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Abstract – We present a detailed normal mode analysis of suspended single-wall carbon nan-
otubes based on a non-orthogonal tight-binding formalism and a new methodology for classifying
vibrational modes, using geometry-adapted merit functions. The fundamental modes are in good
agreement with experiments and previous calculations. The analysis of the high-order vibra-
tions evidences interesting non-classical features, while the sensitivity of the normal modes to the
nanotube geometry provides new insights useful for practical realizations of mass resonators.

Copyright c© EPLA, 2016

Introduction. – Carbon nanotubes (CNTs) have been
demonstrated to be ideally suited for topical nano-electro-
mechanical applications [1–6]. CNTs can accommodate
high-frequency natural vibrations with high-quality fac-
tors, and, given their extreme sensitivity to external per-
turbations, the shifts of the resonance frequencies can
be used to accurately measure supplementary masses at-
tached to the CNTs. In fact, the nanomechanical mass
sensor reported by Jensen et al. [2] attained a remarkable
sensitivity of the order of 10−25 kg · Hz−1/2.

The detailed knowledge of the natural vibrations of
CNTs under various suspension conditions remains es-
sential for developing enhanced setups for CNT-based
mass resonators. The diameter-selective Raman scatter-
ing studies of Rao et al. [7] on single-wall CNTs have
evidenced radial, breathing, and scissoring modes, while
the complementary normal mode analysis, based on force
constants and periodic boundary conditions, has fairly ex-
plained the measured Raman spectra.

The theoretical investigations published so far essen-
tially fall into three categories. a) Normal mode analysis

methodologies based on the eigenvalue problem of the dy-
namical (Hessian) matrix, constructed either using force
constants [7,8] or tight-binding force fields [9]. While
in [7,9] the applied periodic boundary conditions implic-
itly model free (non-suspended) CNTs of infinite length,
in [8] time-averaged Hessians for finite CNTs are used.
b) Molecular dynamics simulations using interatomic

(a)E-mail: titus.beu@phys.ubbcluj.ro

potentials and Fourier-transformed correlation functions
to extract the vibrational spectrum [10–13]. As an in-
herent limitation, this approach does not equally provide
the atomic displacements to completely characterize the
normal modes. c) Continuum beam models based on the
Euler-Bernoulli or Timoshenko equations [11–16]. Even
though the Timoshenko model incorporates corrections for
shear deformation and rotary inertia, it is yet limited to
classical modes not involving structural atomistic partic-
ularities. Nevertheless, recent MD simulations using the
Brenner potential [10,12,13] confirm the applicability of
carefully parametrized Timoshenko beam models for the
lowest flexural vibrational modes of suspended CNTs.

In this paper we present a detailed first-principles nor-
mal mode analysis of suspended single-wall CNTs, ex-
tended up to high modes. The electronic structures are
calculated in the framework of a non-orthogonal tight-
binding (TB) formalism, and the normal mode analysis
is based on the eigenvalue problem of the Hessian matrix.
We consider armchair-type CNTs clamped at both ends
(CC), or with one end free (CF). To cope with the consid-
erable complexity of the high-order normal modes, a gen-
eral methodology based on specialized merit functions is
devised to automate the disambiguation of the vibrations.
The in-depth analysis of the sensitivity of the various nor-
mal modes to the geometric features of the CNTs enables
new insights and provides clues for efficient practical re-
alizations of mass resonators. As a noteworthy advantage
over previous studies, besides consistently relying on first-
principles electronic structures, our approach provides the
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complete normal mode analysis including atomic displace-
ment patterns. Moreover, the novel methodology for clas-
sifying vibrations up to arbitrary orders is transferable to
other force fields.

Non-orthogonal tight-binding formalism. – The
non-orthogonal TB parametrization of Papaconstantopou-
los et al. [17], which we have extensively used in several
structural and vibrational studies on fullerenes [18–21],
assigns a pseudo-atomic density to each atom i:

ρi =
∑N

j �=i
e−λ2Rij f(Rij), i, j = 1, N, (1)

which depends exponentially on the distances to all neigh-
bors with a cutoff f(R) = {1 + exp[(R − Rc)/Δ}−1. The
local density determines the diagonal on-site Hamiltonian
elements,

hi
l = αl + βlρ

2/3
i + γlρ

4/3
i + χlρ

2
i , l = s, p, (2)

while the hopping parameters are defined as (µ = σ, π):

Hll′µ (R) = (all′µ + bll′µR + cll′µR2)e−d2

ll′µ
Rf(R), (3)

Sll′µ (R) = (δll′ +pll′µR+ qll′µR2 + rll′µR3)e−s2

ll′µ
Rf(R).

(4)

The non-diagonal elements of the Hamiltonian matrix H

and overlap matrix S are expressed in terms of these hop-
ping parameters and bond direction cosines.

The normal mode analysis for the fully relaxed molecu-
lar system is performed within the harmonic approxima-
tion, using the Hessian matrix,

Hαβ
ij = ∂Fα

i /∂Rβ
j , i, j = 1, N, α, β = x, y, z, (5)

where Rα
i is the α-component of the position vector of

atom i, and Fα
i , the corresponding force component. The

resonance vibrations are determined by solving the eigen-
value problem:

H · δrk = ω2
kM · δrk, k = 1, 3N, (6)

where M is the diagonal matrix of atomic masses, ωk is
the eigenfrequency of the normal mode k, and the compo-
nents of the eigenvector δrk are the corresponding atomic
displacements.

Merit functions. – Based on the predominant di-
rection of the atomic displacements, we convention-
ally distinguish radial, axial, and twisting normal
modes. Technically, we consider armchair-type CNTs
aligned about the z-axis and subdivide them into equal
transversal slices Δz, each enclosing only C atoms
with identical z-coordinates. Denoting by (δxi, δyi, δzi)
the displacement components of atom i for a given
mode, δri = (xi · δxi + yi · δyi) /

√

x2
i + y2

i is the radial
displacement.

To characterize predominantly radial vibrations, we
model the envelope of the radial displacement patterns

Fig. 1: (Color online) Atomic displacement patterns in the cen-
tral transversal plane of a CC (6,6) CNT for the fundamental
radial modes of orders n = 1, 2, 3. Continuous line: the dis-
placement profile modeled by the merit functions.

in a transversal plane by periodic dependences (cosnϕ) of
various orders n = 0, 1, . . . on the polar atomic positions.
From this unifying perspective, the symmetric breathing
and bending modes are, respectively, 0th- and 1st-order
radial modes (fig. 1). Based on the periodic model func-
tions of various orders, we define the set of merit functions:

Fn
r = 1 −

∑

∆z

∑

i∈∆z

|cosnϕi − δri/δrmax| , (7)

where ϕi is the polar angle between atom i and the atom
featuring the maximum radial displacement δrmax within
the considered slice Δz , and

∑

∆z
designates the summa-

tion over all slices of a CNT. Clearly, F 0
r is maximized for

symmetric radial modes, while F 1
r , for bending vibrations.

By analogy, axial vibrations are characterized by a set
of merit functions based on periodic model functions for
the axial displacement patterns:

Fn
z = 1 −

∑

∆z

∑

i∈∆z

|cosnϕi − δzi/δzmax| , (8)

where ϕi is the polar angle between atom i and the atom
featuring the maximum axial displacement δzmax within
the considered slice Δz . Obviously, F 0

z is maximized for
stretching, while F 1

z , for axial scissoring.
The merit function maximized for twisting modes cu-

mulates the (axial) vector products of the transversal dis-
placements and the radial atomic positions in each slice,
and sums up the corresponding absolute values (account-
ing for the fact that for higher harmonics, different slices
may twist in anti-phase):

Ft =
∑

∆z

∣

∣

∣

∣

∣

∑

i∈∆z

(xi · δyi − yi · δxi)

∣

∣

∣

∣

∣

. (9)

Each type of merit function is normalized separately by
the division to the maximum attained for a given CNT.

Classifying a particular normal mode proceeds by first
checking for a maximal value of Ft, the case in which a
twisting mode is identified. As a second step, a gross initial
distinction between radial and axial modes is made based
on the ratio of the overall radial to axial displacements:

χ =
∑

∆z

∑

i∈∆z

|δri|

/

∑

∆z

∑

i∈∆z

|δzi| . (10)
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Table 1: Synthetic structural features of the considered CNTs.

Chirality Length No. of Egap Ebind

(rings) atoms (eV) (eV)

(5,5) 15 320 0.184 10.10
40 820 0.135 10.17

(6,6) 18 456 0.099 10.18
40 984 0.036 10.22

(7,7) 21 616 0.062 10.20
40 1148 0.010 10.25

A value χ ≥ 1 defines a radial mode, while χ < 1 de-
fines an axial mode. The actual order n of the identified
radial/axial vibration is finally determined by the maxi-
mum of the Fn

r or, respectively, Fn
z values.

Results and discussion. – We focus our investi-
gations on armchair-type single-wall CNTs of chiralities
(5,5), (6,6), and (7,7), and lengths ranging between 3.70
and 9.88 nm. Their limiting geometric and electronic fea-
tures are listed in table 1. The aspect ratios are confined
to ranges exceeding 5.4, a value below which the distinc-
tion of the normal modes becomes increasingly difficult.

The equilibrium structures of the CNTs are obtained
by simulated annealing in molecular dynamics runs span-
ning 1 ns of simulation time with a time step of 1 fs. The
relaxation causes slight deformations of the CNT ends,
however preserving the inversion points for odd-valued chi-
ralities. As expected for the conducting armchair-type
CNTs, the HOMO-LUMO gap reduces both with increas-
ing CNT length and chirality, while the stability, as in-
dicated by the binding energy per atom, Ebind, slightly
increases.

Illustrating characteristic displacement patterns,
figs. 2(a) to (e) depict the second harmonics for selected
radial, twisting, and axial vibrations, in increasing
order of their resonance frequencies: bending (radial 1),
breathing (radial 2), twisting, stretching (axial 0), and
scissoring (axial 1) (see the corresponding supplementary
animated images Fig2a.gif, Fig2b.gif, Fig2c.gif,
Fig2d.gif and Fig2e.gif). For ease of viewing, only the
displacements in the semi-cylindrical upper half of the
nanotube are shown. Apart from the symmetric radial
(radial 0), stretching, and twisting vibrations, the rest of
the radial/axial modes are doubly degenerate. Excepting
the bending modes, the resonance vibrations of the CNTs
are Raman active.

Figures 3(a) and (b) emphasize an interesting feature
defining the radial 0 and axial 0 vibrations of sus-
pended CNTs —their invariable coupling (see the corre-
sponding supplementary animated images Fig3a.gif and
Fig3b.gif). Axial regions with predominantly axial dis-
placements are seen to enclose regions dominated by radial
displacements, and the vibrations correspond at the same
time to well-defined axial and radial harmonics. While

(a)

(b)

(c)

(d)

(e)

Fig. 2: (Color online) Atomic displacements for selected second
harmonics in a side view of a CC (6,6) CNT (28 rings in length):
(a) radial 1 (bending) at 0.97 THz, (b) radial 2 (breathing) at
1.54 THz, (c) twisting at 2.15 THz, (d) axial 0 (stretching) at
3.27 THz, and (e) axial 1 (scissoring) at 6.41 THz.

(a)

(b)

Fig. 3: (Color online) Mixing of the radial 0 and axial 0 modes
in a CC (6,6) CNT: (a) the 5th axial 0 (4th radial 0) harmonic
at 7.61 THz, with dominant axial character (χ = 0.7). (b) the
6th axial 0 (5th radial 0) harmonic at 8.26 THz with dominant
radial character (χ = 1.6).

for lower frequencies the axial character dominates over-
all these mixed harmonics (as indicated by χ < 1), pre-
venting the low radial harmonics to be identified as such,
with increasing resonance frequencies the radial character
starts prevailing (χ > 1) and the axial modes go over into
radial ones.

For low harmonics, the assignment of a well-defined
vibrational character is straightforward, and, as a clear
quantitative indication, a single merit function copi-
ously dominates the others. For high harmonics or high
radial/axial mode orders, however, the vibrations become
increasingly intricate, featuring a rather mixed character,
reflected by significant values of several merit functions.
Disambiguation is particularly challenging in frequency
regions where high harmonics of low-order radial/axial
vibrations coexist with the dominating fundamental har-
monics of higher-order modes.
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(a) (b) (c)

(d) (e) (f)

Fig. 4: (Color online) CNT length dependence of the frequencies for the lowest 150 normal modes of (5,5) and (6,6) CNTs.
Radial modes (n = 1 to 5) of (a) CF (5,5), (b) CC (5,5), and (c) CC (6,6) CNTs. Axial, twisting, and radial 0 modes of (d) CF
(5,5), (e) CC (5,5), and (f) CC (6,6) CNTs.

Figures 4(a) to (f) comparatively illustrate the CNT
length dependence of the resonance frequencies for the
lowest 150 normal modes of the (5,5) and (6,6) CNTs.
The figures of the upper row (figs. 4(a) to (c)) correspond
to the radial modes of orders 1 to 5, while those of the
lower row (figs. 4(d) to (f)) represent the axial and twisting
vibrations. The plots on the left correspond to CF (5,5)
CNTs, the central ones, to CC (5,5) CNTs, and those on
the right, to CC (6,6) CNTs.

Except for the systematically lower frequencies, the
overall patterns of the resonance curves for the (6,6) CNTs
are essentially similar to those for the (5,5) CNTs, and
the frequency lowering tendency is continued for the (7,7)
CNTs. The similarity between the resonance curves of CC
and CF CNTs of the same chirality is also apparent.

The fundamental harmonics of the various types of nor-
mal modes define a system of well-separated, weekly vary-
ing levels. In the limit of the longest CNTs considered
(98.8 Å), the practically unvarying fundamental frequen-
cies can be assimilated with those of macroscopically long
CNTs. The entire system of fundamentals and associated
harmonics for the radial and, respectively, axial modes is

seen to be organized in ascending order of the vibration
orders (radial 1, radial 2, etc., and, respectively, axial 0,
axial 1, etc.). The occurrence of the radial 0 (symmetric
breathing) modes only at rather high frequencies, above
8 THz (figs. 4(d) to (f)), would appear to indicate them
as exceptions to the overall monotonic order-wise order-
ing. In fact, as already pointed out in regard to figs. 3(a)
and (b), the axial 0 and radial 0 harmonics coexist strongly
coupled, with the dominant character of the successive
harmonics gradually changing from axial to radial. In
other words, the low radial harmonics are not actually
identified since they are overwhelmed by the axial behav-
ior manifested in their nodal regions, and the vibrations
are rather assigned an axial overall character. Moreover,
the resonance curves for the axial 0 and radial 0 vibra-
tions also depart in their transition region from the quali-
tative inverse CNT length dependences observed for other
normal modes.

Aside from the generally similar frequency curve
patterns, the supplementary lower axial and twisting
harmonics occurring for the CF CNTs can be set in one-
to-one correspondences with resonances of CC CNTs of
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Fig. 5: (Color online) CNT aspect ratio dependence of the
frequencies of the lowest four CF bending (radial 1) modes,
along with published MD results [10–12].

double length. Such correlations can be readily checked,
for instance, for the twisting fundamentals of the CC CNT
of 40 rings in length (fig. 4(f)) and the CF CNT of half
length (fig. 4(d)), or for the axial 0 fundamentals of the
same pair of CNTs. Noteworthy, the CF profiles are less
smooth than their CC counterparts, reflecting a somewhat
less well-defined character of the CF normal modes. This
aspect becomes increasingly significant for CNTs of lower
aspect ratio, which, alongside the growing perturbing in-
fluence of the ends, is the reason for which we did not
consider CF CNTs of aspect ratios below 5.4.

Normal modes different in nature incidentally show sim-
ilar CNT length dependence, irrespective of chirality. For
example, the 2nd axial 0 harmonic and the 3rd twisting
harmonic run almost overlapped for all CC CNTs over the
entire range of lengths.

Figure 5 comparatively shows the frequencies of the four
lowest bending modes of the CF (5,5), (6,6), and (7,7)
CNTs as functions of the aspect ratio. While the funda-
mental harmonics show a relatively reduced dependence
on the chirality, the differences gradually grow for the
higher harmonics, with the (5,5) CNTs featuring, as ex-
pected, the higher frequencies. The MD studies of Duan
et al. [11], based on the COMPASS force field, have re-
sulted in resonance frequencies for the four lowest modes
of (5,5) CNTs in fair agreement with our lowest bending

harmonics. The resonance curves of Zhang et al. [12] and
Ansari et al. [10], based on the Brenner potential, fall
slightly lower than our dependences, suggesting somewhat
softer C-C bonding.

The fundamental frequencies of the radial and axial
modes increase monotonically as functions of the mode
order (fig. 6), however, saturating at about 17 THz and
19 THz, respectively. These two well-separated levels ben-
efit from little sensitivity both to CNT length and chi-
rality, or, in practical terms, to structural inaccuracies.
Understandably, the monotonic increase for the radial
modes is slightly perturbed for mode orders matching the
chiral indexes (5, 6, and, respectively, 7), while the axial
modes are insensitive, producing smooth dependences.

Fig. 6: (Color online) Dependence of the extrapolated
fundamental frequencies of the radial/axial modes on the
mode order.

Fig. 7: (Color online) Comparison of the extrapolated funda-
mental frequencies (filled symbols) with the experiments and
force constant-based calculations of Rao et al. [7] (continuous
lines and empty symbols), and with the TB calculations of
Kahn et al. [9] (dashed lines and empty symbols).

The CNT chirality dependences of the extrapolated fun-
damental harmonics for the radial 0 (symmetric radial),
radial 2 (breathing), and axial 1 (scissoring) modes (fig. 7)
show consistency with the resonance frequencies calcu-
lated by Rao et al. [7] for infinitely long CNTs of larger
chiralities ((8,8) to (10,10)). Our results are bounded be-
low by their experimental frequencies (horizontal lines),
which have been though obtained for mixtures of CNTs
with chiral indexes ranging from 8 to 10. In addition, the
above analysis on the coupling of the axial 0 and radial 0
modes explains the experimental observation of the sym-
metric radial mode at a higher frequency than the fun-
damental scissoring mode. In turn, the TB frequencies
calculated by Khan et al. [9] show a systematic underesti-
mation tendency, especially for the axial mode.

The resonance frequencies for the twisting and stretch-
ing modes appear to be chirality independent (fig. 8(a)),
being therefore potentially useful for practical realizations
of mass resonators. Notably, the frequencies for CC CNTs
(with continuous lines) are the doubles of their CF coun-
terparts. Quite in contrast, the behavior of the radial and
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Fig. 8: (Color online) CNT chirality dependence of the
extrapolated fundamental frequencies for: (a) axial 0 (stretch-
ing) and twisting, and (b) radial (1 to 5) and axial (1 and 2)
modes.

scissoring modes, even though chirality dependent, is sim-
ilar for CC and CF CNTs (fig. 8(b)).

Conclusions. – We report a detailed normal mode
analysis of clamped-clamped and clamped-free CNTs
based on a non-orthogonal tight-binding force field, and
a novel methodology using geometry-adapted merit func-
tions for characterizing vibrations up to high orders.

While the low harmonics are simple and intuitive, fea-
turing continuum analogs, high harmonics tend to mix
and are rather complex. The extrapolated fundamental
frequencies are consistent with experiments and previous
calculations based on force constants. The low bending vi-
brations are also found in fair agreement with continuum
theory results. The extrapolated fundamental frequencies
for twisting and stretching are essentially chirality inde-
pendent, being therefore useful for practical realizations
of mass resonators.

The presented calculations fill a gap in the literature,
extending the range of the vibrational analysis up to
high orders, while the developed merit-function–based

methodology enables accurate predictions for sizeable
CNTs in conjunction with arbitrary force fields.
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