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Abstract. A non-orthogonal tight-binding molecular-dynamics formalism is used to simulate Raman spec-
tra of the fullerene molecules C60 and C70. Two parametrization schemes for the Hamiltonian and the
overlap matrix elements are investigated. The considered molecules are excited randomly and the Fourier
transform of the displacement autocorrelation function is employed to extract the vibrational properties.
Fair agreement with experiment and with force-constant and ab initio calculations is achieved, with com-
paratively smaller maximum errors in the frequencies than for other molecular dynamics or semi-empirical
calculations from the literature.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 71.20.Tx Fullerenes and related
materials; intercalation compounds – 33.20.Fb Raman and Rayleigh spectra (including optical scattering)

1 Introduction

Among other traditional quantum chemical methods,
tight-binding (TB) schemes have been successfully ap-
plied in the last two decades for the investigation of ex-
tended covalent systems [1–12]. TB schemes can be viewed
as simplified two-center-oriented ab initio methods since
the electronic properties of the system are determined
quantum-mechanically. Their results deviate only slightly
from those of more sophisticated methods, being obtained
at reasonable computational costs.

At the center of many first-principles molecular-dyna-
mics (MD) methods there has been the a priori theory
based on universal parameters developed by Harrison [1].
This theory has been successful in describing covalent sys-
tems with tetrahedral coordination, however, it has proven
to be less adequate for more general coordinations in sys-
tems dominated by multicenter bonds (also the case of
fullerenes), for which the non-orthogonality of the atomic
orbitals has to be taken into account. Van Schilfgaarde and
Harrison [2] generalized the conventional TB approach
such as to apply to non-tetrahedral and multicoordinated
systems. This non-orthogonal theory was incorporated in
the TB molecular dynamics (TBMD) formulation devel-
oped by Menon and Allen [3] and was successfully used to
describe properties of carbon and silicon clusters [4–6].

An elaborate TB parametrization was developed by
Cohen et al. [7] and Mehl et al. [8], wherein the pa-
rameters are chosen to reproduce both the first-principles
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total energy and electronic band structure of face-centered
and body-centered cubic crystals. This method has been
shown to work well for transition metals, predicting cor-
rectly besides electronic ground state properties also elas-
tic constants, phonon frequencies, surface energies, and
vacancy formation energies in agreement with experiment
and first-principles results. A slightly modified version
of this scheme was elaborated by Papaconstantopoulos
et al. [9] and was successfully applied to carbon and
silicon.

Another remarkable TB approach, intended to avoid
the difficulties arising from an empirical parametrization
of the Hamiltonian and overlap matrices is the density-
functional tight-binding (DF-TB) approach of Porezag
et al. [10–12]. Here the Hamiltonian and overlap matrices
result out of a local orbital basis by using the density-
functional theory local-density approximation and some
integral approximations.

The interest in calculating Raman-spectra for fullerene
molecules stems, on one hand, from the wealth of avail-
able experimental data and, on the other, from incom-
pletely elucidated assignments (such as for C70). Addi-
tionally, from a rather technical point of view, we are
interested in evidencing the virtues of a yet insufficiently
explored MD strategy based on autocorrelation functions,
which appears to be very well suited for this purpose. We
basically employ the TBMD formulation of Menon and
Allen [3] to study the Raman-active modes of C60 and C70

by using comparatively for the Hamiltonian and overlap
matrices the parametrization schemes of van Schilfgaarde
and Harrison and of Papaconstantopoulos et al. The fo-
cus in using the first model is on adjusting the implied
TB parameters for optimal description of structural and
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vibrational properties. As for the second model, the aim is
to investigate its quality (proven in describing other prop-
erties) for simulating Raman-spectra of fullerenes, with a
view to treating accurately higher fullerenes or fullerene
aggregates. As will clearly follow from the present study, a
high quality parametrization of the Hamiltonian and over-
lap matrices can make a TBMD approach comparable to
ab initio methods concerning the accuracy, and definitely
more economical regarding the computational effort.

In Section 2 we give a brief outline of the used non-
orthogonal TBMD formalism. In Section 3 the two em-
ployed TB parametrization schemes are presented, and,
finally, Section 4 is devoted to the description of the ob-
tained results and to comparisons with other reported
results.

2 Non-orthogonal tight-binding MD

MD simulations generally imply numerically solving
Newton’s equation for all N atoms in the considered
structure:

mR̈I = FI , I = 1, N.

The forces acting on the atoms can be expressed as deriva-
tives of the total energy Etot({RJ}) of the system with
respect to the individual position vectors RI :

FI = −∂Etot({RJ})
∂RI

·

The total energy of the system can be approximated by
the sum between the electronic contribution (calculated
quantum-mechanically as the sum of one-electron ener-
gies) and a short-range repulsive two-body potential:

Etot({RJ}) = Eel({RJ}) +Erep({|RJ −RK |})

=
nocc∑
k=1

nkεk({RJ}) +
∑∑
J <K

Vrep(|RJ −RK |). (1)

In the case of sp3 bonding, the total number of electrons
is n = 4N , the number of occupied one-electron states is
nocc = n/2, and their occupation number is nk = 2.

The electronic contributions εk to the total energy re-
sult as eigenvalues of the characteristic equation:

(H− εkS)Ck = 0,

where the Hamiltonian matrix, H, and the overlap ma-
trix, S, are expressed in the representation of some non-
orthogonal set of atom-centered orbitals. The column vec-
tor Ck is the eigenvector corresponding to eigenvalue εk.
The gradient of the eigenvalues, necessary for calculating
the forces, can be readily obtained by taking the gradient
of the characteristic equation and multiplying on the left
with Ck†. The total force acting upon atom I then takes

the form:

FI = −
nocc∑
k=1

nk

Ck†SCk
Ck†

(
∂H
∂RI

− εk
∂S
∂RI

)
Ck − ∂Erep

∂RI
·

(2)

Within the orthogonal TB formalism of Harrison [1], bond
orbitals are constructed from sp3 hybrids for the tetrahe-
dral structure. The use of sp3 bonding for fullerenes is jus-
tified by the fact that the nominal sp2 bonding between
adjacent carbon atoms actually occurs on a curved sur-
face, which leads to some admixture of sp3 bonding. The
4N×4N Hamiltonian matrix for the system of the valence
electrons can be viewed as being composed of 4×4 blocks
corresponding to the coupling between the s, px, py and
pz orbitals of the involved atoms:

atom I︷ ︸︸ ︷
sI pIx p

I
y p

I
z

atom J︷ ︸︸ ︷
sJ pJx pJy pJz

H =



. . .
...

...
...

...
· · · hIs 0 0 0 · · · HIJ

ss HIJ
sx HIJ

sy HIJ
sz · · ·

0 hIp 0 0 −HIJ
sx HIJ

xx H
IJ
xy H

IJ
xz

0 0 hIp 0 −HIJ
sy HIJ

xy H
IJ
yy H

IJ
yz

· · · 0 0 0 hIp · · · −HIJ
sz HIJ

xz H
IJ
yz H

IJ
zz · · ·

...
...

. . .
...

...


sI

pIx
pIy
pIz

.

In a simplified model, the diagonal on-site elements hIl
(l = s or p) can be attributed the significance of atomic
energies, but in general they should be allowed to vary de-
pending upon the local environment of each atom. For the
Hamiltonian matrix elements of the non-diagonal block
(I, J) the Slater-Koster form is usually considered [13]. In
terms of bond direction cosines (γIJx , γIJx and γIJx ) and
two-center hopping parameters (Hssσ , Hspσ , Hppσ, Hppπ),
the relevant elements are expressed as:

HIJ
ss = HIJ

ssσ ,

HIJ
sx = γIJx HIJ

spσ ,

HIJ
xy = γIJx γIJy

(
HIJ
ppσ −HIJ

ppπ

)
+Hppσδxy,

the rest of them resulting by straightforward changes of
indices x, y and z. Here δαβ is the Kronecker symbol.

Within a non-orthogonal TB formalism, the overlap
matrix has a form similar to the Hamiltonian, but with
the diagonal on-site terms equal to 1 and the elements of
the non-diagonal blocks expressed in terms of the corre-
sponding hopping parameters (Sssσ , Sspσ, Sppσ, Sppπ).

3 Parametrization models

The first parametrization we consider for the Hamiltonian
and overlap matrices, denoted hereafter as “model I”, is
based on the TB theory developed by van Schilfgaarde
and Harrison [2] for covalent multicoordinated systems
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with non-tetrahedral coordination. The atoms are charac-
terized only by their valence energies, covalent radii and
universal interaction parameters (primitive TB matrix el-
ements Vll′µ), which are transferable. The problem of cal-
culating the overlap matrix elements was solved by as-
suming a proportionality between H and S (analogously
to the extended Hückel theory).

In this approach, the diagonal on-site Hamiltonian el-
ements hIl (l = s, p) are environment independent, being
identified with atomic energies:

hIs = εs, hIp = εp.

The Slater-Koster hopping terms Hll′µ and Sll′µ are ex-
pressed in terms of primitive TB matrix elements V IJll′µ as:

HIJ
ll′µ = V IJll′µ

[
1 + 1/K −

(
SIJ2

)2]
,

SIJll′µ =
2V IJll′µ

K(εl + εl′)
,

where for carbon only parameters (ll′µ) = (ssσ), (spσ),
(ppσ) and (ppπ) need to be considered. K is the Hückel
proportionality constant and SIJ2 is the non-orthogonality
between sp3 hybrids, given by:

SIJ2 =
1
4

(
SIJssσ − 2

√
3SIJspσ + SIJppσ

)
.

We assume the TB matrix elements V IJll′µ to scale expo-
nentially with the interatomic separation RIJ :

V IJll′µ(RIJ ) = Vll′µ exp [−αµ (RIJ −R0)] , (3)

with their equilibrium values resulting from the prescrip-
tions of Harrison’s theory [1]. R0 is a parameter with the
significance of an equilibrium distance, which in our calcu-
lations is taken equal to the average of the experimentally
determined bond distances. The exponential parameters
ασ and απ directly relate to the longitudinal and trans-
verse bond-stretching force constants and thus can be fit-
ted to reproduce vibrational frequencies.

The short-range repulsive pair potential is modeled to
scale exponentially with distance, as well:

Vrep(RIJ ) = V 0
rep exp [−β (RIJ −R0)] , (4)

where, by similar arguments to those of Menon and
Allen [3], we take β to be twice the weighted average of
the αµ parameters, i.e. β = (ασ + 3απ)/2.

The TB parameters εs, εp, Vssσ , Vspσ, Vppσ and Vppπ
employed in our calculations as part of model I are listed in
Table 1 and do not actually originate in the universal pa-
rameter scheme of Harrison [1], but are the ones reported
by Chadi and Martin [14]. We takeR0 to be approximately
equal to the average of the experimental single and dou-
ble bond lengths of C60 (a5 = 1.455 Å and a6 = 1.391 Å,
respectively [15]). For the Hückel constant K, the value
suggested in reference [4] was considered and the results
seem to be very little sensitive to this parameter. As for
the exponential parameters ασ and απ, the optimal values

Table 1. Parameters employed in model I (εs, εp, Vssσ, Vspσ,
Vppσ and Vppπ are from Chadi and Martin [14]).

εs −17.52 eV Vssσ −5.55 eV ασ 1.80/R0

εp −10.72 eV Vspσ 5.91 eV απ 2.20/R0

K 2.1 Vppσ 7.78 eV β 1
2 (ασ + 3απ)

R0 1.42 Å Vppπ −2.50 eV V 0
rep 1 eV

for describing the experimental Raman spectra of C60 and
C70 have been found to be 1.80/R0 and 2.20/R0, respec-
tively. Finally, the repulsive parameter V 0

rep was adjusted
such as to reproduce the geometrical properties of the C60

cage (average radius and bond lengths). ασ, απ and V 0
rep

are alike consistent with values resulted from exponential
fits to the C–C interaction reported by Porezag et al. [10].

The second considered parametrization, denoted here-
after as “model II”, is the TB total energy method of
Papaconstantopoulos et al. [9]. Here, the environment of
each individual atom is determined by a pseudo-atomic
density:

ρI =
N∑
J 6=I

exp
(
−λ2RIJ

)
f(RIJ),

depending on the distances to all neighbors exponentially
and through a cutoff function defined as:

f(R) = {1 + exp [(R −Rc)/∆]}−1
.

The cutoff is chosen such that f(R) practically vanishes
when R > Rc, the main decrease taking place roughly
within a domain of size ∆. For carbon the values Rc =
10.5a0 and ∆ = 0.5a0 are employed (with a0 the Bohr
radius).

The on-site Hamiltonian elements are given in terms of
the local pseudo-atomic density by a Birch-like equation:

hIl = αl + βlρ
2/3
I + γlρ

4/3
I + χlρ

2
I ,

where, obviously, only l = s, p are considered. As for the
two-center Slater-Koster hopping terms, they have been
parametrized as polynomials times an exponential cutoff
in order to exhibit the proper behavior for small inter-
atomic distances:

Hll′µ(R) = (all′µ + bll′µR+ cll′µR
2) exp

(
−d2

ll′µR
)
f(R)

Sll′µ(R) = (δll′ + pll′µR+ qll′µR
2 + rll′µR

3)

× exp
(
−s2

ll′µR
)
f(R).

Here again, only parameters (ll′µ) = (ssσ), (spσ), (ppσ)
and (ppπ) are considered. There is no explicit repulsive
contribution Vrep as part of this parametrization and all
relevant coefficients are listed in Table 1 of reference [9].

The interatomic forces for both models can be ex-
pressed analytically according to equation (2), and this
is an essential aspect in performing tractable MD simula-
tions.
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4 Results and discussion

For both considered fullerene molecules, C60 and C70, we
performed MD simulations based on both models I and II.
Typically, the initial configuration was prepared by dis-
placing the atoms randomly relative to their equilibrium
positions. Nevertheless, to excite particular groups of vi-
brational modes, also certain restricted initial displace-
ment patterns have been applied.

In order to characterize the overall vibration of the
investigated molecules, we employed the displacement au-
tocorrelation function (DAF):

Cδr(t) =
N∑
I=1

〈δrI(t) · δrI(0)〉.

Alternatively, the usefulness of the position autocorrela-
tion function (PAF),

Cr(t) =
N∑
I=1

〈rI(t) · rI(0)〉,

was also examined. Cδr(t) was generally found to be more
sensitive to the individual normal modes than Cr(t) and
its more meaningful Fourier-transform (FT) spectrum was
consequently used in all comparisons with experimental
spectra.

The vibration of a molecule with an inversion point
(such as C60) can be characterized, additionally, by the
parity, which we define as:

P =
∑N
I=1〈δrI · (−δrsym(I))〉∑N

I=1 (δrI)
2

,

where sym(I) designates the symmetrical atom for atom I.
Since, as it is well-known, the 10 Raman-active vibrations
of C60 have gerade symmetry (2Ag+8Hg), while the 4 IR-
active modes have ungerade symmetry (F1u), monitoring
the parity of the vibration can yield essential information
about the nature of the obtained FT spectrum.

Our calculated electronic levels for C60 are in good
agreement with those found from other calculations [16]
and reproduce the main features of experimental data [17].
The ground-state electronic structure (3a+10t+8g+11h)
is preserved and the total energy conserved throughout the
simulation.

Figure 1 shows the time dependence of various char-
acteristic geometrical quantities of C60 monitored during
a typical run: the DAF and PAF, the minimum and max-
imum cage radii, Rmin and Rmax, and the parity of the
vibration. In all simulations a time step of 2×10−4 picosec-
onds was employed and up to a total of 14 000 steps were
performed. The graphs of Figure 1 actually depict only the
first picosecond of a run based on model II with random
initial excitation. Qualitatively, similar results have been
also obtained for model I, which will be seen, however, to
yield poorer agreement with the experiment.

As can be easily noticed, the behavior of Cr(t) is qual-
itatively different from the one of Cδr(t), following closely
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Fig. 1. Time dependence of various quantities monitored dur-
ing a typical run for C60 by using model II; Cδr: displacement
autocorrelation function, Cr: position autocorrelation function,
Rmin and Rmax: minimum and maximum C60 cage radii. The
time step equals 2 × 10−16 s.

the simple periodicity of Rmin and Rmax. This clearly in-
dicates the domination of Cr(t) by the low-frequency pri-
marily radial modes. As a consequence, the FT spectrum
of Cr(t) generally contains limited information, basically
showing a single peak corresponding to the totally sym-
metrical “breathing” mode Ag(1) (at 493 cm−1 [18]). As
a matter of fact, for C70, too, the PAF has proven to be
useful only for unambiguously positioning the symmetri-
cal breathing mode A′1.

For a random initial excitation of C60, the normalized
parity of the vibration can be seen to be predominantly
positive, typically exceeding 0.9 on the average, which im-
plies that the composite vibration of the molecule has
overwhelmingly gerade symmetry. This behavior is actu-
ally a direct result of the uniform character of the applied
random excitation and, for our approach, it has the impor-
tant consequence that the FT spectrum of the DAF can
be directly related to the experimental Raman-spectrum.
The parity decreases only when the C60 cage shrinks to
its minimum size (Rmin and Rmax reach their minimum).

Figure 2 shows along with the experimental Raman
spectrum obtained by Eklund et al. [18] for a pristine C60

film, typical FT spectra of the DAF calculated by using
the parametrizations of models I and II, respectively, and
random initial excitation. The scaling factors applied to
the simulated spectra are 0.83 for model I and 0.95 for
model II. Besides the almost unitary scaling factor, one
can also notice the much better agreement of the peaks
yielded by model II with the experiment, both regarding
position and amplitude. The superior quality of model II
(parametrization of Ref. [9]) is obviously a direct conse-
quence of the more appropriate form of the on-site and
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Fig. 2. Experimental Raman spectrum for C60 (Ref. [18]) and
FT spectra of the displacement autocorrelation function cal-
culated with models I and II.

hopping terms and of the richer information used to fit its
parameters.

Since by its specific nature our approach does not deal
with individual vibrational modes separately, in order to
unambiguously assign the peaks obtained for C60, besides
the totally random excitation, we also employed several re-
stricted initial excitation patterns, whose FT spectra are
plotted in Figure 3. The simplest among these patterns,
yielding the Ag(1) peak shown in panel (a), implies the ra-
dially symmetrical in-phase displacement of all atoms. The
tangential “pentagonal pinch” mode Ag(2), corresponding
to the peak of panel (b), was excited by the in-phase elon-
gation of all C=C bonds.

The spectra of panels (c), (d) and (e) involve, respec-
tively, initial displacements along one of the three recip-
rocally orthogonal local coordinates of each atom (one
radial and two tangential). The spectrum of the predom-
inantly radial modes depicted in panel (c) originates in
random displacements along the radial direction and it in-
cludes, in particular, the Ag(1) vibration, too. The peaks
of panel (d) were obtained by random displacements along
the tangential direction perpendicular to the radius and
in the plane formed by the C=C bond and the radius.
Finally, the peaks composing spectrum (e) imply random
displacements along the tangential direction perpendicular
to the radius and the C=C bond.

The orthogonality of the radial and tangential local
coordinates of the atoms allows one to characterize each
vibrational mode by percentage contributions from each
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Fig. 3. FT spectra of the displacement autocorrelation func-
tion for C60 calculated with models I and II for various initial
excitation patterns: (a) radial “breathing” displacement, (b)
tangential “pentagonal pinch” displacement, (c) random dis-
placement along the radial direction, (d) random displacement
along a direction perpendicular to the radius and in the plane
formed by the C=C bond and the radius, (e) random displace-
ment along the tangential direction perpendicular to the radius
and the C=C bond.

of the three directions. From this perspective, the assign-
ment of the peaks of panels (c), (d) and (e) was greatly
facilitated by the analysis of Stanton and Newton [19],
regarding the character of the individual normal modes
of C60.

The frequencies resulted from our calculations with
model II (which is seen to reproduce more accurately
the experimental evidence than model I) are listed in Ta-
ble 2, along with the experimental Raman frequencies of
Eklund et al. [18]. The relative differences ∆ν/νexp of our
frequencies with respect to the experimental values are
compared with the corresponding differences resulted from
four other representative calculations: the force-constant
model calculations of Jishi et al. [20], the SCF-LDA cal-
culations of Quong et al. [21], the DF-TB calculations of
Porezag et al. [10], and the MNDO calculations of Fanti
et al. [22]. We have additionally included the relative dif-
ferences ∆ν∗/νexp of the scaled frequencies yielded by
model II (ν∗ = 0.95ν). Whereas the agreement of the re-
sults of Jishi et al. and Quong et al. with the experiment
is clearly better as compared to our unscaled frequencies,
the errors of our scaled values seem to be comparable, in
certain cases even smaller. There is just one vibrational
mode, Hg(5), which slightly departs from this behavior,
with an associated relative difference of 4.2%. Moreover,
even for our unscaled results one can easily notice the
overall better agreement as compared to the calculations
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Table 2. Experimental and calculated Raman frequencies (in cm−1) for the fullerene cluster C60. ∆ν/νexp are relative differences
(in %) with respect to the experimental values of Eklund et al. ∆ν∗/νexp are the relative differences of the scaled frequencies
resulted from model II (with a scaling factor of 0.95).

Mode Eklunda model II Jishib Quongc Porezagd Fantie

νexp ν ∆ν/νexp ∆ν∗/νexp ∆ν/νexp ∆ν/νexp ∆ν/νexp ∆ν/νexp

Hg(1) 270 280 3.7 −1.5 −0.4 −4.4 0.4 −2.3

Hg(2) 431 447 3.7 −1.5 1.9 1.9 0.7 8.4

Ag(1) 493 530 7.5 2.1 −0.2 −3.0 12.0 23.7

Hg(3) 708 769 8.6 3.2 0.0 2.7 0.8 8.9

Hg(4) 773 820 6.1 0.8 1.9 −0.8 12.3 19.5

Hg(5) 1099 1205 9.6 4.2 0.3 −0.5 13.5 14.6

Hg(6) 1248 1288 3.2 −2.0 −2.5 −0.3 15.0 12.7

Hg(7) 1426 1516 6.3 1.0 −1.8 1.2 14.7 11.9

Ag(2) 1469 1548 5.4 0.1 −0.1 2.0 14.6 13.5

Hg(8) 1573 1610 2.4 −2.8 0.1 0.2 15.1 9.3

a Ref. [18] (measured for pristine C60 film). b Ref. [20] (force-constant model). c Ref. [21] (SCF-LDA calculation). d Ref. [10]
(DF-TB calculation). e Ref. [22] (MNDO calculation).

of Porezag et al. and Fanti et al. For the Ag(2) mode,
for example, our unscaled results lie by approximately 9
and, respectively, 8% in better agreement. The explana-
tion for the more favorable behavior in comparison with
the results of Porezag et al., which basically originate in
a TBMD approach, too, is to be sought in the more real-
istic parametrization of Papaconstantopoulos et al., with
higher experimental significance, on which our model II
relies. Thus, even though the crude frequencies calculated
with model II are somewhat less accurate as compared
to existing force-constant or SCF-LDA results, they are,
however, superior to other TB and MNDO results.

The methodology for investigating C60 was also ap-
plied to the simulation of geometrical and vibrational
properties of the C70 molecule. However, due to the lower
symmetry, the assignment of the 53 Raman-active modes
of C70 is much more difficult than in the case of C60.
There have been several attempts [20,23–28], nevertheless
an unambiguous assignment scheme has not met general
consensus yet (see, for example, Ref. [26]).

The initial excitation of the system was achieved, as
before, by random displacements of the atoms. To excite
particular modes (as, for example, the two A′1 vibrations
at 452 and 1446 cm−1, identified as analogous to the to-
tally symmetrical breathing and pentagonal pinch modes
of C60, respectively), separate runs with deterministic ini-
tial displacement patterns have been performed. The FT
spectra of the DAF obtained by using models I and II,
along with the experimental Raman spectrum of Brockner
et al. [23], are depicted in Figure 4. It is worth mentioning
that the optimal scaling factors for both models have been
found to be the same as in the case of C60 (0.83 and 0.95,
respectively). Again the superiority of model II is appar-
ent, both by the scaling factor closer to unity and the bet-
ter agreement with the experimental peak positions and
intensities.
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Fig. 4. Experimental Raman spectrum for C70 (Ref. [23]) and
FT spectra of the displacement autocorrelation function cal-
culated with models I and II.

The fair agreement of the scaled frequencies (ν∗ =
0.95ν) with the experiment can also be judged from
Table 3, where the most intense 20 peaks in our spec-
trum for model II have been included. In addition, the
relative differences with respect to the experimental fre-
quencies, ∆ν∗/νexp, seen to amount to less than 4%
(excepting the vibration at 302 cm−1), are compared
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Table 3. Experimental and calculated frequencies (in cm−1) for the 20 most intense Raman-active modes of the fullerene
cluster C70. ∆ν/νexp are relative differences (in %) with respect to the experimental values of Brockner et al. ν∗ are the scaled
frequencies resulted from model II with a scaling factor of 0.95. The assignment scheme of Wang et al. is used.

Mode Brocknera model II Jishib Wangc Onidad

νexp ν∗ ∆ν∗/νexp ∆ν/νexp ∆ν/νexp ∆ν/νexp

A′1 259 257 −0.8 0.4 1.2 −3.5

E′2 302 322 6.6 −5.0 3.0

A′1 394 381 −3.3 −11.7 −1.5 2.0

E′′1 409 411 0.5 1.5 0.0 2.4

A′1 454 460 1.3 1.3 0.4 2.4

E′2 490 490 0.0 −3.1 1.6 6.1

A′1 567 555 −2.1 −2.1 4.6 5.8

E′′1 700 703 0.4 0.7 0.6 8.6

E′′1 736 753 2.3 0.1 0.5 3.7

E′′1 767 772 0.7 3.8 0.7 7.3

E′′1 799 797 −0.3 0.8 −0.4 33.2

E′2 943 956 1.4 0.1 12.1

A′1 1059 1040 −1.8 1.0 −2.8 1.0

E′′1 1181 1154 −2.3 0.1 1.0 4.2

E′2 1227 1223 −0.3 −2.0 0.4 2.0

E′′1 1295 1282 −1.0 0.8 −0.5 −0.8

E′2 1331 1332 0.1 0.3 0.5 5.1

A′1 1444 1426 −1.2 −2.0 −1.0 7.1

E′′1 1467 1461 −0.4 1.1 0.4 2.1

E′′1 1510 1510 0.0 2.0 0.8 3.6

a Ref. [23] (experiment). b Ref. [20] (force-model calculation). c Ref. [27] (LDA calculation). d Ref. [28] (Car-Parrinello MD
calculation).

with the corresponding differences resulted from the force-
constant calculations of Jishi et al. [20], the LDA calcula-
tions of Wang et al. [27] and the Car-Parrinello MD cal-
culations of Onida et al. [28]. Aside from the vibrations at
302 and 394 cm−1, showing for one or the other approaches
higher deviations from the experiment, our results are of
comparable accuracy with those of Jishi et al. and Wang
et al. As for the calculations of Onida et al., the re-
sults are obviously affected by higher inaccuracies than for
any of the other compared approaches. It should be also
mentioned, that the MNDO calculations of Raghavachari
et al. [29] are reported to show typical frequency devia-
tions of up to 15%. Thus, analogous to the investigation
of C60, the scaled frequencies calculated with model II are
comparable in accuracy with existing force-constant and
LDA results and they are definitely superior to other MD
and MNDO results.

5 Conclusions

A non-orthogonal TBMD approach is employed to simu-
late structural properties and Raman spectra of C60 and
C70. Non-orthogonality is confirmed to play an essen-
tial role in the case of carbon clusters since its explicit

inclusion has beneficial effects on the agreement of the
obtained results with the experimental data.

Two parametrizations schemes for the Hamiltonian
and overlap matrices are investigated comparatively. The
first one, denoted as “model I”, originates in the a pri-
ori theory based on universal parameters developed
by Harrison [1] and improved by van Schilfgaarde and
Harrison [2]. The primitive electronic tight-binding matrix
elements V IJll′µ are assumed to scale exponentially with the
interatomic separation and the exponential factors (which
relate to bond-stretching force constants) are adjusted
such as to optimally reproduce geometric properties and
the frequencies of the Raman-active modes of C60 and C70.

The second parametrization, denoted as “model II”,
is the one of Papaconstantopoulos et al. [9]. It involves
environment-dependent on-site terms (by defining a lo-
cal pseudo-atomic density) and it models the Hamiltonian
and overlap matrices as polynomials times an exponential
cutoff with respect to the interatomic separation.

The initial excitation of the investigated fullerene
molecules is carried out by random initial displace-
ments of all atoms, or, in order to excite vibrational
modes from particular frequency regions, by certain re-
stricted displacement patterns. To characterize the overall
vibration of the molecules, the autocorrelation function
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of the individual atomic displacements is employed and
its Fourier-transform is matched against experimental
Raman-spectra.

As compared to model I, the calculated spectra for
model II are in obviously better agreement with the
experimental evidence both for C60 and C70, and this
is due to the high quality data used to adjust the
parametrization of Papaconstantopoulos et al. Moreover,
even though the accuracy of our unscaled frequencies is
slightly inferior to other force-constant and LDA models,
it turns out, however, to be superior to other MD and
semi-empirical calculations.

We have achieved fair agreement with experiment both
for structural and vibrational properties. The average cage
sizes and average bond lengths are in less than 2% error,
the relative differences between our unscaled vibrational
frequencies and the experimental data amounting to less
than 10%.
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