 14!, a striking finding is the
appearance of a supplementary peak at about 955 cm21 in

FIG. 11. Two-laser spectrum of the SF6 dimer from Heijmenet al. ~Ref. 6!
and calculated stick spectrum using potential I. The thick lines correspond
the lowest isomer (D2d) and the dotted lines to the second lowest on
(C2h).

FIG. 12. Pure SF6 dimer absorption and predissociation spectrum from
Huiskenet al. ~Ref. 5! and calculated stick spectrum for the lowest isome
o. 15, 15 October 1995
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6408 T. A. Beu and K. Takeuchi: Small SF6 clusters
the IR-IR double resonance spectrum of Heijmenet al.with
no theoretical counterpart. Nevertheless, judging from
fact that the results of Geraedtset al. predict two well sepa-
rated bands as well, we tend to believe that the additio
peak is to be assigned rather to the dimer or the trimer. Th
exists however a qualitative difference between the resu
Geraedtset al. and the one we obtain: while the former pr
dicts only two triply degenerate lines for the employedTd
symmetry tetramer, we find for all potential models tw
groups of two almost overlapping lines, in each group o
being non-degenerate and the other doubly degenerate.
supplementary splitting of our tetramer lines is clearly a c
sequence of the slightly distortedTd structure of both our

FIG. 13. Two-laser spectrum of the SF6 trimer from Heijmenet al. ~Ref. 6!
and calculated stick spectrum using potential I.

FIG. 14. Two-laser spectrum of the SF6 tetramer from Heijmenet al. ~Ref.
6! and calculated spectrum using potential I. The thick lines correspon
the lowest isomer (D2) and the dotted lines to the second lowest o
(C3).
J. Chem. Phys., Vol. 103,
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tetramer configurations. Except for the above mentioned a
pect, the agreement of our tetramer spectrum with the one
Heijmen et al. is satisfactory, the difference of about 1.8
cm21 in the blueshifted band probably being due to the var
ing laser effectiveness in the marginal frequency regio
Again, as in the case of the dimer, judging by the experime
tal bandwidths, the two tetramer isomers are not likely to b
distinguished under the given experimental conditions. A
for the tetramer spectrum of Huiskenet al. ~Fig. 6 of Ref. 5!,
due to the very low laser fluence~5.5 mJ/cm2!, the bands are
quite diffuse, not allowing for a reliable quantitative com
parison.

In a rather surprising manner, the agreement of the r
sults of Geraedtset al.with the experiments improves for the
tetramer over the trimer, while the potential of van Blade
et al. provides a too small total splitting in the spirit of the
already noticed underestimating tendency. As regards our
sults for potential II, the overall redshifting tendency is
somewhat diminished, suggesting that with increasing clus
size, the induction contributions become more and more im
portant. The persistent discrepancies with respect to the
perimental band shifts indicate, however, that more accura
polarizabilities are required for a subtle description of th
cluster vibrations.

Figure 15 shows the stick spectra of the SF6 clusters up
to the hexamer, obtained by using potential I. The lines ha
been denoted according to the sign of the frequency sh
with i for redshifted lines and with' for the blueshifted
ones~the parallel or perpendicular character will be clarifie
in the next section!. While the ‘‘parallel’’ lines tend to pre-
serve the red boundary of the spectra at about 935 cm21 with
increasing cluster size, the ‘‘perpendicular’’ lines graduall

to
e

FIG. 15. Calculated stick spectra of SF6 clusters from dimer to hexamer
using potential I. The continuous lines correspond to the most stable i
mers, while the dotted lines to the second lowest ones. For the pentamer,
third lowest configuration is being considered.
No. 15, 15 October 1995
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6409T. A. Beu and K. Takeuchi: Small SF6 clusters
move toward higher frequencies, however with a satura
tendency, which brings about an almost non-varying to
splitting when going from the pentamer to the hexamer. T
same tendency can be also observed in Table VI in the
of potential II and this finding can be correlated with t
saturation of the average S-S distance, which was discu
in Sec. III C. Apart from the supplementary splitting in th
case of the tetramer, pentamer and hexamer, which is o
ously due to the presence of monomers in non-equiva
positions, the parallel lines seem to be less sensitive to
‘‘compactness’’ of the cluster~given by the average S-S dis
tance! than the perpendicular lines.

E. Structure of the cluster vibrations

In this section we try to shed some light on the struct
of the collective monomer vibrations, establishing corre
tions between the cluster configurations and the corresp
ing spectra. For the sake of conciseness we will confine
discussion to clusters up to the tetramer.

The n3 vibrational mode of the SF6 monomer being
threefold degenerate, in principle all three vibrations alo
the local Cartesian coordinates will take part in the ove
vibration of the cluster. We will graphically symbolize eac
component of the vibration by a vector along the respec
local Cartesian axis, implying individual vibrations of th
atoms with relative amplitudes given by thel -matrix compo-
nents listed in Table II~with all fluorine atoms moving in
phase in the direction of the vector, and the sulphur at
moving out of phase in the opposite direction!. The ampli-
tudes of the defined vibration vectors will be given by t
coefficientscn8 i 8,ni , representing the weights of the ind
vidual vibrational states within the total cluster sta
uCn

i &5(n8PG( i 8cn8 i 8,niu1n8 i 8&, and resulting as eigenvecto
components from the eigenvalue problem~9! for the reduced
perturbation matrix.

In Fig. 16 we have depicted the parallel (i) and perpen-
dicular (') vibrations for the most stable dimer configur
tion, along with the parallel vibration for the second lowe
isomer. In the case of the parallel vibrations, the fluor
atoms vibrate solidary in phase along the dimer axis, lik
cage, while the two sulphur atoms vibrate out of phase al
the same axis~the vibration components for the second lo
est isomer are symmetrical with respect to the plane of
figure!. Since the S-F bond pairs are alternatively stretch
and compressed, the cluster structure preserving its a
symmetry, the monomer vibrations are enhanced by the o
all cluster vibration and the resulting frequency shift is re
as can be seen from the stick spectrum in Fig. 15. In the c
of the perpendicular vibration ('), from the symmetry of the
components it follows that the fluorine atom cage inde
vibrates perpendicularly to the dimer axis, out of phase w
respect to the sulphur atoms. The vibration is obviously d
bly degenerate, rendering the cluster structure unsymm
cal. As a consequence, the valence S-F bonds are stre
on the whole, hindering the vibration of the implied fluorin
atoms, and thus leading to a blueshift of the frequency.

The three pairs of van der Waals S-F bonds within
trimer are very similar to the ones in the second low
J. Chem. Phys., Vol. 103,
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dimer. Consequently, the parallel band of the trimer is e
pected to behave analogously with the parallel band of t
second dimer and this is of course what is found in the sti
spectrum of Fig. 15. Whereas, judging from the cyclic sym
metry of the vibration components~Fig. 17!, the'2 band
clearly corresponds to a perpendicular overall vibration wi
respect to the plane of the figure~with the fluorine and sul-
phur atoms moving out of phase up and down!, the'1 vi-
bration also shows admixtures of in-plane vibrations, the
fore being less blueshifted. In the case of the'2 vibration,
the out of phase movement of the fluorine atom cage and
the sulphur atoms results, as in the dimer case, in the van
Waals S-F bonds being stretched on the whole, which brin
about the stiffening of the implied valence S-F bonds, an
thus, the blueshift of the vibration frequency.

In the case of the tetramer a qualitative new type
correlation occurs. The most stable tetramer~Fig. 18!, seems
to be built up from two transversely sandwiched second lo
est dimers, within a slightly distortedTd structure. A further
finding, which results from the cyclic symmetry of the vibra
tion vectors, is that the monomers constituting each ‘‘dime
are strongly correlated, and therefore, the tetramer spectr
is expected to show roughly the structure encountered for
second lowest dimer. In the case of thei2 band at 935.9
cm21, the monomers vibrate pairwise in phase, the over
cluster vibration relaxing the bonds, and thus leading to a r
frequency shift. On the contrary, in the case of the'2 band at
965.1 cm21 ~practically overlapping the'1 band!, the mono-
mers belonging to a certain ‘‘dimer’’ can be seen to vibra

FIG. 16. The parallel and perpendicular vibrations~at 933.7 and 956.4
cm21) of the energetically lowest dimer isomer, and the parallel vibratio
~at 934.0 cm21) of the second lowest isomer.
No. 15, 15 October 1995
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6410 T. A. Beu and K. Takeuchi: Small SF6 clusters
out phase. The S-S distances in the two composing ‘‘dime
~on the diagonals of the depicted projection! alternatively
increase and decrease in a hindered ‘‘breathing’’ motion. A
consequence, the individual monomer vibrations are h
dered and a blue frequency shift results.

As for the second lowest tetramer~Fig. 19!, the i2 band
at 936.2 cm21, which is the first one to sensitively devia
from the so far hardly changed position of the parallel ban
is characterized by the vibration of the top monomer alo
theC3 axis pointing to the onlooker, in phase with the sym
metrical, predominantly in-plane torsion of the bottom rin
The character of parallel band clearly refers in this case
the collective vibration along theC3 axis. The situation is
reversed in the case of the'1 band at 964.1 cm

21, where the
top monomer and the ring vibrate out of phase. Again the
phase vibrations are associated with redshifts, while the
of phase vibrations result in blueshifts.

IV. CONCLUSIONS

A new degenerate second order perturbation appro
for evaluating the splitting and shifting of the vibration
bands of homogeneous molecular clusters is presented.
Hamiltonian of the system comprises harmonic and anh
monic intramolecular vibration terms, described in the n
mal mode representation, as well as the intermolecular
tential. The degenerate monomer vibrational modes are b
consistently taken into account. The anharmonic contri

FIG. 17. The two perpendicular vibrations~at 958.9 and 964.4 cm21) of the
most stable trimer.
J. Chem. Phys., Vol. 103,
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tions of the intramolecular force field and the intermolecula
potential are treated as a perturbation. The first order of t
new perturbation approach appears to be a straightforwa
generalization of previous results from the literature.11–13 In
the second order, however, substantial formulation diffe
ences result from the consideration of the complete basis
of the state space, which allows for a full description of th
couplings of the intramolecular vibrations through the inte
molecular potential.

A new site-site intermolecular potential for SF6 , com-
prising exchange, dispersion, electrostatic, and inducti
contributions, is presented. The effective charges assigned
the atoms are chosen such as to account for the obser
vibrational transition dipole moment of the SF6 monomer.
The dispersion coefficients for the individual atomic specie
are determined by fitting the calculated temperature depe
dence of the second virial coefficient of SF6 to the experi-
mental evidence. Two variants of our potential model~one
neglecting the induction interactions, and the other one i
cluding them! are applied to compute SF6 cluster structures
up to the hexamer, which are compared with those obtain
by using other potential models from the literature. The a
erage S-S distance and the incremental cluster binding
ergy are employed to correlate the ‘‘compactness’’ of th
found cluster structures with their symmetry properties. It
confirmed that SF6 forms true van der Waals clusters, mainly
bound by the dispersion attraction, the effect of the inductio
interactions being negligible.

FIG. 18. Thei2 and'2 vibrations~at 935.9 and 965.1 cm21) of the most
stable tetramer.
No. 15, 15 October 1995
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6411T. A. Beu and K. Takeuchi: Small SF6 clusters
The new second order line shift formalism is used t
calculate the IR-spectra of the found SF6 clusters in the re-
gion of then3 vibrational mode. It is noted that, although
much smaller than the first order frequency shifts, the seco
order ones are meaningful, achieving a fine-tuning of th
calculated spectra. The contributions to the line shifts fro
the various interaction terms are analyzed and it is found th
the electrostatic coupling is by far dominant. By a simpl
molecular multipole analysis, this large contribution can b
attributed to the vibrational dipole-dipole interaction, which
has been held responsible for the vibrational splittings in th
literature. The calculated spectra compare favorably wi
data for clusters up to the tetramer~from IR-IR double reso-
nance experiments and IR photo-dissociation experimen
with size-selected clusters! and the overall better agreemen
of the results obtained neglecting induction over those i
cluding it, is apparent. The systematic redshift of the spect
for all cluster sizes renders the inclusion of the inductio
interaction with the available atomic polarizabilities inappro
priate.

The structure of the cluster vibrations is investigated i
terms of the individual monomer vibrations and is correlate
with the found geometrical cluster configurations. The para
lel bands are associated with in phase vibrations and resul
red frequency shifts, due to the enhancement of the ind
vidual monomer vibrations by the overall cluster vibration
while the perpendicular bands imply out of phase vibration

FIG. 19. Thei2 and'1 vibrations~at 936.2 and 964.1 cm21) of the second
lowest tetramer.
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producing blue frequency shifts, due to the hindering of the
normal modes of the monomers.
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APPENDIX A: EXPRESSIONS OF PERTURBATION
MATRIX ELEMENTS

Making the notation

Frm5
]U

]qrm
1
hc

4 (
t

f ttr ,

we have the following non-vanishing perturbation matrix el-
ements to be used in the derivation of the first order line
shifts:

^0uWu0&5U01
1

4(r (
m

]2U

]qrm
2 ,

^1rmuWu0&5~1/A2!Frm ,

^2rmuWu0&5
1

2A2
]2U

]qrm
2 ,

^1rm1sluWu0&5
1

2

]2U

]qrm]qsl
,

^3rmuWu0&5~hc/4A3!f rrr ,

^2rm1smuWu0&5~hc/4!f rrs ,

^1rm1sm1tmuWu0&5~hc/2A2!f rst .

The non-vanishing perturbation matrix elements used for
the derivation of the second order line shifts are the follow-
ing:

^0uWu1ni&5~1/A2!Fni ,

^1rmuWu1ni&5SU01
1

4(r 8
(
m8

]2U

]qr 8m8
2 D d rndmi

1
1

2

]2U

]qrm]qni
,

^2rmuWu1ni&5@Frmd rn1~hc/4!f rrn #dmi ,

^1rm1sluWu1ni&5~1/A2!@Frm1~3hc/4!fssr

3~12d rs!dml#dsnd l i1~1/A2!@Fsl

1~3hc/4!f rrs~12d rs!dml#d rndmi

1~hc/2A2!fnrs~12d rs!~12d rn!

3~12dsn!dmid l i ,
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^3rmuWu1ni&5
1

2
A3

2

]2U

]qrm
2 d rndmi ,

^2rm1sluWu1ni&5
1

2A2
]2U

]qrm
2 dsnd l i

1
1

A2
]2U

]qrm]qsl
d rndmi ,

^1rm1sl1tkuWu1ni&5
1

2 S ]2U

]qrm]qsl
d tndki

1
]2U

]qsl]qtk
d rndmi

1
]2U

]qtk]qrm
dsnd l i D ,
J. Chem. Phys., Vol. 1
^4rmuWu1ni&5~hc/2A3!f rrr d rndmi ,

^3rm1sluWu1ni&5~hc/4A3!@f rrr dsnd l i13f rrs

3~12d rs!d rndmi#,

^2rm2sluWu1ni&5~hc/2A2!~f rrsdsn1fssrd rn!

3~12d rs!dmid l i ,

^2rm1sl1tkuWu1ni&5~hc/4!@f rrs~12d rs!dmld tndki

1f rrt ~12d rt !dmkdsnd l i #

1~hc/2!f rst~12d rs!~12d rt !

3~12dst!d rndmid l idki ,
^1rm1sl1tk1u juWu1ni&5~hc/2A2!@f rst~12d rs!~12dst!~12d tr !dmldmkdund j i1fstu~12dst!~12d tu!~12dus!d lkdk jd rndmi

1f tur~12d tu!~12dur!~12d rt !dk jd jmdsnd l i1furs~12dur!~12d rs!~12dsu!d jmdmld tndki#.
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APPENDIX B: POTENTIAL DERIVATIVES

The intermolecular potential derivatives with respect to
particular monomer vibrational coordinate, implied by th
expressions of the frequency shifts, can be evaluated b
cally by displacing the atoms along the vibrational coord
nate. With a view to this transformation it is useful to reca
the linear relationship between the Cartesian displacem
coordinatesdaa and the normal coordinatesQr :

daa5(
r
ma

21/2l aa
r Qr5(

r
l̃ aa
r qr , ~B1!

used as part of the G-F method of Wilson.15 Herema is the
mass of atoma, a5(x,y,z) represents the Cartesian coord
nate index, andl aa

r are l -matrix elements, which can be in
terpreted as derivatives of the Cartesian displacement c
dinatesdaa with respect to the normal coordinatesQr . The
dimensionless normal coordinatesqrm being given in terms
of the standard normal coordinatesQrm by
qrm5A2pcv r /\Qrm , we obtain

l̃ aa
r 5A\/2pcv rmal aa

r . ~B2!

For a particular moleculem of the cluster, relation~B1! takes
the form

daa
m 5(

r
(
a8

Aaa8
m l̃ aa8

r qrm , ~B3!

with Aaa8
m the rotation matrix which characterizes the pos

tion of the molecule within the cluster.
Considering the potentialU as explicit function of the

Cartesian coordinates of the individual atoms, its first ord
derivatives in the space of the normal coordinates may
approximated by the simple finite difference scheme:
03,
a
e
si-
i-
ll
nt

-

or-

i-

er
be

]U

]qrm
5
U~ ...,$xaa

m 1 l̃ aa
rmh%,...!2U0

h
1O~h2!,

where$xaa
m % are the equilibrium Cartesian coordinates of the

atoms in moleculem, while l̃ aa
rmh are the corresponding dis-

placements for theh displacement of the normal coordinate
qrm . The argumentsxaa

m 1 l̃ aa
rmh are in fact truncated power

series of the Cartesian coordinates with respect to the norm
coordinate increment. The second order derivatives may
obtained in principle by straightforward generalization
However, due to the instability of the above discretizatio
scheme, we actually use in our calculations anO(h4) four-
point formula. For the homogeneous second order deriv
tives we employ five-point relations of the same accurac
while, for the mixed second order derivatives,O(h2) seven-
point formulas are being used.31 Nevertheless, the displace-
ment of the atoms along the normal coordinates is performe
according to the outlined principles. The optimum step sizeh
was found to be 0.001 Å~one cannot take arbitrary low
discretization step sizes, without being faced with seve
round-off errors!.

APPENDIX C: THE CLUSTER TRANSITION DIPOLE
MOMENT

The Cartesian components of the transition dipole mo
ment of the cluster can be defined as:

ma5(
m

(
a

qadaa
m , a5x,y,z,

whereqa is the charge associated with atom~site! a, and
daa
m represents the Cartesian displacement of atoma from
moleculem along directiona. Employing Eq.~B3!, which
No. 15, 15 October 1995
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gives the relationship between Cartesian and normal coo
nates through thel -matrix, the components of the cluste
transition dipole moment for the transition from the initi
stateuC0& to the final stateuCn

i & take the form:

^Cn
i umauC0&5(

r
(
m F(a qa(

a8
Aaa8
m l̃ aa8

r G ^Cn
i uqrmuC0&.

Considering in the above formula the 0th order approxim
tions of the state vectors corresponding to fundamental e
tations,

uC0&[u0&,uCn
i &[u0&n

i 5 (
n8PG

(
i 851

M

cn8 i 8,niu1n8 i 8&,

with coefficientscn8 i 8,ni resulting from the eigenvalue prob
lem ~9!, and replacing the implied matrix elements of t
normal coordinate,̂ 1n8 i 8uqrmu0&5(1/A2)dn8rd i 8m , we ob-
tain:

m01
a [n

i ^0umau0&

5
1

A2 (
n8PG

(
m F(a qa(

a8
Aaa8
m l̃ aa8

n8 Gcn8m,ni* .

In the case of the monomer, the above expression simpl
to:

m01
a 5

1

A2(a qal̃ aa
n .
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