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Time ordering in atomic collisions
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Abstract. We present a general treatment for the effect of time ordering in the many-electron
processes induced by charged-particle impact. We show that time ordering is essential in order
to obtain odd powerZ terms in the cross section which is necessary to get different values for
positively and negatively charged projectiles. A second-order calculation is performed for the
double ionization of helium. The electron–electron interaction is taken into account only by the
shake-off term. The interference between the shake-off and second-order term is responsible
only for a part of the dependence of the cross sections on the sign of the charge of the projectile.

1. Introduction

The fact that the cross sections for two-electron processes in high-velocity atomic collisions
with charged particles (double ionization, ionization excitation, double excitation) vary with
the sign of the charge was treated theoretically by several groups [1–6]. McGuire [1] has
suggested that the interference between the first-order (shake) and the second-order (TS2)
amplitudes gives rise to aZ3 term in the cross section, and this is the cause of the difference.
Becker [7], assuming that the collision is dipole dominated, has shown that, because the
shake mechanism is monopole in character, the two amplitudes do not interfere.

Reading and Ford [2] have made the first elaborate calculations for a two-electron
transition, the double ionization of helium, using the forced-impulse method. They have
shown that, for the double ionization, even for relatively high energies, there are significant
non-dipole contributions, and theZ3 terms are important. They have obtained the observed
difference in the cross sections for positively and negatively charged projectiles. In a
recent, more complete work [8] they have reported very good quantitative agreement with
experimental data for the double-ionization cross section of helium by charged particles.
From their complicated calculations one cannot separate the contributions of different simple
mechanisms.

One of the aims of the present paper is to investigate to what extent the interference
between the shake and the TS2 amplitude is responsible for theZ3 term.

In order to obtain the interference term we must go beyond the independent-electron
approximation for the TS2 process, where the two-electron amplitude is considered a product
of two one-electron amplitudes [9, 10]. In this approximation the shake-off and the TS2
amplitudes do not interfere, because they are 90◦ out of phase.
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If one treats the two-electron process within the time-dependent perturbation theory, the
probability amplitude can be expressed in terms of the Dyson series [11, 12]. A higher-order
term contains a succession of interactions with the projectile in different moments of time.
Generally the operators describing the interactions occurring in different moments do not
commute, one has to take into account the proper order of the interactions. It is usual to
define a time-ordering operator, which takes care of the time ordering. McGuire and Straton
[5] have shown that time ordering is essential in order to obtain theZ3 term in the cross
section for a two-electron process. They have applied the theory for the double excitation of
helium [5, 13] using correlated two-electron wavefunctions. The difference in cross sections
obtained for positive and negative projectiles has proved to be very small.

Stolterfoht [14] has given a simple method for evaluating the time-ordered second-order
amplitude for relaxed orbitals. Furthermore, for the particular case of frozen orbitals, he has
shown that, if in a two-electron process the effect of one electron on the other during the
collision is neglected, the TS2 amplitude reduces to a product of one-electron amplitudes.
So this is in fact the independent-electron approximation, and the time ordering is lost. In
some special cases, when one of the intermediate states is forbidden by the Pauli exclusion
principle, time ordering occurs even for frozen orbitals [15, 16]. In a recent paper Véghet
al [17] have separated the time-ordering contribution to the second-order amplitude, taking
into account the change in the screening potential during the collision. They have performed
calculations for the double excitation of lithium, where the time-ordering effect has been
proved to be significant.

In the present paper we present a general discussion on the time-ordering effect, and
we link the different treatment of McGuire and Straton [5], Stolterfoht [14] and Végh et
al [17]. We present calculations for the double ionization of helium, comparing our results
with the cross sections obtained by Ford and Reading [8] and the experimental data. The
importance of the considered two mechanisms (shake-off and TS2), and the effect of time
ordering is discussed.

2. Time ordering in general

2.1. Evolution of the electronic system

The ionization and the excitation of atoms and molecules by charged particles with high
energy can be described semiclassically, i.e. the projectile moves on a classical trajectory.
In most of the cases the trajectory can be assumed to be linear, and the reaction of the target
on the projectile can be neglected.

The probability amplitude for a giveni → f transition of the target electrons is given
by the matrix element

a(B) = 〈f |U(−∞,+∞)|i〉, (1)

whereB is the impact parameter andU is the evolution operator of the electronic system.
The evolution operator can be obtained by solving the time-dependent Schrödinger equation
in the interaction picture

i
∂

∂t
U(t, t0) = VI (t)U(t, t0) (2)

with the conditionU(t0, t0) = 1. Here

VI (t) = eiH0tV (t)e−iH0t . (3)
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H0 is the unperturbed Hamiltonian of the target electrons, andV (t) is the interaction
potential between the projectile and the target electrons in the Schrödinger picture.
Integrating formally equation (3) we obtain the integral equation

U(t, t0) = 1− i
∫ t

t0

dt ′ VI (t ′)U(t ′, t0) (4)

which can be solved by successive iterations. The solution is an expansion in the powers
of the perturbative interaction and it is equivalent to the Born series

U(t, t0) = 1+
∞∑
n=1

(−i)n
∫ t

t0

dtn VI (tn)
∫ tn

t0

dtn−1VI (tn−1) . . .

∫ t2

t0

dt1VI (t1)

= 1+
∞∑
n=1

(−i)n
∫ t

t0

dtn VI (tn)
∫ t

t0

dtn−12(tn − tn−1)VI (tn−1) . . .

. . .

∫ t

t0

dt12(t2− t1)VI (t1). (5)

Here2(ti − ti−1) is the Heavyside step function.

2.2. Time ordering

In general the operatorsVI (t) do not commute for different values of time, and formula (5)
expresses causality. Sinceti > ti−1, the operatorVI (ti) has to be on the right side of the
VI (ti+1). It is usual to write this formula in a form given by Dyson, extending formally the
region of each integral to(t0, t)

U(t, t0) = 1+
∞∑
n=1

(−i)n

n!
T

∫ t

t0

dtn VI (tn)
∫ t

t0

dtn−1VI (tn−1) . . .

∫ t

t0

dt1VI (t1). (6)

The T time-ordering operator takes care of the arrangement of then factorsV (ti) in the
order of increasing time from right to left, and the factor of 1/n! corrects for multiple
counting of time regions [12]. ThusU(t, t0) is constrained byT to ‘propagate’ forward in
time. Specifically,T imposes causality onU(t, t0) by enforcingti > ti−1. This condition
is the same classically and quantum mechanically. The operatorT does not cause a finite
spread over time,1t of wavepackets.

If we approximateT by Tav = 1, we neglect the time order in which the successive
interactions occur and we have no time-ordering effect.

2.3. The effect of time ordering

If T = Tav = 1 then there is no effect due to the time order of the interaction terms.
Consequently, the effect of time ordering is carried by the operator

T − Tav = n!
n∏
1

2(ti − ti−1)− 1. (7)

Referring to the cross sections calculated neglecting the time ordering we can state the
following theorem, proposed earlier by McGuire and Straton [5] and Stolterfoht [14]. Now
a general proof will be given.

Theorem 1.Transition probabilities and cross sections do not depend on the sign of the
projectile (i.e.Z→−Z) if the effects of time ordering are ignored.
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Proof. If the effects of time ordering are ignored, thenT = Tav = 1 and,

U(∞,−∞) =
∞∑
n=0

(−i)n

n!

∫ ∞
−∞

VI (tn)dtn . . .
∫ +∞
−∞

VI (t1)dt1

= Ueven+ iUodd (8)

whereUeven andUodd are even and odd inV (or Z). Each factor of
∫ +∞
−∞ VI (t) dt can be

regarded as causing the transition of the system from a state|I ′〉 to a state|I 〉, and yields
a matrix element of

∫∞
−∞ ei(EI−EI ′ )t 〈I |V (t)|I ′〉 dt which is purely real or purely imaginary

depending on the parity of the states (real forl + m − l′ − m′ even and imaginary, if this
sum is odd). Because in the product of the integrals each intermediate state occurs twice,
the phase of the product depends only on the parity of the initial and the final states. Thus,
for a given transition,Ueven andUodd are purely real (or purely imaginary). Consequently,

|a|2 = |〈f |U(∞,−∞)|i〉|2 = U2
even+ U2

odd (9)

which is an even function ofZ, and thus invariant underZ→−Z.
Dependence on the sign of the charge of the projectile is obtained only if one has odd

terms inZ. This is possible only by the interference betweenUeven andUodd. Including
time ordering each term may have real and imaginary parts, thus the interference occurs.�

3. Time ordering in second order

Expanding the evolution operator,U , in powers of the interaction potential,V , one has,

a = a(1) + a(2) + · · · + a(N) + · · · . (10)

Now we truncate the expansion past second order inV so that

a ' a(1) + a(2). (11)

A variety of cases for the interactionV are possible. If all electron–electron interactions are
included in theH0 Hamiltonian, thanV (t) is the sum of the individual projectile–electron
interactions

∑n
i=1Vi(t), wheren is the number of active electrons. Applying the many-body

perturbation theory,V (t) may contain electron–electron interactions, also.

3.1. One-electron transitions

Let us consider first the interaction with only a single electron, i.e.V = V1. For the
first-order term inV1 one has

a(1) = −i〈f |
∫ +∞
−∞

dt eiH0tV1(t)e
−iH0t |i〉

= −i
∫ +∞
−∞

dt ei(Ef−Ei)t 〈f |V1(t)|i〉. (12)

This term contains no time ordering. This amplitude is imaginary for even-parity transitions
and real for odd-parity transitions.

The second order amplitude inV1 is given by,

a(2) = −〈f |
∫ +∞
−∞

dt eiH0tV1(t)e
−iH0t

∫ t

−∞
dt ′ e−iH0t

′
V1(t

′)eiH0t
′ |f 〉

= −
∑
k

∫ +∞
−∞

dt ei(Ef−Ek)t 〈f |V1(t)|k〉
∫ t

−∞
dt ′ ei(Ek−Ei)t ′ 〈k|V1(t

′)|i〉
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= −
∑
k

∫ +∞
−∞

dt eiEf t 〈f |V1(t)|k〉
∫ ∞
−∞

dt ′2(t − t ′)eiEk(t−t)′ 〈k|V1(t
′)|i〉e−iEi t ′ .

(13)

There is an illustrative way for separating the term responsible for the time-ordering effect
[5, 13]. We perform the following Fourier transformation

2(t − t ′)eiEk(t−t ′) =
∫ +∞
−∞

d� e−i�(t−t ′)
[
δ(�− Ek)+ i

π
P

1

�− Ek

]
≡ [δav + iP ] (14)

whereδav and iP denote operators.
For the second-order amplitude we obtain

a(2) = −
∑
k

1

2

[ ∫ +∞
−∞

dt ei(Ef−Ek)t 〈f |V1(t)|k〉
∫ +∞
−∞

dt ′ ei(Ek−Ei)t ′ 〈k|V1(t
′)|i〉

+ i

π

∫ +∞
−∞

dt eiEf t 〈f |V1(t)|k〉
∫ +∞
−∞

dt ′ P

×
∫ +∞
−∞

d� e−i�(t−t ′) 1

�− Ek e−iEi t ′ 〈k|V1(t
′)|i〉

]
= a(2)no time ordering+ ia(2)time ordering. (15)

Here the first term can be identified as the time-averagedTav term, obtained by taking
T = 1. This is 90◦ out of phase with the first-order term and does not interfere. The second
term is only responsible for the time-ordering effect and does interfere with the first-order
term.

Any Z3 effects such as polarization of the target electron cloud (including those in
classical particle calculations such as CTMC) arise from the interference between the first-
order amplitude and theT − Tav contribution of the second-order amplitude. These effects
may always be associated with time-ordering effects.

3.2. Two-electron transitions

For systems with two electrons that interact with the projectile, we takeV = V1+V2. Now
the H0 Hamiltonian for the atom includes the 1/rij electron–electron interaction, which
leads to electron correlation, namely

H 0 =
∑
i

[
− ∇

2
i

2
− ZT
ri
+
∑
j<i

1

rij

]
. (16)

The first-order amplitude inV for the two-electron transition is similar to that for the
one-electron transition.

a(1) = −i〈f |
∫ +∞
−∞

dt eiH0t [V1(t)+ V2(t)]e
−iH0t |i〉

= −i
∫ +∞
−∞

dt ei(Ef−Ei)t 〈f |[V1(t)+ V2(t)]|i〉. (17)

Here |i〉 and |f 〉 are two-electron wavefunctions.
If many-body perturbation theory is used, these wavefunctions are written as a product

of one-electron wavefunctions. In the many-body perturbation picture the transition of the
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second electron is caused by an electron–electron interaction. In this picture the lowest-order
amplitude is of second order.

The second-order amplitude in the projectile–electron interaction,V , is given by

a(2) = −
∑
k

∫ +∞
−∞

dt ei(Ef−Ek)t 〈f |[V1(t)+ V2(t)]|k〉

×
∫ t

−∞
dt ′ ei(Ek−Ei)t ′ 〈k|[V1(t

′)+ V2(t
′)]|i〉. (18)

The terms in(V1)
2 and(V2)

2 do not alone cause two-electron transitions, only with additional
electron–electron interaction. In the many-body perturbation theory the corresponding
terms are at least third order. We assume that these terms can be neglected in a second-
order theory. Then we obtain the expression of the second-order amplitude given also by
Stolterfoht [14], namely

a(2) = −
∑
k

∫ +∞
−∞

dt ei(Ef−Ek)t 〈f |V1(t)|k〉
∫ t

−∞
dt ′ ei(Ek−Ei)t ′ 〈k|V2(t

′)|i〉

−
∑
k

∫ +∞
−∞

dt ei(Ef−Ek)t 〈f |V2(t)|k〉
∫ t

−∞
dt ′ ei(Ek−Ei)t ′ 〈k|V1(t

′)|i〉. (19)

Similarly to (15), the non-time-ordered and the time-ordering term can be separated.

3.2.1. The use of CI wavefunctions.The two-electron wavefunctions|i〉, |f 〉 and|k〉 cannot
be calculated exactly. A good approximation can be reached by the use of configuration-
interaction (CI) wavefunctions, which are written as a sum of products of one-electron
orbitals

|i〉 =
∑
l

cl|il1〉|il2〉

|f 〉 =
∑
j

dj |f j1 〉|f j2 〉

|k〉 =
∑
s

bs |ks1〉|ks2〉.

(20)

Introducing the initial- and final-state CI wavefunctions in the first-order amplitude (17),
one gets a sum of products of overlap integrals and one-electron transition amplitudes

a(1) = −i
∑
l

∑
j

cld
∗
j 〈f j2 |il2〉

∫ +∞
−∞

dt ei(Ef−Ei)t 〈f j1 |V1(t)|il1〉

−i
∑
l

∑
j

cld
∗
j 〈f j1 |il1〉

∫ +∞
−∞

dt ei(Ef−Ei)t 〈f j2 |V2(t)|il2〉. (21)

These terms can be interpreted as follows. The term containing the basic configurations both
from initial and the final states (l = 1 andj = 1, c1 andd1 being the largest coefficients),
can be regarded as the shake term. If the one-electron orbitals from the initial and the final
basic configurations have the same symmetry, the overlap integral〈f 1

i |i1i 〉 (for i equals 1
or 2) may be non-zero, and the shake process contributes to the transition of the second
electron.

The terms withj = 1 andl 6= 1 are responsible for the initial-state correlation, while
those withj 6= 1 andl = 1 express the final-state correlation. The terms withj 6= 1 and
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l 6= 1 contain both initial- and final-state correlation, but usually are less important, because
both coefficientscl anddj are small.

Using the CI (20) wavefunctions for the second-order amplitude (19), one obtains

a(2) = −
∑
k

∑
j,l

∑
r,s

dj ∗ clbrb∗s 〈f j2 |kr2〉〈ks1|il1〉
∫ +∞
−∞

dt ei(Ef−Ek)t 〈f j1 |V1(t)|kr1〉

×
∫ t

−∞
dt ′ ei(Ek−Ei)t ′ 〈ks2|V2(t

′)|il2〉 −
∑
k

∑
j,l

∑
r,s

dj ∗ clbrb∗s 〈f j1 |kr1〉〈ks2|il2〉

×
∫ +∞
−∞

dt ei(Ef−Ek)t 〈f j2 |V2(t)|kr2〉
∫ t

−∞
dt ′ ei(Ek−Ei)t ′ 〈ks1|V1(t

′)|il1〉. (22)

The evaluation of the second-order amplitude in this form seems impossible, some
simplifications are necessary. One of the possibilities is to apply the closure approximation
by replacing the energy of each intermediate state,Ek, by the same average valueE. In
this case we can use the closure relation∑

k

∑
r,s

brb
∗
s |kr1〉|kr2〉〈ks1|〈ks2| = 1, (23)

and for the second-order amplitude we obtain

a(2) = −
∑
j,l

d∗j cl

[ ∫ +∞
−∞

dt ei(Ef−E)t 〈f j1 |V1(t)|il1〉
∫ t

−∞
dt ′ ei(E−Ei)t ′ 〈f j2 |V2(t

′)|il2〉

+
∫ +∞
−∞

dt ei(Ef−E)t 〈f j2 |V2(t)|il2〉
∫ t

−∞
dt ′ ei(E−Ei)t ′ 〈f j1 |V1(t

′)|il1〉
]
. (24)

The time-ordering part of this second-order amplitude is sensitive to the value of the average
energyE. If this is taken to be the mean value of the initial-state and the final-state energies,
thenEf − E = E − Ei = 1E/2. In these conditions the second-order amplitude reduces
to a sum of products of one-electron amplitudes, as we show below. The restriction of the
time orderingt ′ < t is equivalent tot > t ′, so we can write

a(2) = −
∑
j,l

d∗j cl

[ ∫ +∞
−∞

dt ei 1E2 t 〈f j1 |V1(t)|il1〉
∫ t

−∞
dt ′ ei 1E2 t

′ 〈f j2 |V2(t
′)|il2〉

+
∫ +∞
−∞

dt ′ei 1E2 t
′ 〈f j1 |V1(t

′)|il1〉
∫ +∞
t ′

dt ei 1E2 t 〈f j2 |V2(t)|il2〉
]

= −
∑
j,l

d∗j cl
∫ +∞
−∞

dt ei 1E2 t 〈f j1 |V1(t)|il1〉

×
[ ∫ t

−∞
dt ′ ei 1E2 t

′ 〈f j2 |V2(t
′)|il2〉 +

∫ +∞
t

dt ′ei 1E2 t
′ 〈f j2 |V2(t

′)|il2〉
]

= −
∑
j,l

d∗j cl
∫ +∞
−∞

dt ei 1E2 t 〈f j1 |V1(t)|il1〉
∫ +∞
−∞

dt ′ ei 1E2 t
′ 〈f j2 |V2(t

′)|il2〉. (25)

In this case time ordering is lost, and the interference with the first-order term is zero. In
order to maintain time ordering and the difference in cross sections for positive and negative
projectiles, one must choose another value for the average energy of the intermediate states.

In the following, the approximations using single-configuration separable wavefunctions
will be presented.
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3.2.2. Independent electron approximation.Neglecting electronic correlation one may
approximate the unperturbed Hamiltonian as a sum of one-electron Hamiltonians

H 0 ≈ h1+ h2. (26)

Herehi may contain only the nuclear potential, or may be a Hartree–Fock Hamiltonian

hi = −∇
2
i

2
+ VN−1(ri ) (27)

where

VN−1(ri ) = −ZT
ri
+
∑
j 6=i

∫
drj
|φj (rj )|2
|ri − rj | (28)

is the screening potential.
Now we express the two-electron wavefunctions as a product of two one-electron

wavefunctions. Theoretically the wavefunctions corresponding to the (26) Hamiltonian
can be expressed with the Slater determinants, and two terms should be used for each
state in order to obtain the proper symmetry regulated by the Pauli principle. However,
if in the initial state the two electrons are described by the same spatial wavefunction
(e.g the 1s2 state for He), the two electrons should be in singlet state; therefore, the spin
wavefunction is antisymmetric, so the spatial wavefunction has to be symmetric. The initial-
state wavefunction can be expressed by a symmetric product|i1〉|i2〉, and the wavefunction
for the final state is symmetrized

f (r1, r2) = 2−1/2[fA(r1)fB(r2)+ fB(r1)fA(r2)]. (29)

The transition amplitude can be written as

〈f |U |i〉 = 2−1/2[〈fA(r1)fB(r2)|U |i(r1)i(r2)〉 + 〈fB(r1)fA(r2)|U |i(r1)i(r2)〉], (30)

but because by interchangingr1 andr2 the two terms are equivalent, it reduces to

〈f |U |i〉 = 21/2〈fA(r1)fB(r2)|U |i(r1)i(r2)〉. (31)

Thus, the use of product wavefunctions is not contradictory to the Pauli principle, and we
will use |i〉 = |i1〉|i2〉 and |f 〉 = |f1〉|f2〉.

The energies corresponding to a sum of one-electron Hamiltonians are sums of single
electron energies:Ef = εf1 + εf2, Ei = εi1 + εi2.

The first-order amplitude for a two-electron process in the IEA is zero, because of the
orthogonality of the initial and final one-electron states. As for the second-order amplitude,
the sum over the intermediate states is much more simplified. That is, there are only
two intermediate states possible:〈i1i2| → 〈f1i2| corresponding toV1 followed by V2 or
〈i1i2| → 〈i1f2| corresponding toV2 followed byV1. The energies of these states areεf1+εi2
and εi1 + εf2 respectively. Using|k〉 = |k1k2〉, we get〈k1k2|V1(t)|i1i2〉 = δk2i2〈k1|V1(t)|i1〉
and 〈f1f2|V1(t)|k1k2〉 = δf2k2〈f1|V1(t)|k1〉. Introducing the product wavefunctions in (19),
and trivially summing over theδs in the intermediate states, we have

a(2) = −
∫ +∞
−∞

dt ei(εf1−εi1)t 〈f1|V1(t)|i1〉
∫ t

−∞
dt ′ ei(εf2−εi2)t ′ 〈f2|V2(t

′)|i2〉

−
∫ +∞
−∞

dt ei(εf2−εi2)t 〈f2|V2(t)|i2〉
∫ t

−∞
dt ′ ei(εf1−εi1)t ′ 〈f1|V1(t

′)|i1〉. (32)

Thus the sum over intermediate states,|k〉, collapses.
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Similarly to (25) it can be shown that, within the independent-electron approximation,
the second-order amplitude reduces to a product of one-electron amplitudes.

a(2) = −
∫ +∞
−∞

dt ei(εf1−εi1)t 〈f1|V1(t)|i1〉
∫ t

−∞
dt ′ ei(εf2−εi2)t ′ 〈f2|V2(t

′)|i2〉

−
∫ +∞
−∞

dt ′ ei(εf1−εi1)t ′ 〈f1|V1(t
′)|i1〉

∫ ∞
t ′

dt ei(εf2−εi2)t 〈f2|V2(t)|i2〉

= −
∫ +∞
−∞

dt ei(εf1−εi1)t 〈f1|V1(t)|i1〉
∫ ∞
−∞

dt ′ei(εf2−εi2)t ′ 〈f2|V2(t
′)|i2〉

= a(1)1 a
(1)
2 . (33)

This is an essential result of Stolterfoht [14] for two-electron transitions if the orbital energies
do not change during collision, i.e. there is no correlation. Stolterfoht has called these states
frozen energy orbitals. Now time ordering is lost. In the independent electron approximation
time ordering enters in the higher-order single-electron amplitudes. ThusZ3 effects may
arise due to time ordering in theV1(V2)

2 or (V1)
2V2 terms. However, through second order,

for two-electron transitions there is no time-ordering effect without correlation.

3.2.3. Independent orbitals with shifted energies.Now we relax the frozen-orbital
restriction and allow the energies of the electron orbitals to change due to the effect of the
electron–electron interaction. Our unperturbed Hamiltonian remains a sum of one-electron
Hamiltonians. To keep the time-ordering effect, we must choose theH 0 Hamiltonian
depending on the order of the interactions, in other words we have to take into account the
change in the screening potential during the collision. For simplicity we keep track only
of the two active electrons. We treat the case when the order of the interactions with the
projectile isV2(t)V1(t

′) with t > t ′. The one-electron Hamiltonians can be written as

h1 = −∇
2
1

2
+ VN−1(r1)

h2 = −∇
2
2

2
+ V ′N−1(r2). (34)

V ′N−1 is calculated with the first electron in the final state. In case of the ionization, when
the first electron leaves the atom, instead ofV ′N−1(r2) we can takeVN−2(r2) (screening
approximation). For the initial state the wavefunctions for both electrons are calculated in
theVN−1 potential (Hartree–Fock wavefunctions), because both electrons are in the ground
state. Thus the initial state of the electron 2 is not orthogonal to the final state, because
the final state is calculated in theV ′N−1. In the following formulae the eigenstates of the
Hamiltonian containing the initial screening potential will be unprimed, and the eigenstates
of the Hamiltonian withV ′N−1 or theVN−2 Hamiltonian will be labelled prime. The initial
state|i1i2〉 is not an eigenstate of theH 0 = h1 + h2 Hamiltonian, but because usually the
overlap integral between|i2〉 and the proper eigenstate of theh2 (|i ′2〉) is large, we can
approximately write

(h1+ h2)|i1i2〉 ≈ (ε01+ ε′02)|i1i ′2〉 ≈ E0|i1i2〉, (35)

whereE0 is the ground-state energy of the two electrons.
Let us express the transition amplitudes in this approximation. If the change in the

screening during the two-electron transition is taken into account, because of the non-
orthogonality of the initial and final states, the first-order amplitude is non-zero. Considering
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both interactions we obtain

a(1) = −i〈f ′2|i2〉
∫ +∞
−∞

dt ei(εf1+εf2−E0)t 〈f1|V1(t)|i1〉

−i〈f ′1|i2〉
∫ +∞
−∞

dt ei(εf1+εf2−E0)t 〈f2|V2(t)|i2〉. (36)

This term is usually called the shake amplitude (shake-off or shake-up).
A problem arises at this step of our method. We obtain two different final states,

namely|f1f
′
2〉 and |f ′1f2〉, depending on the order of the interactions. Obviously, this has

no physical meaning because the final state is fully characterized by the energies and angular
momenta of the two electrons. With both electrons in the continuum the screening can be
only poorly approximated to be caused by a bound electron. Thus, in the final state we
neglect the interaction of the two electrons, and the|fi〉 screened wavefunction relaxes in
the |f ′i 〉 unscreened wavefunction. We multiply each term by an overlap of type〈f ′i |fi〉.
Taking into account only the asymptotic region, where the two wavefunctions differ just in
a constant phaseshift, the overlap integral (calculated for the partial waves) is simply

〈f ′i |fi〉li = cosδpi li δ(pi − p′i ), (37)

whereδpi li is the phaseshift due to the short-range screening potential. The|fi〉 states can
be taken to be intermediate states, and we will have to perform an integration over these,
making theδ function disappear. With these corrections the first-order amplitude has the
form

a(1) = −i〈f ′2|i2〉〈f ′1|f1〉
∫ +∞
−∞

dt ei(εf1+εf2−E0)t 〈f1|V1(t)|i1〉

−i〈f ′1|i2〉〈f ′2|f2〉
∫ +∞
−∞

dt ei(εf1+εf2−E0)t 〈f2|V2(t)|i2〉. (38)

Applying theH 0 = h1 + h2 Hamiltonian for the second-order amplitude whereh1 and
h2 are given by (34), one obtains

a(2) = −
∑
k

∫ +∞
−∞

dt
∫ t

−∞
dt ′ ei(εf1+εf2)t 〈f1f

′
2|V2(t)|k1k

′
2〉eiEk(t ′−t)〈k1k

′
2|V1(t

′)|i1i2〉e−iE0t
′
,

(39)

where for simplicity we have taken only one possible order of the interactions.
For the study of the intermediate states let us take the matrix element

〈f1f
′
2|V2(t)|k1k

′
2〉 = δf1k1〈f ′2|V2(t)|k′2〉, (40)

where |f1〉 and |k1〉 are both eigenstates of theh1 Hamiltonian. In the case of the other
matrix element

〈k1k
′
2|V1(t

′)|i1i2〉 = 〈k′2|i2〉〈k1|V1(t
′)|i1〉 (41)

|i2〉 is calculated in theVN−1 potential, while|k′2〉 is the eigenstate ofh2. But the overlap
integral of the|i2〉 state is much larger with the ground state of theh2, |i ′2〉, than with the
excited and continuum states, and so〈k′2|i2〉 ≈ δk′2i ′2. In these conditions we neglect the other
possible intermediate states, and retain only one, in which one electron is in the final state,
and the other in the modified ground state|i ′2〉. The unperturbed energy of this intermediate
state is obtained by

H 0|f1i
′
2〉 = h1|f1〉|i ′2〉 + |f1〉h2|i ′2〉 = (εf1 + ε′02)|f1i

′
2〉. (42)
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Considering only the above intermediate state with one electron in the final state and
the other in the ground state, but taking into account both of the possible orders of the
interactions, the second-order amplitude can be expressed as

a(2) = −
∫ +∞
−∞

dt ei(εf2−ε′02)t 〈f ′2|V2(t)|i ′2〉
∫ t

−∞
dt ′ ei(εf1−ε01)t

′ 〈f1|V1(t
′)|i1〉

−
∫ +∞
−∞

dt ei(εf1−ε′01)t 〈f ′1|V1(t)|i ′1〉
∫ t

−∞
dt ′ ei(εf2−ε02)t

′ 〈f2|V2(t
′)|i2〉. (43)

This term is commonly called the TS2 amplitude. Sinceε0i 6= ε′0i , the transition energies
depend on the order of the interactions.

One would obtain a similar result using the closure approximation as in equation (24)
applied for single-configuration wavefunctions. The advantage of the present method is of
giving the energy of the intermediate states.

In these conditions the second-order amplitude does not reduce to a product of one-
electron amplitudes, as in (33) for IEA because the energy transfers and wavefunctions
depend on the order of the interactions.

Applying the same argument as for the first-order amplitude, we multiply each term
in (43) by an overlap integral of type (37), which expresses the relaxation of a screened
continuum wavefunction into an unscreened one

a(2) = −〈f ′1|f1〉
∫ +∞
−∞

dt ei(εf2−ε′02)t 〈f ′2|V2(t)|i ′2〉
∫ t

−∞
dt ′ ei(εf1−ε01)t

′ 〈f1|V1(t
′)|i1〉

−〈f ′2|f2〉
∫ +∞
−∞

dt ei(εf1−ε′01)t 〈f ′1|V1(t)|i ′1〉
∫ t

−∞
dt ′ ei(εf2−ε02)t

′ 〈f2|V2(t
′)|i2〉.

(44)

The effects of time ordering can be separated. Following Véghet al [17] we introduce
an energy shift,1, so that an electron is less tightly bound by−1 if another electron is
present and more tightly bound by+1 if the other electron has already made a transition.
In our notations

1 = ε01+ ε02− ε′01− ε′02

2
. (45)

Végh et al [17] have shown thata(2) = a
(1)
1 a

(1)
2 + C(1) + S(1) where C(1) ∼

cos1(t − t ′) − 1 and S(1) ∼ sin1(t − t ′) so that both corrections are small for fast
collisions.C has the same phase as thea1a2 term, butS is always 90◦ out of phase.

Now we show that the treatment of the time ordering by McGuire and Straton [5] and
by Véghet al [17] are equivalent. Rewriting the formula (19) of the second-order amplitude
with the energy-shift notation and keeping only two intermediate states, namely|k〉 and|k̄〉,
we get

a(2) = −
∫ +∞
−∞

dt ei(1E1+1)t 〈f |V1(t)|k〉
∫ t

−∞
dt ′ei(1E2−1)t ′ 〈k|V2(t

′)|i〉

−
∫ +∞
−∞

dt ei(1E2+1)t 〈f |V2(t)|k̄〉
∫ t

−∞
dt ′ ei(1E1−1)t ′ 〈k̄|V1(t

′)|i〉. (46)

If we separate the non-time ordered part of the amplitude as in equation (15) and we assume
as in [17] that

〈f |V1(τ )|k〉 = 〈k̄|V1(τ )|i〉 = Vbd(τ )
〈f |V2(τ )|k̄〉 = 〈k|V2(τ )|i〉 = Vac(τ ),

(47)
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we obtain

a
(2)

no time ordering= −
1
2

[ ∫ +∞
−∞

dt ei(1E1+1)tVbd(t)
∫ +∞
−∞

dt ′ ei(1E2−1)t ′Vac(t ′)

+
∫ +∞
−∞

dt ei(1E2+1)tVac(t)
∫ +∞
−∞

dt ′ ei(1E1−1)t ′Vbd(t ′)
]

=
∫ +∞
−∞

dt ei(1E1)tVbd(t)

∫ +∞
−∞

dt ′ ei(1E2)t
′
Vac(t

′) cos1(t − t ′)

=
∫ +∞
−∞

dt ei(1E1)tVbd(t)

∫ +∞
−∞

dt ′ ei(1E2)t
′
Vac(t

′)+ C(1). (48)

ThusC is an effect of the correlation that corresponds to a shift in binding energy in the
intermediate state.

As for the time-ordering part of the second-order amplitude

a
(2)

time ordering= −
i

2π

∑
k

∫ +∞
−∞

dt eiEf t 〈f |V1(t)|k〉

×
∫ +∞
−∞

dt ′ P
∫ +∞
−∞

d� e−i�(t−t ′) 1

�− Ek e−iEi t ′ 〈k|V1(t
′)|i〉, (49)

the principal-value integral over� can be performed analytically. Retaining only two
intermediate states, with the notations of equations (46) and (47) the time-ordering
contribution is written

a
(2)

time ordering=
1
2

[ ∫ +∞
−∞

dt ei(1E1+1)tVbd(t)
∫ +∞
t

dt ′ ei(1E2−1)t ′Vac(t ′)

+
∫ +∞
−∞

dt ei(1E2+1)tVac(t)
∫ +∞
t

dt ′ ei(1E1−1)t ′Vbd(t ′)
]

= − i
∫ +∞
−∞

dt ei1E1tVbd(t)

[ ∫ t

−∞
dt ′ ei1E2t

′ −
∫ +∞
t

dt ′ ei1E2t
′
]

sin1(t ′ − t)
= S(1). (50)

So S becomes the time-ordering effect and is identical to the principal-value part from the
treatment of McGuire and Straton [5].

Time ordering and electron correlation are different. However, as previously noted, time
ordering may not occur without correlation in second order for a two-electron transition.

4. Application for double ionization of helium

The presented method was previously applied for the ionization–excitation [18] and double
excitation [19] of helium. In the present work we present the results of our calculations
performed for the double ionization of helium by protons and antiprotons.

Because of the complexity of the problem we restrict ourself to single-configuration
wavefunctions. Thus, we neglect the initial- and final-state correlations. However, the
shake term in the first-order amplitude and the time-ordering term in the second-order
amplitude are present, because we have taken into account the change in the screening
during the collision. Because the electron correlations might be important in the two-
electron transitions, we do not expect to obtain accurate results. Our goal is to investigate
to what extent the interference between the shake and the TS2 terms is responsible for the
observed difference in cross sections for positive and negative projectiles.
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Figure 1. Cross sections for the double ionization of helium by proton and antiproton impact as
a function of the projectile energy. Our results are compared with the theoretical cross sections
of Ford and Reading [8], the experimental data of Shah and Gilbody [21] for protons and of
Hvelplundet al [22] and Andersenet al [23, 24] for antiprotons.

For the ground state of helium we have used the Hartree–Fock wavefunctions of
Clementi and Roetti [20]. The continuum wavefunctions for the second interacting electron,
moving in the field of the bare nucleus, are Coulomb wavefunctions. For the first electron,
which moves in a screened potential by the second electron, the wavefunction is obtained by
numerical integration. Calculations were made by expansion into the partial waves, taking
into account partial waves up tol = 4.

We have calculated separately the shake-off amplitude and the real and imaginary parts
of the TS2 amplitude, and have let them interfere. The cross sections obtained considering
these two mechanisms as a function of the projectile energy, are presented in figure 1.
These are compared with the experimental data of Shah and Gilbody [21] for protons, of
Hvelplund et al [22] and Andersenet al [23, 24] for antiprotons, and with the theoretical
calculations of Ford and Reading [8].

We do obtain a difference in cross sections for protons and antiprotons, and the values
for antiprotons are higher. However, instead of the factor-of-two difference between 0.3 and
2 MeV projectile energy, our calculated difference is only 5%. The results for antiprotons
fit very well with the experimental data, but cross sections for protons are too high.

The cross sections due to the first- and second-order terms are represented in figure 2. We
show separately the contribution of the independent-electron approximation (IEA). Adding
to the IEA amplitude only theC(1) correction term resulting from the energy shift of the
intermediate states, but neglecting the time ordering (the second-order amplitude remains,
in fact, a product amplitude with shifted energies), the cross section is diminished by about
30%. The curve representing this approximation is labelled IEA-SH. Taking into account
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Figure 2. The contributions of the first- and second-order amplitudes to the double-ionization
cross sections of helium. These contributions are independent of the sign of the charge of the
projectile. IEA is the independent-electron, frozen-orbital approximation, IEA-SH is obtained
by the non-time-ordered amplitude with shifted energies of the intermediate states. TS2 is the
time-ordered second-order cross section, and the shake-off is the first-order term.

the time ordering, the second-order amplitude cannot be written any more as a product,
and it has real and imaginary parts. The curve labelled TS2 represents the time-ordered
second-order cross section. The time-ordering contribution to the cross section is about 5%.

The effect of time ordering is diminishing applying higher projectile energies, as it was
shown by V́eghet al [17], but this decrease is rather slow.

For projectile energies below 1 MeV the TS2 contribution dominates over the shake-off
cross section. At 1.5 MeV the two contributions are equal, above this energy the shake-off
becomes dominant. The shake-off amplitude interferes only with the time-ordering (S) part
of the monopole term of the TS2 amplitude, and this is the reason why this interference,
and the difference between cross sections for positive and negative projectiles, are obtained
small.

Figure 3 represents the ratio of double- to single-ionization cross section as a function of
the projectile energy. Experimentally the high-energy limit for this ratio is 0.27% (measured
at 80 GeV amu−1 [25]). Our calculated ratio is higher. At projectile energies above 10 MeV
only the shake-off contribution is important. Our ratio tends to a constant value of 0.36%.
This is lower than the so-called shake-off limit, which is simply the square of the overlap
integral〈f ′2|i2〉, with our wavefunctions 0.51%. This difference occurs because of the larger
energy transfer in the shake-off amplitude than in the single-ionization amplitude.

We do not obtain the experimental ratio, because the initial- and final-state electronic
correlations are ignored. The initial-state correlation can be handled by using CI
wavefunctions for the initial state. Probably, in the case of the double ionization (in contrast
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Figure 3. The ratio between double- and single-ionization cross sections for p+, p− and e−
colliding with helium atoms as a function of the projectile energy. Our results are compared
with the theoretical ratios of Ford and Reading [8]. The experimental data are of Andersenet
al [26] (open squares), Knudsenet al [27], Shah and Gilbody [21] and Puckett and Martin [28]
(open circles) for protons, of Andersenet al [26, 23] and Hvelplundet al [22] for antiprotons
(full squares) and of Andersenet al [26] for electrons (full circles).

to the ionization–excitation [18]) the initial-state correlations are not so important, because
a CI wavefunction for the ground state usually does not contain configurations from the
continuum. Although the overlap of the orbitals from different configurations with the
continuum may be non-zero, the small coefficients will cause these contributions to be
less important than the shake term caused by the overlap of the orbital from the basic
configuration with the continuum.

But the final-state electron–electron interactions could be decisive. The production of
correlated double-continuum wavefunctions is difficult, and at the moment it seems simpler
to use the many-body perturbation theory. The TS1 term from the MBPT, meaning a
projectile–electron interaction followed by an electron–electron interaction, contains time
ordering, and could contribute to a larger difference between the cross sections obtained for
positively and negatively charged projectiles.

5. Conclusions

We have presented a general treatment on the effect of time ordering in atomic collisions. We
have proved in general, that time ordering is essential in order to reproduce the dependence
of the cross sections on the sign of the charge of the projectile. We have discussed in more
detail the two-electron processes up to second order. We have applied our model for the
double ionization of the helium. The electron–electron interaction was taken into account
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only by including the shake terms. The interference between the shake-off and second-order
amplitudes explains only a part of the observed difference in cross sections for positively
and negatively charged projectiles.

Our method can be improved by including the initial-state and final-state correlations
of the two electrons. The initial-state correlation could be handled by using an accurate
configuration-interaction wavefunction for the initial state. The final-state correlation could
be treated within the many-body perturbation theory, taking into account the electron–
electron interaction in the final state at least in first order (the TS1 term).
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