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Ionization of molecular hydrogen by proton impact. I. Single ionization
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Single-ionization cross sections of the proton-hydrogen molecule collision are calculated in semiclassi-
cal approximation by using atomic and Heitler-London-like two-center molecular wave functions for the
ground state of H,. In transition matrix elements, calculated with two-center wave functions, the factors
depending on |r—R,/2| (R, is the vector of the molecular axis) are expanded into Legendre series. The
calculated total and differential cross sections are compared to the measured data, and their dependence
on target wave functions is discussed. The success of the simple approach, which uses twice the cross
sections calculated for the hydrogen atom, is explained with the dominance of monopole contributions in
the expansion in Ry. While for homonuclear diatomic molecules the differential cross sections could be
well described by the additivity rule, for other molecules the validity of such approaches is questionable.

PACS number(s): 34.50.Fa, 34.50.Gb, 34.90.+q

INTRODUCTION

In many fields of research related to the interaction of
radiation with matter, a good knowledge of the total and
differential ionization cross sections is indispensable. Al-
though, in general, the irradiated material is of compli-
cated molecular structure, we have to rely on cross-
section values measured mainly on atomic or simpler
molecular targets. Usually when calculating cross sec-
tions we invoke the additivity rule. This approximates
the molecular cross section with the sum of the cross sec-
tions of the constituent atoms that are considered free
and uncorrelated.

In the case of the single ionization of H, molecules the
sum of the calculated cross sections of H atoms (occas-
sionally with binding energy modified so as to reproduce
the ionization potential of the hydrogen molecule [1,2])
coincided reasonably well with the measured total cross
sections above 80-keV incident proton energies. The
differential electron-ejection cross sections were not in de-
tailed agreement with experiment [3,4]; the largest
discrepancy appeared at small ejection angles [5]. The
calculations after the inclusion of the long-range proton-
electron interaction reproduced the experimental values
within their accuracy [6].

While for proton impact ionization the effect of the
molecular structure seems to be unimportant, the two-
center character of the H, wave function is relevant in
the analysis of the elastic electron scattering [7] and the
photoionization data [8]. Even at the ionization of a
structured projectile colliding with the H, target, due to
the spatial correlation of the two hydrogen atoms in the
molecule, interference pattern should occur in the elec-
tron angular distribution [9].

In this paper we consider the question of why the addi-
tivity rule is so efficient for description of the proton im-
pact ionization of the hydrogen molecule. To calculate
the ionization amplitudes, we employ simple Heitler-
London-type molecular wave functions for the ground
state of H,. The formalism, presented here, will also be

46

applied in the paper [10] in order to calculate cross sec-
tions of the two-electron processes which depend on the
orientation of the molecular axis. Such data have been
published very recently be Edwards et al. [11].

MODEL

We calculate the ionization cross section within the
framework of the semiclassical (SCA) approximation [12]
where the projectile path is described classically. This
classical trajectory is approximated by a straight line.
Taking the center of mass of the two protons as the ori-
gin of the coordinate system, with the z axis in the direc-
tion of incidence, and B as a vector perpendicular to z
and of length equal to the impact parameter, the
straight-line orbit is R where

R=B+vt . (1)

Here v is the velocity of the proton and ¢ =0 is the time
of closest approach.

The initial state g of H, is represented by a molecular
wave function with a fixed R, distance between the two
protons. We have applied the wave functions of Heitler
and London [13], and Shull and Ebbing [14] which can be
written in the form

(Dg:Ng(Ro’g)[eXP( —Cra1—Cryy) Hexp(—Cr,,—8rypy)]
(2)

For the Heitler-London wave function {=1 and
R,=1.51, for the Shull-Ebbing wave function {=1.165
and R,=1.42. We use atomic units throughout the pa-
per. In the Shull-Ebbing wave function the atomic orbit-
al centers are closer to each other than the nuclei, each
center is shifted by x =0.055. N(R,,{) is a normaliza-
tion constant. r, and r,; denote the distances of the ith
electron with position vectors r;, i =1,2, from the atomic
center a and b, respectively,
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The final state ®, is a product of the continuum-
electron wave function @,(r;) and the bound-state wave
function of the residual ion

D, =N (Ry,5)[exp(—Lr,,)+exp(—Eryy)1du(ry) , (3)

where k is the wave-number vector of the continuum
electron. Since the velocity of the projectile is high, the
final state of the residual ion is approximated by a H,™
wave function with the R, vector of the initial H, state.

The total ionization cross section may be expressed by
an integral of the transition probabilities P(B) over the
impact parameter

o= [ "dBBP(B), @)

where P(B) is the integral of the squared transition am-
plitude a(B,k,R) over k, the azimuthal angle ¢ of the
projectile, and the direction of the molecular axis,

PB)=2 [ dR, [ dk foz”d%fa(B,k,Ro)P. (5)

]
i—AU£Z ]<¢k(r,)

To evaluate the matrix element in the integrand we apply
the partial-wave expansions of the continuum-electron
wave function

de(r)= zilfexp(io,f R, (kr)BY,  ROYE, @) .

i 2Z,N,
“pile
a(BkRo)——; N, f_deexp

ly
(10)
Here the radial wave function R,f(kr1 ) is taken as
5 172 ) :
R[ (kr1)= ; k—rlFlf Z ,krl , (11)

that is the wave function of the continuum electron mov-
ing in the field of the residual H,™ molecular ion is ap-
proximated with the Coulomb function F,f(—l/k,krl)
which describes the motion in the field of a unit positive
charge positioned in the center of mass of the two pro-
J

2l,+1

exp

—¢

c,g(rl,R0)= f dx P, (x)

1
II—R!

2

2 0
+——rR
ry 2 ri{Rx

The factor 2 reflects the presence of two target electrons
in the same molecular orbit in the ground state of the tar-
get. For straight-line trajectories the transition ampli-
tude can be calculated as an integral

a(B,k,Ry)=—— f _dZ Vy(R,Ro)exp

1£Z] (©)

AE is the difference between the energies of the initial
and final electronic states
2
AE=¢+%" ©)
2
where € is the ionization potential of the H, molecule.
The matrix element V, of describes the Coulomb interac-
tion of a projectile of charge Z with one of the electrons,

Ver(R,R))=—2, [drdr,®}(r,,r5,R,)

1
X m‘bg(r],rz,Ro) . (8)
Substituting the initial and final wave functions defined
by Egs. (2) and (3) into Eq. (8) and performing the in-
tegration over coordinate r, the transition amplitude (6)
may be expressed as
> "
[

tons of the molecule. The Coulomb interaction in (9) is
expanded into partial-wave series

Ro
ey

R
r1+——0

exp 2

- +exp [—¢&

I
1 TS 4n .
'rl—R] - IE I +1 2] +1 EYI m (R)chmc(rl) . (12)

c
>

The target wave function which depends on the direction
of the vector R, of the molecular axis is expanded into a
Legendre series

R, R,
exp [—¢& r,——z— +exp |[—¢ r1+7

= Izc,g(rl,RO)P,g(coswl) , (13)
4

where o, is the angle between the vectors r; and R,. The
expansion coefficients defined as
172
] ’ . (14)

172

+exp

—¢ 'r2+R—a+r Rx
1t 1

Expressing the Legendre polynomials as a product of spherical harmonics

EYI my RO)YI m, (1'1)

g

P,g(cosa)l) 2l4+1

(15)

the dependence on the direction ﬁo of the molecular axis can be separated. For the homonuclear H, molecule, in Eq.
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(13) only the coefficients with even /, can be nonzero, since ¢ for odd [, is vanishing.
Substituting Eqgs. (10)-(15) into Eq. (9) the transition amphtude may be represented as

. f .

Z,N, i Jexp(—io, )
i(4m)* D> Iy,
2Nf ; (21, + D)2, +1)

S g

sm g Ic,mc Ig,m

a(B,k,Ro):

AN * A
Ry, (&)

A * ~ * A A
X [ a0 Y2, @Y, @)Y, #)
><f°c dZ exp iA—EZ Y;m(ﬁ)
— v c e
IC
xf dririR, (kr)— 1+1 ¢ (r1,Rg) . (16)
rs
Performing the integration over T,
o . [er+neL+n
[ aryp, GOYE, G0Y,, G)= yReTY (1,01,011,0)(I,m Iymg|l,m/) . (17)

See, for example, the textbook [15], where (Iml’m’|LM ) denotes a Clebsch-Gordan coefficient and using the notations

IC

_ © 2 r<
Ty (k,R,R)= fo drlrlR,f(krl)Fc,g(r,,Ro) (18)
>
and
m © .AE Fa .
Gt (k,B,R)= [7 dzexp i==Z|Y,  (Rlexp(—im @p)T; ; , (K,R,R) (19)
c'g — o0 c e c

we may express the transition amplitude as

=1 R
i(4w)3? Z,N, s ! fexp(—za,f)
v 2N; [(21,+ D)2l + 12l +1)]'2

a(B,k,Ry)=— (1,01,01,0)

A ~ . m,
X ¥ (lcmclgmg|lfmf)Y,gmg(RO)Y,;mf(k)exp(zmcq)B)G,f,c,g(k,B,RO) . 0
mf’mc ,mg
Taking the square of a(B,k,R,) and integrating over B, ¢, and l/io and summing up over the magnetic quantum num-
bers we get at incident proton energy E the differential cross section of ionization as a function of k,

do(E) _ 41 Z,N, 2 2 1) E (2L +1)(21,+1) 172
dk 2N | oy (20, +1)(20, +1)21+1)
o1, 1,
X (1.01,011,0)(1;01,01;0)(101;0|LO) |, oL P, (cosB, )

X S (I,m LO|Im,) fo“’ dB BG,';',‘c,g (k,B,R,)

me

,,,(kBRO)

(21

] . T . . .
Here { [f, £} denotes a 6j symbol. The total cross section of ionization is obtained by integrating over the momenta k
e s

of the ejected electrons

Z,N, 1

2
(E)=(4m)*
7 2N ] L, QL+ DRI+

el = 2] mc 2
(1601g0|1f0)zm2 fo k2dkf0 dB BIG,;, (k,B,R,)I* . (22)
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RESULTS AND DISCUSSION

We can compare the recommended ionization cross
section of Rudd et al. [1] for a molecule and the sum of
cross sections of the constituent atoms or smaller mole-
cules, see Fig. 1. It is apparent, that, at least at high pro-
ton energies, the total cross section is well described by
the additivity rule. We have analyzed this conclusion
and the similar statement for differential cross sections of
Ref. [5] within the framework of our model.

We have calculated the total cross sections of proton-
H, molecule singly ionizing collisions in the projectile en-
ergy range from 100 to 3500 keV. The maximum partial
wave for the continuum-electron wave function in the ex-
pansion (10) was taken as [, =4. The theoretical curves
are compared with the recommended curve of Rudd
et al. [1]. Figure 2 contains the calculated curves with
Heitler-London [13] and Shull-Ebbing [14] and atomic
wave functions. The latter curve is obtained as twice the
cross sections calculated for hydrogen atom with binding
energy 15.42 eV that reproduces the ionization potential
of the hydrogen molecule. As Fig. 2 shows, all calculated
cross sections are larger than the recommended ones [1].

As for calculations with atomic wave functions we
should note that if we limit the maximum orbital momen-
tum of the ejected electrons as /=1 we have obtained an
excellent agreement with the tabulated value of Hans-
teen, Johnsen, and Kocbach [16]. Taking into account
the contribution of continuum electrons to maximum or-
bital momentum /,=4 the total cross sections increase
about 20%. In fact, for electrons ejected with very low
energy ejected electrons the /=2 contributions are
small, as discussed by Kocbach, Hansteen, and Gunder-
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FIG. 1. Total single-ionization cross sections of H,, NHj,
and CO, targets by proton projectiles. The solid lines are the
recommended curves of Rudd et al. [1]. The dotted lines are
calculated as a sum of the constituent cross sections taken also
from Rudd et al. [1] as follows: o(H,)=20(H), o(NH,)
=0.50(N,)+1.5¢(H;), and 0(CO,)=0(CO)+0.50(0,).
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FIG. 2. Total single-ionization cross sections by H, by pro-
ton projectiles. The recommended curve is taken from the re-
view of Rudd et al. [1].

sen [17]; see Fig. 3(a). Here the factors
l",f,c,g(k,R,RO:O) defined by Eq. (18) are presented as a
function of R for /,=0 and /,=I.. Tyolk,R,R;=0) is
equal to the G4 (R) factor of Ref. [17]. At ~30 eV,
which is the average value of the ejected electrons [18],
the contributions with [/ fZZ are relevant, see Fig. 3(b),
and the omission of these contributions leads to remark-
able deviations in the total cross sections.

The cross sections with Heitler-London and Shull-
Ebbing wave functions do not give such a good agree-
ment with the recommended curve as is provided by the
additivity rule. Only the results with Shull-Ebbing wave
function at small projectile energies give slightly better
cross sections than those with atomic wave function.
With increasing proton energies the difference between
the cross sections calculated with the additivity rule and
the experimental curve becomes smaller. At the same
time, these differences become larger for calculations
with molecular wave functions.

Cross sections, obtained with molecular wave functions
which provide lower ground-state energy for the H, mol-
ecule, are closer to the experimental values. Figure 2
shows that the curve with a Shull-Ebbing wave function
that yields a binding energy D =3.93 eV for the H, mole-
cule fits the experiments significantly better than the one
calculated with the simpler Heitler-London wave func-
tion with D =3.14 eV. We have checked the validity of
this statement for other simpler wave functions of Wein-
baum [19], Hellman [20], and Coulson [21].

Anyway, we may not state that a perfect agreement
with the experimental curve could be achieved by im-
proving the molecular wave function of the target. The
assumption formulated by Eq. (11), which means that the
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molecular Coulomb wave function is approximated by a
single-centered one, might cause serious errors, too.

To shed light on why the additivity rule is so success-
ful, we compare the ways of the calculation with atomic
and molecular wave functions. In the atomic limit the
length of the molecular axis is zero; that is, R,=0. Now

Ci0

R(a.u)

FIG. 3. The factors l“,f,clg(k,R,Ro) defined by Eq. (18) for
[,=0 and R,=0 for small (a) and average (b) energy values of

the outgoing electrons.

1.2

Clg (I',RO)

FIG. 4. The c,g(r,Ro) coefficients of the Legendre expansion

in Eq. (14) with R,=1.4. ¢,, +,(r,Ry)=0 for homonuclear dia-
tomic molecules.

in amplitude (16) the expansion coefficient is equal to the
radial hydrogenic wave function; that is,
c,g(r1,0)28,g02 exp(—r). In integral (14) for diatomic

homonuclear molecules the Ig=0 term is the dominant

one, see Fig. 4, terms with lg >0 contribute only 2-3 %
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FIG. 5. Differential cross sections of electron emission from
H, target by 1-MeV proton impact. The experimental values
are taken from Toburen and Wilson [5]. The theoretical curves
are calculated with Shull-Ebbing (solid line), atomic (long-
dotted line), and Heitler-London (short-dotted line) wave func-
tions.
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to the total cross sections. As we have already men-
tioned, the term with lg =1 is zero. Therefore the values
of the proton-H, cross sections which are calculated by
using atomic wave functions are acceptable. For
heteronuclear molecules the /, =1 term may be important
and therefore the additivity rule may fail.

The differential cross sections as functions of the ener-
gies and angles of the ejected electrons are presented in
Figs. 5 and 6. Calculating the differential cross sections
for high-energy electrons, the partial waves up to /,=8
are taken into account. Generally at electron ejection an-
gles less than 90° the cross sections with molecular wave
functions are closer to the experimental points of To-
buren and Wilson [5] than the curves obtained with the
additivity rule. At angles larger than 90° we obtain an
opposite tendency, but in this region more detailed mea-
surements are needed.

CONCLUSIONS

The total and differential single-ionization cross sec-
tions of homonuclear diatomic molecules by proton im-
pact may be well approximated as twice the atomic cross
sections calculated with binding energy that reproduces
the ionization potential of the molecule. For heteronu-
clear molecules the additivity rule may fail for the calcu-
lation of total and mainly for differential cross sections.
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FIG. 6. Differential cross sections of emission 50-eV elec-
trons from H, target by proton impact. The experimental
values are taken from Toburen and Wilson [5]. The theoretical
curves are calculated with Shull-Ebbing (solid line), and atomic
(long-dotted line) wave functions.
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