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Abstract

Theoretical and experimental results for double ionization, ionization-excitation and double excitation of some simple
targets by fast charged-particle impact are reviewed. The dependence of the cross sections on the sign of the projectile
charge is discussed. A relatively simple perturbational method is presented, which takes into account electron correlations

and time-ordering.

1. Introduction

The many-electron processes in atomic and molecular col-
lisions, like double ionization, ionization-excitation, double
excitation, double capture, transfer excitation, have attracted
much interest in the last decade. A review of the topic was
made by McGuire [1]. In the present paper we will focus
on two-electron transitions induced by charged particles of
high velocities, and we will neglect electron capture.

The single-electron transitions (such as ionization, ex-
citation) are relatively well understood. Especially at high

projectile velocities, the theoretical description of the single-

electron process is simple. The use of the Born approxima-
tion leads to good results for projectile velocities v > vorbit.
The theory predicts that at these velocities the cross sections
are proportional to Z7/v?, where Z, is the charge of the pro-
jectile. This implies that cross sections for single-electron
transitions do not depend on the sign of the projectile charge,
and must be the same for equivelocity electrons and protons.
Experimental data for single ionization and single excitation
of different atomic targets have confirmed this prediction. In
conclusion, electron correlation may be neglected in the de-
scription of these one-electron processes, the independent-
electron approximation (IEA) [2] is valid.

In case of the many-electron processes the situation is not
so simple. In the framework of the IEA, the cross sections
for two-electron transitions (double ionization, ionization-
excitation, double excitation) for high-velocity projectiles,
should scale as Z, /v*. Experimental studies, especially for
the double ionization of helium [3-11], have revealed a
more complicated velocity dependence of the cross sections,
and consequently gave a higher double jonization probability
when using electron projectiles compared to those obtained
with equivelocity protons. At the beginning of the '80s it
was not clear that the difference in cross sections for protons
and electrons is due to the different charge or the different
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mass of the projectiles. The experiments of Andersen et
al. [12-14] made with antiproton projectile were conclusive
in this sense. They have shown unambiguously that in case
of the double ionization by high-velocity projectiles, the
cross section does not depend on the mass of the projectile,
but on the charge sign. A similar dependence was reported
in the case of the double excitation [15,16] and ionization-
excitation [17-21] of the helium atom, and different two-
electron processes for molecular hydrogen [22].

The dependence of the cross sections on the sign of
the projectile charge for some two-electron processes was
treated theoretically by several groups [23-31]. Using a
perturbation expansion in terms of the projectile-electron
interaction, McGuire [23] has suggested that the interfer-
ence between the first-order (shake) and the second-order
(TS2) amplitudes gives rise of a Z* term in the cross sec-
tion, ‘and this is the cause of the difference. Becker [32],
assuming that the collision is dipole dominated, has shown
that because the shake mechanism is monopole in character,
the two amplitudes do not interfere.

Reading and Ford [24] have made the first elaborate cal-
culations for a two-electron transition, the double ionization
of the helium atom, using the forced impulse method. They
have shown that for the double ionization, even for rela-
tively high energies, there are significant non-dipole contri-
butions, and the Z° terms are important. They have obtained
the observed difference in the cross sections for positively
and negatively charged projectiles. In a recent, more com-
plete work [25] they have reported very good quantitative
agreement with experimental data for the double ionization
cross section of the helium atom by charged particles. From
there complicated calculations one cannot separate the con-
tributions of different simple mechanisms.

For the double excitation of the helium atom there are
several theoretical calculations. Fritsh and Lin [28], Morib-
ayashi et al. [29] and Winter [33] made close-coupling
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calculations. Their results do not agree with each other. The
cross sections of Fritsch and Lin are closer to the experimen-
tal data. Martin an Salin [34,35] has pointed out that the
double excitation cross sections cannot be experimentally
separated from the single ionization. Their close-coupling
calculations give directly the resonance structure of the sin-
gle ionization.

Returning to the perturbation expansion, McGuire and
Straton [30] and Stolterfoht [36,37] have shown that in or-
der to obtain interference between the first-order and second-
order processes to explain the difference in the cross sec-
tions for two-electron transitions by negatively and posi-
tively charged projectiles, one must go beyond the IEA.
This is obvious for the first-order processes (shake, TSI
or ground-state correlation), because one can get a two-
electron transition with one projectile-electron interaction
only with some electron~electron correlation. But even the
second-order (TS2) amplitude cannot be taken as a prod-
uct of one-electron amplitudes as described in [2,36]. Us-
ing the IEA for the second-order amplitude it can be eas-
ily shown [37], that the shake and TS2 amplitudes are 90°
out of phase, and do not.interfere. In order to obtain the in-
terference term, when calculating the TS2 amplitude, one
has to take into account the time-ordering of the interac-
tions [30,37]. Stolterfoht [37] and Végh et al. [38] have
concluded that the time-ordered TS2 differs from the IEA
amplitude only, if the orbitals are “relaxed”, the change in
the screening and orbital energy during the collision is taken
into account. If the orbitals are “frozen”, the energy trans-
fer does not depend on the order of the interactions, time-
ordering is lost. Experimental studies were made [39,40]
on the effect of time-ordering.

Straton et al. have applied the theory for the double exci-
tation of the helium atom [41] using correlated two-electron
wave functions. The difference in cross sections obtained
for positive and negative projectiles has proved to be very
small. Nagy and Bodea [42,431, using the same perturba-
tion expansion, but a different method for the calculations,
has obtained results closer to the experimental data. This
method was applied for the ionization-excitation of the he-
lium atom, too [31]. In this case the calculations reflect
only partly the observed difference in cross sections for pos-
itive and negative projectiles. Godunov and Shipakov [44]
made second-order perturbation calculations for the double
excitation of the beryllium. The study of this target has the
advantage that the doubly excited states are discrete, and
therefore there is no interference with the continuum.

Although the most reliable calculations for two-electron
transitions [25,28,34] use other methods, perturbational cal-
culations could describe these processes in terms of some
simple mechanisms. In the present paper first we describe a
method for the calculation of the first-order and second-order
amplitudes, and the many-body perturbation corrections to
this approximation. In the third section, theoretical results
and experimental data for some two-electron processes of
the helium atom and the hydrogen molecule in collision with

charged particles, are presented and discussed.

2. Mechanisms in the two-electron transitions

The perturbation expansions in terms of the projectile-
electron or/and the electron-electron interactions allow us
to define some simple mechanisms in order to interpret
the many-electron processes. If the perturbation potential is
taken to be only the projectile-electron interaction then the
mechanisms can be classified as first order (one projectile-
electron interaction), second order (two projectile-electron
interactions) and so on. The electron~electron interaction is
taken into account (at least in principle) to all orders.

If the electron-electron interaction is considered a per-
turbation, too, then the many-body perturbation theory
(MBPT) may be applied. To obtain a two-electron tran-
sition, one has to have at least two interactions, so the
lowest-order MBPT amplitude is of second order. Through
this order, the mechanisms for a two-electron transition
are the following [1,22,45,46]: (i) TS2, meaning two
projectile-electron interactions. This is the term appearing
in the IEA, the double collision process. (ii) TSI, if one
projectile~electron interaction is followed by an electron—
electron interaction. This term is sometimes regarded as a
final-state correlation [1], but it can be considered also as
the effect of the electron~electron interaction during the col-
lision process (scattering correlation). (iii) Ground-state
correlation, meaning an electron-electron interaction pre-
ceding the projectile-electron interaction. (iv) The shake
term can be interpreted as the interaction of the second
electron (following a projectile-electron interaction) with
the hole left by the first electron. In other words, after the
transition of the first electron, the screening potential for
the second one is changed, causing its transition to another
state (the wavefunction collapses {1]). The separation of
the TS1 and shake processes is not unique, it depends on
the choice of the unperturbed Hamiltonian.

We show some useful formulae suitable for applications.

2.1. Impact parameter (semiclassical) formulation

If the wavelength of the projectile is less than the atomic
dimension, the projectile can be considered as moving on
a classical trajectory. In case of energetic projectiles, when
the energy transfer to the electrons is negligible versus the
energy of the projectile, they can be regarded as moving on
a straight-line trajectory with constant velocity.

The cross section for a given process can be obtained by
integrating the transition probability (the square of the mod-
ulus of the probability amplitude) over the impact parameter

0"=/d2B|a(B)|2. (1)

The probability amplitude is the overlap of the particular
final state | f) with the quantum-mechanical state in which
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the initial state |i) has evolved
a(B) = (f|U(—o0,+00) i), (2)

where U ( —00, +00) is the evolution operator of the electron
system. Several methods have been applied in calculating
this amplitude.

2.2. Perturbation expansion

The evolution operator from (2) can be obtained by solv-
ing the time-dependent Schrodinder equation in the interac-
tion picture

ig;U(t, t0) = V(YU (1, t) (3)

with the condition U (o, t¢) = 1. The solution canbe written
as an expansion in the powers of the perturbative interaction
and it is equivalent to the Born series

t

Ut o) =1 +Z(—i)"/ dtn Vi(tn)

n=1 fo
t t2
x/dtn-le(tn—l).--/dtxvx(tl)- (4)
fo to

Switching to the Schrédinger picture, the evolution operator
through second order will read as

t
Ut,to)=1— i/ dry 0y (1))~ Hon

0

!
+(=)? [ dne™2V(t)e™ "

fo
2

X / dr ety e 4 (5)

fo

2.3. Projectile perturbation

The unperturbed Hamiltonian for the two-electron system
is taken

2
vV v 1
HO—Z_I:[—T—r—‘_]+;-1;, (6)

and the perturbation is the sum of the two projectile-electron
interactions

V=W +V. (7

Now we introduce the perturbation expansion (5) of the
evolution operator in the expression (2) of the amplitude.

Taking into account that the initial and final states are eigen-
states of the unperturbed Hamiltonian, the first-order ampli-
tude is read as

+oo
am:_,-/ e EE A V() + V() 1)), (8)

-0

Here |i) and | f) are two-electron wavefunctions.

In the expression of the second-order amplitude we insert
a complete set of intermediate states Y [k) (k| = 1, and we
get

+o0
am:_z/ dr BB £ Vi(e) + V() 11R)
LI

t
X/ df' BB MV () + (D). (9)

-0

The above expressions contain electron correlations
through the wavefunctions in the initial, final and inter-
mediate states. If one knows exactly these wavefunctions,
the first-order and second-order contributions to the cross
sections can be calculated.

Straton et al. [41] have applied this method for the dou-
ble excitation of the helium atom. They have used correlated
wavefunctions for the initial and the final states. For the in-
termediate states in the second-order amplitude they have
applied the closure approximation, i.e. the intermediate en-
ergy E is fixed arbitrary to a constant, and the intermedi-
ate states sum up to 1. In (9) the terms in (V1)? and (V3)?
usually are neglected in a second-order theory, because they
do not cause alone two-electron transitions, only with addi-
tional electron—electron interaction.

In order to simplify the problem and make it tractable for
more complicated cases one may use the independent elec-
tron approximation. Usually, the unperturbed Hamiltonian
is approximated to be a sum of one-electron Hamiltonians

H® = hy + ho. (10)

Here h; may contain only the nuclear potential, or may be
a Hartree-Fock Hamiltonian

hi=—4VE 4 V-1(r), (11)
where

N _Zn |g;(r) 2
W-1(ri) = . +§/drj—|r,-—rj| (12)

is the nuclear plus the screening potential.

The wavefunctions corresponding to the Hamiltonian
(10) can be expressed with Slater determinants. In order to
simplify the writing we use simple products of one-electron
wavefunctions. However, if in the initial state the spatial
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wavefunctions for the two electrons are identical, this is
allowed.

The energies corresponding to a sum of one-electron
Hamiltonians are sums of single-electron energies: Ef =
€5, + €5y, Ei = € + €.

The first-order amplitude for a two-electron process in the
IEA is zero, because of the orthogonality of the initial and
final one-electron states. As for the second-order amplitude,
the sum over the intermediate states collapses, because using
[k) = |kiks),

(ki k2| Vi (8) |inia) = Biyin (1 VA (1) 1),
(frl2Vi(D) [kikz) = 81000 (F1IVI(D) [ ). (13)

It can be easily shown [37] that in this approximation the
time-ordering is lost in the second-order amplitude and it
becomes a product of one-electron amplitudes

+o0

a(2)=—/ de T Vi) i)

-~

« / dt!ei(efz_ﬂz)t/<f2|V2(f,)li2>. (14)

It is clear that this approximation is not valid for the two-
electron transitions at high energies, because electron cor-
relation is important.

We take partly into account the electron—electron inter-
action by letting the orbitals to relax during the collision.
This means that the screening potential is changed during
the collision and the energy transfer to the individual elec-
tron depends on the order of the interactions. This changes
the unperturbed Hamiltonian.

We treat the case when the order of the interactions with
the projectile is Va(¢)Vi(¢') with ¢ > ¢'. The one-electron
Hamiltonians are written as

h=—4VE+ Vo (r),
hy=—1V3 + Vo1 (r2). (15)

Vi_1 is calculated with the first electron in the final state. In
case of ionization, when the first electron leaves the atom,
instead of Vy_;(r2) we can take Vy—_2(rz) (screening ap-
proximation). For the initial state the wavefunctions for both
electrons are calculated in the Vy_; potential (Hartree-Fock
wavefunctions), because both electrons are in the ground
state. Thus the initial state of electron 2 is not orthogonal to
the final state, because the final state is calculated in Vy_;.
In the following formulae the eigenstates of the Hamiltonian
containing the initial screening potential will be unprimed,
and the eigenstates of the Hamiltonian with Viy_, or the
Vwv—2 Hamiltonian will be labeled prime. The initial state
|i1i2) is miot an eigenstate of the H° = A; + h, Hamiltonian,
but because usually the overlap integral between |i>) and the

proper eigenstate of the k2 (]i3)) is large, approximately we
can write

(k1 + h2) i) = (€01 + € ) litia) = Eoliviz), (16)

where Ejp is the ground-state energy of the two electrons.

Let us express the transition amplitudes in this approx-
imation. If the change in the screening during the two-
electron transition is taken into account, because of the non-
orthogonality of the initial and final states, the first-order
amplitude is non-zero. Considering both interactions, we ob-
tain

+co

aV = —i(filia) / dre’ntnTRN(f 1V (0)]h)

—0o0

+oo

i flli) / Qe nt =R plnlh). (17)

This term is the shake amplitude (shake-off or shake-up).
Using the H° = h; + h, Hamiltonian in the second-order
amplitude where #, and h; are given by (15), one obtains

+o0 !
a(2)=——2/ dt / dr’ efenten)t
k -0 —_0

X (f1FoVa(t) [k )e! B¢ =
x<k1k§|V1(tl)|i1i2>e—iEor’, .

where for simplicity we have taken only one possible order
of the interactions.

The following matrix element reduces to a one-electron
integral:

(F1F20Va(0) ki) = 81 (f2]Va (D) R2), (19)

because | f1) and |k;) are both eigenstates of the #; Hamil-
tonian. In case of the other matrix element

(ki VA(E) |iviz) = (K |i2) (ke VA () i), (20)

li2) is calculated in the Vy—1 potential, while [k}) is the
eigenstate of k. But the overlap integral of the |iz) state
is much more larger with the ground state of the Az, |i3),
than with the excited and continuum states, and so (ki) =
. In these conditions we neglect the other possible in-
termediate states, and retain only one, in which one electron
is in the final state, and the other in the modified ground
state |i3). The unperturbed energy of this intermediate state
is obtained by

H| fia) = b | f)|i2) + | f1) aliz)
= (€5, + €n) | f1iz). (21)

Considering only the above intermediate state with one elec-
tron in the final state and the other in the ground state, but
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taking into account both of the possible order of the inter-
actions, the second-order amplitude can be expressed as

+oo
== / dre“n= e (1))

-0
!

X/ dt/ei(eh—601)t’<fl|vl(t/)lil>

-0

+oo
"/ deeln =8 £V ()18

-
!

X/dt’ei(efz_Gm”/(fﬂVz(t/)Iiz). (22)

—o0

This term is the TS2 amplitude. Since e; # €g;, the transi-
tion energies depend on the order of the interactions.

In these conditions the second-order amplitude is not re-
duced to a product of one-electron amplitudes, as in (14)
for IEA, because the energy transfers and wave functions
depend on the order of the interactions. This amplitude for
all final states has a real and imaginary part, leading to in-
terference with the first-order amplitude. This interference
term is responsible for the Z* effect, the dependence of the
cross section on the sign of the projectile charge.

The method described above has been applied by us for
the ionization-excitation [31], double excitation [42] and
double ionization [47] of the helium atom. Improvement
can be obtained by using correlated wavefunctions for the
ground state (including the ground-state correlation to all
orders).

2.4. Many-body perturbation

The treatment of electron correlations in the model pre-
sented in the previous subsection is not simple. Especially
for the continuum final states, the use of fully correlated
wavefunctions is a serious problem. In order to improve the
method, the electron~electron interaction (entirely or partly)
may be included in the perturbation potential. It is likely that
the Hamiltonian in the screening approximation is closer to
the exact one than the sum of the Hartree-Fock Hamilto-
nians. In the first case, the first-order corrections of MBPT
are the only important corrections, the higher orders can be
neglected.

The correction v in the potential is the difference between
the exact unperturbed Hamiltonian (6) and the considered
H® (15). For the two-electron case

2 . 2
U=L_/dr1|¢1f(r1)| _/dnlm(n)l R~

ri2 |ry — 12 |r1 — 12

where ¢;; and ¢, are the wavefunctions of electron j in
the initial and the final state, respectively. The perturbative
interaction will read as

V(t) = Vi(e) + V(1) +v. ' (24)

The correlation potential alone does not cause electron tran-
sitions. In the second-order probability amplitude the fol-
lowing terms causes two-electron transitions:

VO + V(O Vi(F)
+Vi () + oW () + Vi(Dv+ (v, (25)

The first two terms lead to the already treated TS2 amplitude.
The terms vV;(t) means transitions caused by a projectile-
electron interaction followed by an electron-electron in-
teraction. This mechanism is commonly called TS1. The
terms V;(¢)v lead to the ground-state correlation amplitude:
a projectile-electron interaction preceded by an electron-
electron interaction.

Further, we shall write the TS1 and ground-state correla-
tion amplitudes only-for the interaction of the projectile with
one electron, those for the other electron can be obtained
similarly.

The TS1 amplitude for the two-electron transition caused
by the interaction of the projectile with electron 1 is

+o0 t
aTs1=—/dt/ dr
—_—0 -0

g0 12s0 ’ sry0.7
X {fifale® e V(e i), (26)

Because v does not depend on ¢, we can integrate analytically
over t. But before this we have to change the order of the
two integrals. Taking the eigenvalues (approximate for the
initial state) of the H° and introducing a complete set of
intermediate states we can write

+o0 ¢
LS -0

xe™ B ( l [V (1 ) e B [y i)

+oo

=_;—£ dt’/

14

dtei(efl tep B! (f1f2|U|k1k2>

x (kika | Vi (#) |iria) e B B0 @27

In order to obtain a convergent integral over ¢ we introduce
in the exponent a dumping factor -+in, and after performing
the integration we make n — 0. So we get

+00
‘ 1
=i ¢ k
- le:/ L C PPy
—0
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xe nten =B (1 jo Vi () |iria). (28)

In the last matrix element, as we have previously shown, the
(ka2|i2) integral is significantly different from zero only for
the ground eigenstate of the 4, Hamiltonian |i5). Thus

(kaliz) = (koliz) = it » (29)

and the sum over k; collapses and Ex = €, + €g,. The TS1
amplitude will read

+oo
1
arsy = —I dr’ -
T kZ ,/ €5 +€py — €k — €5y + 0
1

Xei(5f1+ef2—Eo)r’<f1f2|u|k1i£>(k1|V1(t/)|l'1). (30)

Because of the complex denominator the ars: amplitude has
real and imaginary parts for each parity of the initial and the
final states. Taking into account that the “sum over the &
intermediate states” is a sum over the bound states and an
integral over the continuum states, the real and imaginary
parts can be separated as follows:

1 .
=_ E k
o i k / aki €5 T €f — €l — € (ifalollii)
1

+o0

g / ALY

—c0

+ / K dki(f1 falv| K i2)
+oo
* / de’ efenren =R (v (1), (31)
—oo

The first term, where we have a principal-value integral over
the momenta of the intermediate states, is the off-shell part of
the amplitude, energy is not conserved for the intermediate
states. The second term is the energy-conserving or on-shell
part, where €y = €5, + €5, — €.

If instead of the Hamiltonian given by (15) we use usual
Hartree-Fock Hamiltonians as in (10), the second term of
the perturbation potential given by (23) would contain the
wavefunction ¢1;(r1) of electron 1 in the initial state, creat-
ing the potential of the hole left after its transition. Including
only this term in the formula of the amplitude (31), we ob-
tain the shake amplitude from the MBPT. Because { f1|k1) =
8r,4» the on-shell part is zero, and the sum in the first term
collapses, leading to

i i'2>
€ — €
+o0

, 1 , -1

Ashake = — 1 7 <11f2 ‘ -
X / dr'eCnten =B (kv () |ir). (32)
—0o0

This formula is similar to that of Hino et al. [45]. In our
formulation, presented in the previous subsection, we have
included the shake term to all orders.

The ground-state correlation amplitude, if the interaction
of the projectile with electron 1 is considered, is read as

+00 t
agsc = — / dt/ dr’
-0 —00

« <flf2|eiH0tVl (t)e_iH°('_”)ue_iH°"lilz’z)

+o0 t
=—Z/ dt/ dr eflentend
k -0 -0

) {(FLfalVi () |knka)e ™ B (ky k) iyia) e B

(33)
Integrating over £ we obtain
+00
agsc =iZ / dre R RN(fy f|Vi () [kike)
ko
X B —E (kikalvlinia). (34)

Because (f2|k2) = 8, 1,, the sum over k; collapses, and the
ground-state correlation amplitude becomes

+o0
aGsc:iZ/ drefCnten =B 11V (¢) ki)
ky —oo

1

Xm<k1f2|v|l1lz)- (35)

This amplitude has always the same phase as the shake am-
plitude.
Using a CI wavefunction for the ground state, one can
take into account the ground-state correlation to all orders.
MBPT calculations were performed by Hino et al. [45]
for the double photoionization of the helium atom. No
MBPT calculations for charged-particle impact were made.

3. Analysis of some theoretical results and experimental
data

3.1. Double ionization of the helium atom

The double ionization is experimentally the most studied
two-electron process. For fast charged-particle~helium colli-
sions a series of experimental cross sections were published.
Adamczyk et al. [4], P. Nagy et al. [8], Stephan et al. [9],
Andersen et al. [12] and others measured the double ion-
ization cross section of the helium atom by electron impact,
and Wexler et al. [5], Puckett and Martin [6], Shah and
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Gilbody [11],Knudsenetal. [10] and Andersenetal. [12]
by proton impact. It was puzzling, why above 1 MeV/amu
projectile energy up to 10 MeV/amu the cross sections for
electrons are about twice those obtained with protons. The
experiments of Andersen et al. [12,13] and Hvelplund et
al. [14], done with antiproton projectiles, have made clear
that at high velocities the mass of the projectile is not im-
portant, and the difference in the cross sections obtained by
protons and electrons/antiprotons is due to the charge sign.

McGuire [23] has suggested that this dependence can be
explained by the interference of the first-order (shake) and
second-order (TS2) amplitudes, but he did not perform any
quantitative calculations.

Olson [26] have explained the behaviour of the two
electrons during the double ionization process on a clas-
sical bases. Performing a classical trajectory Monte Carlo
(CTMC) calculation, he could follow the positions and
momenta of each particle. He have observed that the an-
tiproton preferentially scatters the first electron inward via
its repulsive interaction toward the second electron from
larger impact parameters than the proton projectile. In
contrast, the proton must have a trajectory between one
electron and the nucleus in order to attract this electron into
a trajectory that will collide with the second electron, lead-
ing to a smaller cross section of the double ionization via
electron-electron correlation. The more recent dynamical
CTMC calculations of Meng et al. [48] are not consistent
with these explanations and lead to higher cross sections
for protons than for antiprotons.

Végh [27] have introduced in the semiclassical IEA a
correction based on a similar argument: because the positive
projectile attracts the first electron, making the other through
electron~-electron interaction to move away, the impact pa-
rameter for the second electron is increased. In case of a neg-
ative projectile the impact parameter for the second electron
is decreased, increasing the double ionization cross section
versus that obtained with positive projectiles. This semiem-
pirical calculation takes into account only the second-order
amplitude, the first-order amplitude is neglected.

The most elaborate calculations for the double ionization
were made by Reading and Ford [24]. Their forced impulse
method takes into account the electron-electron correlations
several times during the collision. In their recent paper [25]
they report results in good agreement with the experimental
data.

Marshall et al. [49] have performed an independent-event
model calculation for the double ionization of the helium
atom by « particle impact, using correlated wavefunctions.
Their results are well above the experimental data.

We have performed perturbational calculations for the
double ionization of the helium atom [47] based on the for-
mulas presented in Subsection 2.2. The cross sections ob-
tained taking into account the shake-off and the TS2 metha-
nisms as a function of the projectile energy, are presented in
Fig. 1. These are compared with the experimental data and
with the theoretical calculations of Ford and Reading [25].
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Fig. 1. Cross sections for the double ionization of the helium atom by proton
and antiproton impact as a function of the projectile energy. Our results are
compared with the theoretical cross sections of Ford and Reading [25], the
experimental data of Shah and Gilbody for protons [11] and of Hvelplund
et al. [14] and Andersen et al, [13,50] for antiprotons.

Our results reflect only partly the observed difference be-
tween cross sections obtained for positive and negative pro-
jectile impact. We think, this is mainly because of the poor
representation of the final-state correlation. Correlated final-
state continuum wave functions may be applied, or, alterna-
tively, the TS1 amplitude may be included. We appreciate
the effect of the initial-state correlation to be less impor-
tant, because a CI wavefunction for the ground state has a
neglectable component from the continuum.

However, these calculations allow us to compare the rel-
ative importance of the first-order and second-order pro-
cesses. In Fig. 2 we represent the cross sections due to the
different mechanisms. For projectile energies below 1 MeV
the TS2 contribution dominates over the shake-off cross sec-
tion. At 1.5 MeV the two contributions are equal, above
this energy the shake-off becomes dominant. We show sep-
arately the contribution of the independent-electron approx-
imation (IEA) and the IEA with shifted energies of the in-
termediate states (IEA-SH), excluding the contribution of
the time-ordering effect.

3.2. lonization-excitation of the helium atom

Experimental cross sections for the ionization of the he-
lium atom with the excitation of the other electron to the 2p
state were published by Forand et al. [17], Pedersen and
Folkmann [18], Schartner et al. [19], Fiilling et al. [20]
and Bailey et al. [21]. For this transition the situation is
similar to the double ionization: for high projectile veloc-
ities the cross sections by electron impact are about twice
those get by proton impact.

First-order calculations were made by Rudge [51]. His
cross sections underestimate the data for medium projectile
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Fig. 2. The contributions of the first-order and second-order amplitudes to
the double jonization cross sections of the helium atom. These contributions
are independent of the sign of the charge of the projectile. IEA is the
independent-electron, frozen-orbital approximation, IEA-SH is obtained by
the non-time-ordered amplitude with shifted energies of the intermediate
states. TS2 is the time-ordered second-order cross section, and the shake-off
is the first-order term.

velocities, and are independent from the sign of the pro-
jectile charge. However, for high velocities his results are
satisfactory.

We have applied a perturbational method, similar to
that for the double ionization, for the calculation of the
ionization-excitation cross sections [31].

Our cross sections are below the experimental data [21],
and reflect only partly the dependence on the sign of the
projectile charge. Our first-order amplitude contains only the
shake-off term (excitation of one electron by the projectile,
and relaxation of the other to the continuum), the shake-
up term (meaning the ejection of the first electron and the
relaxation of the second to an excited state) is obtained
to be zero because the 2p state is orthogonal to the Ls.
In this case the ground-state correlation may be important:
taking a CI wavefunction for the initial state, which contains
also p orbitals, the overlap with the final 2p state could be
significant.

3.3. Double excitation of the helium atom

The doubly excited states of the helium atom are not
stationary discrete states. Their energy is above the single
ionization threshold, and can be observed as resonances in
the energy spectrum of the ejected electron in the single
ionization process. Some experimentalists (Pedersen and
Hvelplund [15], Giese et al. [16]) have extracted from the
obtained spectra the double excitation cross section of the he-
lium atom for the lowest resonances. Others, like Bordenave-
Montesqueu et al. [52] argue that this separation cannot be
rigorously done, and give only the parameters which char-

acterize directly the resonances in the ionization process.

Giese et al. [16] give double excitation cross sections
for electron, proton and other positive ion projectiles at
1.5 MeV/amu impact energy. Like for the other two-electron
processes, the cross sections for electron projectiles are
higher than for the same velocity protons. At 1.5 MeV/amu
the ratio between cross sections obtained with electrons and
protons depend on the specific doubly excited state. For
the excitation of the 25s2('S) and of the 2s2p('P) states
this ratio is high (2.5 and 1.9 respectively), but for the
2p?(! D) state it is nearly 1. From this result they conclude
that for the excitation of the 2p2( 1D) state the interference
term between the first-order and the second-order term in
the perturbation expansion is negligible, but it is important
for the other two excited states.

Pedersen and Hvelplund [15] did not separate the
252p(*P) and 2p*('D) resonances, and for the sum of
these cross sections obtain the opposite: higher cross sec-
tions for protons than for electrons.

Coupled-channel calculations for the double excita-
tion of the helium atom were performed by several au-
thors [28,29,33-35].

Fritsch and Lin [28], after pointing out the ambiguity
in extracting the double excitation cross sections from the
ejected electron spectra, have compared their results with the
experimental data. For the sum of the cross sections for the
excitation to the 252p (' P) and 2p2( ID) states their results
agree approximately with the data of Giese et al. [16], but
does not reproduce the charge sign dependence. When sep-
arating the different doubly excited states, their theoretical
calculations disagree with the experiments. The calculated
excitation cross section for proton impact to the 2p*(D)
state is four times less than the experimental one, and is
twice larger for protons than for antiprotons. The cross sec-
tions for the transitions to the 2s2p (' P) and the 25*(1$) are
overestimated. It is not clear yet that this discrepancy is be-
cause of the theoretical formalism or of the problems in the
interpretation of the experimental spectra. However, Fritsch
and Lin point out that for the excitation of the 2s2p (' P)
and the 252(1S) states the first-order processes dominates,
but for the 2p®(1D) state the second-order term is impor-
tant, too. Studying the impact parameter dependence for the
transition probability to the 252p(1P) state, they obtain for
small impact parameters a larger probability for proton im-
pact than for antiprotons, but for large impact parameters the
situation is reversed. This is in agreement with the classical
analysis of Olson [26].

The calculations of Moribayashi et al. [29] lead to differ-
ent results. For the excitation of the 25s2p (! P) they obtain
3 times larger cross sections than Fritsch and Lin [28], and
12 times than Giese et al. [16]. For the other excited states
their results are below those of Fritsch and Lin, and for all
transitions they obtain higher cross sections for proton im-
pact compared to the antiproton impact.

Winter [33] has made calculations for the excitation of
the 252 (1) state. His results are between those of Frisch and
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Lin [28] and of Giese et al., and does not show dependence
on the sign of the projectile charge.

Martin and Salin have performed also coupled-channel
calculations for the double excitation of the helium atom.
In their papers [34,35] they argue, that it is not possible
to extract from experiment a double excitation cross sec-
tion. The experimentalists measure the resonance structure
in the doubly differential ionization cross section, which is
very sensitive to post-collision interactions. This puts se-
vere constrain on a significant comparison between the the-
ory and experiments. The inclusion of the ionization chan-
nel in a theoretical study of the double excitation process
is essential. They calculate the Shore and the Fano param-
eters, which characterize directly the resonance structure of
the ionization process. Their results for proton impact are
in fair agreement with the experimental data of Bordenave-
Montesquieu et al. [52]. Performing also second Bom cal-
culations [35], they state that the second Born approxima-
tion is valid at 1.5 MeV/amu impact energy for proton and
antiproton projectiles, but not for projectiles with Zp > 1.

Perturbation expansion methods were also applied for the
study of the double excitation of the helium atom. Straton et
al. [41] have used CI wavefunctions for the initial and the
final states, so electron—electron correlation is included. For
the intermediate states in the second-order amplitude they
make the closure approximation. This does not influence
significantly the absolute value of the cross section for high
projectile energies, where the first-order term dominates,
but may cause an important error in the interference term,
responsible for the Z* effect. Their results for the excitation
of the 2s%('S) and of the 2p%(1D) states lie between the
data of Fritsch and Lin [28] and of Giese et al. [16]. As
for the excitation of the 2s2p (! P) state their cross sections
are clearly overestimated, and decrease too slow with the
increase of the projectile energy. For every double excitation
process, cross sections for proton impact are obtained larger
than those with antiprotons.

As a first attempt, we have calculated double-excitation
cross sections for the helium atom through second order,
using simple wavefunctions [42]. The initial state was de-
scribed by a Hartree-Fock, and the final states by hydro-
genic wavefunctions. The intermediate states were taken to
be singly excited states. Our results for the excitation of the
252p (1 P) states are between the experimental data of Giese
et al. [16] and the theoretical cross sections of Fritsch and
Lin [28] We do obtain higher cross sections for antiprotons
than for protons in accordance with these data.

In order to make these calculations more reliable, one can
use almost exact, correlated wavefunctions from the litera-
ture (see for example Ref. [53] for the ground state of the
helium atom and Ref. [54] for the doubly excited states).
Cross sections obtained with these wavefunctions are pre-
sented in a joint paper [43].

3.4. Two-electron processes in the hydrogen molecule

Another simple, but less studied system with two electrons
is the hydrogen molecule. Edwards et al. [22] have reported
cross sections for the double ionization, ionization-excitation
and double excitation of the hydrogen molecule by proton
and electron impact. Every studied state is dissociative. They
are separated by measuring the energies of the two nuclei
after the dissociation. The extraction of the double excitation
cross section is more direct than for helium. For this target,
too, the cross section for electron impact is about two times
larger than the cross sections obtained with proton projectiles
of the same velocity.

Very recently, ionization-excitation cross sections by fast
proton impact have been published by Ben-Itzhak et al. [55].

We have performed perturbation expansion calculations
for some of these processes [56]. We have neglected the
time-ordering in the second-order amplitude, therefore we
have got the same cross sections for proton and electron pro-
jectiles. For the double ionization, the second-order process
is more important than the first-order one up to 500 keV/amu
projectile energies, above 1 MeV/amu the first-order pro-
cess dominates. For the ionization plus excitation to most of
the excited states, the first-order process dominates.

Including the time-ordering in the second-order, and the
TS1 process in the first-order amplitude, the results may be
improved.

4. Conclusions

The perturbational methods for the study of the two-
electron transitions are a good alternative beside the coupled-
channel and other types of calculations. They have the ad-
vantage of relative simplicity and of the interpretation of
these processes in terms of some simple mechanisms.

In order to obtain reliable results, one has to take into ac-
count the electron correlation. This can be done by using
correlated two-electron (CI) wavefunctions for each state.
Presently this requirement can be achieved only for discrete
states (case of the double excitation), but not for the con-
tinuum. In the case of the double ionization and ionization-
excitation, by a proper choice of the unperturbed Hamilto-
nian, the shake contribution to the first-order amplitude can
be taken into account to all orders. The remaining final-state
correlation (TS1) can be considered by using the many-
body perturbation theory. The initial-state correlation can be
described by using CI wavefunctions for the ground state.

The presented perturbational method may be suitable for
more complex targets, too.
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