1.5. The Hartree—Fock method

The trial function should be totally antisymmetric
IEA — Slater-determinant
g; — spatial and spin coordinates (¢; = (rj,0;), ¢ = 1, N),

A — the states (A = a, 8,...,V).
N no. of electrons and of occupied states (Pauli principle)
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In the ground state of the atoms (S and L has maximum value) the wavefunction
of the system can be expressed by a single Slater-determinant.
This determinant is taken to be the trial function for the variational method.
We have to minimize the E[¢] = (¢|H|¢) functional with the orthonormality
conditions of the pi-orbitals

(uglur) =0ur, pA=a,7. (2)

We split he Hamiltonian into two parts
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leading to
El¢] = (|H1|¢) + (¢|H2|6)- (5)

We write the Slater-determinants into more compact form

8@ - an) = ﬁ;enppua(ql)ug(qz)---uu<qN)
= VNlA¢y, (6)

P — the permutations of coordinates g;
¢ g — the non-symmetrized wavefunction

b = ua(q)us(ge) - - uu(gn), (7)

while A is the anti-symmetrization operator

A= % ;(—1)1’13. ®)



It has no effect on a totally antisymmetric wavefunction. This operator projects
a wavefunction on the subfield of totally antisymmetric wavefunctions.

A% = A. (9)

H;, and H, are invariant under permutations of the electron coordinates, hence
commute with A

[Hi,A] = 0 (10)
[H,A] = O. (11)

Let’s calculate the matrix element

(p|Hi|¢) = NYou|AH1A|lpr) = NY¢u|H1A?|pu)
= NYou|H1A|bH), (12)

where we ave used (10) and (9). Introducing (8) and (3) we obtain
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We have taken into account the (2) orthogonality conditions. Finally we have
replaced the sum over the electrons with the sum over the occupied states.
We introduce the notation

Ix = (ux(qi)|hilua(@:)), (14)
obtaining
(¢|H1|¢) = Z Iy. (15)
Similarly we can write for the matrix elements of the two-electron operators
(¢|H2|p) = N!<¢H|AH2A|¢H> = NYou|H2Aldn)
= > (-1 ¢H| P|¢H>
i<j P
= Y (6ul-—(1 - Py)lgn). (16)
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We have taken into account that because the orthogonality of uy for a given 4, j
pair from the sum of permutations remain only u) and u, depending on ¢; and
g; coordinates. F;; is the exchange operator for the coordinates of electrons ¢
and j.



Switching to the sum over the states
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—<ux<qz~>uu<qj)|%jwu(qz-)m(qj» . (17)

The sum is over N(N — 1)/2 orbital pairs. We introduce the notation for the
matrix elements

T = <ux<qz->uu<q,-)|%jwqim(q,-» (18)
Ky = <ux<qz->uu<q,-)|%jm(qi)m(qj», (19)

Jau — Coulomb (direct) integral
K, — exchange integral

We can extend the sum over all A, i, because the terms with A = p will be
zero (Jxx = Ky»), and all other terms will appear twice. Finally

(1 H2168) = 5 v — Kol (20)
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The functional
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We have to take into account the (2) additional conditions in the minimiza-
tion.
Lagrange-multiplier method

J | E[¢] - 26,\H<U,\|UH> =0. (22)
Ap

It can be proved, that the ey, matrix can be diagonalized. We assume, it is
done, so €y, = Exdy,. In these conditions

SE[¢] — > Exd(ualua) =0. (23)
X

We perform the variation as for the Hartree-method
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where X takes all the values for the IV occupied states between « and v. The
equation above are the Hartree-Fock equations.

— exchange integrals

The Hartree—Fock-potential is the same for each electron, and the u) solu-
tions (Hartree—Fock orbitals) are orthogonal to each other.

Introducing the direct and exchange operators
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AR R A (25)
VE@)f@) = (ol sl (26)
and the potentials
Vi) = D Vi) (27)
Ver(q) = 2 V() (28)
we can write H
~5V = 2 i) + V@) | (@) = Brn(a). (29)

This system can be solved by the self-consistent field method.
Usually we separate the spatial and spin-dependent part of the wavefunctions

ux(gi) = ua(Ti)Xm2 (03), (30)

where
<Xm;\ |Xm’;> = (Sm?m’b (31)

and m) is the magnetic spin quantum number for the electron in state A. In-
troducing (30) into (24) the Hartree-Fock equations may be written for the
wavefunctions depending only on spatial coordinates
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Generally these partial differential equations should be solved in 3 dimen-
sions. If the potentials are not spherically symmetric, solving these equations is
very complicated.

If we have closed shells — the Hartree-Fock potentials are spherically sym-
metric.



In other cases usually the potentials are approximated by a spherically sym-
metric potential — spherically averaged.

In these cases the orbital parts of the wavefunctions are described by the
spherical harmonics, and we can write the following radial equations

1d  10+1) ? + V(i) - Ve"(n-)] P (ri) = B Pra(ri),  (33)

_§dr? 2r2
where
Vi) = 3 V() (34)
nlll
V*(r;) = Zij‘l, (rs) (35)
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are the potentials created by all closed subshells.
The summary of the Hartree-Fock method:

1. the calculation of potentials (34)—(35) using Slater-determinants
2. the solution of (33) differential equations
3. the two item above are repeated it until the system becomes self-consistent

We obtain the Hartree-Fock wavefunctions in numeric form. Often is useful to
express these functions in analytical form using a few parameters — they are
fitted to the numerical solution.

Example — the ground state of beryllium

Closed shells — two electrons on 1s and two on 2s spatial orbitals.
The Slater-determinant

U1s¢(<11) ulsJ,(ql) U2s¢(CI1) U2s¢(Q1)
1 U1s¢(¢12) uls,L(q2) u2s¢(¢]2) UZSL(QZ)
) ) ) = ) 36
a1, 2, 8564) VAT | u1st(g3)  wisy(g3) u2s1(q3)  u2s(g3) (36)
Ulsﬁ((M) uls,L(qzl) U2s¢(q4) UZSL((M)
The V = V¢ 4 V= Hartree-Fock potentials from (29)
V= Vi + Vi + Vo + Vi, — (VR + VIS + Va5 +V50). (37)

The direct and exchange potentials are given by (25) and (26).
We separate for each spin-orbital the dependence on the spatial and spin
coordinates

u1s1(q) u1s(r)a (38)
uis)(q) = uis(r)B (39)
uzsp(q) = u2s(r)a (40)
u2s1(q) = u2s(r)B. (41)



We apply the (32) Hartree-Fock equations. The effect of Vl‘iT and Vii% on
u15(r)a orbital will be the same (and the two terms are reduced), while V%
leads to zero. Similarly, analyzing the effect of the direct and exchange opera-
tors on orbitals u1s(r)3, uzs(r)a and uss(r)8, and simplifying by the functions
depending only on spin coordinates, we obtain

-5V - 2O+ 20 - TEO w0 = Bt @)
57 - LAV ) - V0| ) = Bavn), (49
where the
Vi, (r) = (u1,2s(f'l)|ﬁ|u1723(rl)) (44)
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5:(r)f(r) = <U1,2s(T')|h—lf(f"))m,zs(r) (45)

— 1|
operators act only on the spatial coordinates.
The equations above are three-dimensional partial differential equations.
However, the potentials are spherically symmetric, and the orbital part of the so-
lutions will be given by the spherical harmonics. For s orbitals Yoo () = 1/v/47
is constant and uy,25(r) = 771 Pp 25(r)Yo0. We may write the radial equations
for the radial functions P, o4, for the special case of [ =0

[_%j? — % + VA (r) + 2V (r) — V;g(r)] Pis(r) = EisPiy(r) (46)
[_%j? - % + Vil (r) + 2V (r) — Vfg(r)] Pys(r) = EysPys(r).  (47)

This system can be solved by the self-consistent field method.



