
Modul  2 

Plane wave method (PWM)  

based on Aaron Danner, An introduction to the plane wave expansion method for calculating photonic 

crystal band diagrams http://vcsel.micro.uiuc.edu/~adanner/planewave.htm 

  

1.  Basic description of the plane wave expansion method 
  

In order to design photonic crystals to take advantage of their unique properties, a calculation method is 

necessary to determine how light will propagate through a particular crystal structure.  Specifically, 

given any periodic dielectric structure, we must find the allowable frequencies (eigenfrequencies) for 

light propagation in all crystal directions and be able to calculate the field distributions in the crystal for 

any frequency of light.  There are several capable techniques, but one of the most studied and reliable 

methods is the plane wave expansion method.  It was used in some of the earliest studies of photonic 

crystals [1-4] and is simple enough to be easily implemented.  The method allows the computation of 

eigenfrequencies for a photonic crystal to any prescribed accuracy, commensurate with computing 

time. For photonic crystal applications in semiconductors such as GaAs or dielectrics, Maxwell’s 

equations, which will govern all field simulations that follow, take the following forms, 

where , , , and  are the field vectors,  is the current density,  is time, and  is the 

charge density: 
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Assuming perfect dielectric materials ( the relative permeability ) in a source-free region 

(  and ), Maxwell’s equations can be reduced to four equations, each involving only one 

type of field. This decoupling of the fields can be accomplished by taking the curl of both sides of 

Equation (2), and substituting from Equation (4) to give the two electric field equations.  An equivalent 

process can be carried out in the opposite order to give the two magnetic field equations.  If it is 

assumed that the fields are time-harmonic, then  and the decoupled equations can be 

expressed as the following: 
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Note that the forms for and  are identical.  This is expected because  is constant in the 

equations.  However, the relative permittivity   is not constant in our structures (it is periodic), so the 

placement of the  term is strict.  The goal here is to find the energies and electromagnetic field 

configurations that are allowed to exist in a periodic structure.  Essentially, what we are given in the 

problem is the , which will be a function of location, and we need to solve for and the fields. 

There are essentially three different choices of procedure at this point.  All four equations, given a 

dielectric function, will yield one set of field distributions.  (The and  expansions give identical 

results.) After that, the other fields can simply be deduced from Maxwell’s equations.  The question of 

which equation to solve depends on several factors. First, the equations for the magnetic fields 

(Equations (7) and (8)) are in a Hermitian form.  Strictly speaking, the operator  is 

Hermitian (see [5] for a detailed description of this property). Hermicity establishes that the 

eigenvalues  are real, and that field distributions with the same eigenfrequency must be 

orthogonal.  Usually, Hermitian eigenvalue problems are less complex computationally to solve [6], but 

the other forms should not be immediately overlooked as will be clear in the development which 

follows. 

Each of the decoupled equations above will yield three component equations if the vector 

operations are carried out.  In Cartesian coordinates, they can be expressed as follows for the , , 

and  expansions, respectively.  Expansions for  are not simplified because in their full forms the 

extra terms generated by the inner  make the expressions very long.  (As seen in Equations (9) - 

(11), each equation of  consists of four terms on the left side; each equation of  or  consists of 

eight terms; and each equation of would consist of sixteen terms.  The chain rule applied repeatedly 

to the inner products creates the extra terms.) 
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The fields themselves and the dielectric function can be expanded in Fourier series along the 

directions in which they are periodic. This Fourier expansion will be truncated to a fixed number of 

terms, limiting the accuracy of the calculation.  The truncated problem will yield an eigenvalue 

equation for the fields which will allow calculation of the dispersion curves.  It must be pointed out that 

regardless of which of the four decoupled equations is solved, the eigenvalues will be the same.  For a 

fixed number of terms, the accuracy can be improved by a proper choice.  For example, when solving a 

problem of air spheres embedded in a dielectric, using the expansion would yield much better 

convergence than the others, while using the or  expansions would yield better results for 

dielectric spheres in air [6]. The analogy with the two-dimensional structures discussed here suggests 

that air cylinders drilled in a dielectric background may be a problem better suited for calculation using 

the  expansion, in terms of matrix size.  The accuracy differences among the three expansions result 

from the different resultant spatial orientations and positions of each field. 

The basic approach for calculating the field distribution and eigenfrequency given a dielectric 

function and propagation vector is to first expand and the three components of the appropriate field 

vector in Fourier series.  These series are then substituted into the decoupled Maxwell’s equations and 

the terms are reorganized into an ordinary eigenvalue problem. When the eigenvalues are calculated 



employing standard numerical methods (using a finite-sized matrix formed when the Fourier 

expansions are truncated), it is straightforward to use the eigenvalues to find the allowed propagation 

frequencies, and the eigenvectors to calculate the field distributions.  The process is best illustrated by a 

simple example. 

  

2.  Example:  One-dimensional photonic crystal 

  

The simplest example of a photonic crystal is a one-dimensional array of air slabs penetrating a 

dielectric background.  Figure 1 shows the relevant axes.  In this case, we will consider only waves 

propagating in the +z direction.  In most photonic crystal dispersion curves, it is usually difficult to 

distinguish curves as “transverse magnetic" (TM-like) or “transverse electric" (TE-like), but in this 

simple case there are two basic polarizations, viz., and . Here we consider the .  case only, 

and begin the problem by assuming that the only field components present are , , and . Although the 

justification for this may not be immediately apparent, the symmetry in the problem permits 

this.  There is also nothing wrong with using all components of  and ; the mode separation is then 

easily seen.  (Indeed, this is the method used in higher-dimensional photonic crystal problems.) Here, 

the purpose of the early simplification is to more clearly illustrate the method. 

  

 
Figure 1:  One-dimensional photonic crystal consisting of air slabs of width d embedded in a dielectric 

background with a periodicity of a. 

  

With only one component, only a single line in Equation (9) remains, which demonstrates the 

justification for using the  expansion:  

  

 

(12) 

Now, Fourier series expansions for the field and dielectric can be applied.  In this case, a Fourier 

expansion for the inverse dielectric function  is used. Equivalently, the constant can be moved to 

the right side of the equation and  could be expanded.  This would form a generalized Hermitian 

eigenvalue problem, or an ordinary eigenvalue problem if an additional matrix inversion were carried 

out in the subsequent step.  In the notation that follows,  will represent all Fourier coefficients.  The 

indices m and n are integers.  The variable means “Fourier coefficients, indexed by the integer n, for the 

y-component of the electric field” and the variable  means “Fourier coefficients, indexed by the integer m, 



for .”   Ideally, the summations should be infinite, but will be truncated for computation purposes. 
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Note that if propagation in a direction other than z had been included in the formulation, then the 

additional terms would have been included in Equation (14). 

After the Fourier expansions are substituted into Equation (12), the initial eigenvalue equation is 

obtained. 
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To simplify, each side of this equation is multiplied by an orthogonal function , where p is an 

integer, and integrated over a unit cell, i.e., .  For a nontrivial solution, p can take only one 

value so one summation on each side of the equation can be dropped.  After reorganizing terms and 

renaming the sums to use only the letters m and n, the eigenequation takes its final form of 

  

 

(16) 

  

This forms an ordinary eigenvalue problem, where the integers m and n are truncated symmetrically 

about zero as is appropriate for this type of Fourier expansion. This corresponds to including only 

lower order plane waves in two dimensions.  For example, if m and n were truncated to five terms (-2, -

1, 0, 1, 2), then the full eigenvalue problem would appear as follows, using the 

notation : 
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The matrix Q can be diagonalized using a variety of software packages and numerical methods, and the 

details will not be discussed here.  After diagonalization, the eigenvalues  and 

eigenvectors will be known.  The eigenvalues give the dispersion diagram and the eigenvectors 

can be substituted back into the Fourier expansion for  to find the field distribution at any given 

frequency. 

The only remaining problem is to find the dielectric coefficients , which can be obtained using 

the inverse Fourier transform:  
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If the integral is split properly, then  will be constant in the integration range.  Depending upon 

where z = 0 is defined, the form of the result may take slightly different forms (but will make no 

difference as long as it is defined consistently):  
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This is equivalent to the following, where the function :  
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All information is now available to solve the Q matrix for the eigenvalues.  Figure 2 shows the results 

for nine plane waves (n and m are integers between -4 and 4 inclusive). In this case, a structure was 

chosen with a unit period, , and . Several bandgaps are clearly visible for 

propagation in this direction.  In this example we have examined only the   case for propagation in 

the z direction.  The interested reader is referred to [7] for a discussion of the  case and off-axis 

propagation in the one-dimensional structure. 

In studies of photonic crystals, the interest is usually not in the electric or magnetic field forms 

themselves.  It is the eigenvalues  that carry information on the location of the modes in 

momentum space.  In the general case, varying values of , , and allows construction of a complete band 

diagram.  In more complicated structures, the band diagram is usually constructed at the boundaries of 

the Brillouin zone. 



  

 

Figure 2:  Dispersion curve for   propagation in the z direction for the one-dimensional photonic 

crystal structure. Note the presence of several bandgaps.  

  

  

3.  Fully vectorial, three-dimensional structures 

  

Essentially, the method remains the same for more complicated structures.  Because of our interest in 

two-dimensional structures, we examine here the case of the triangular lattice of air holes embedded in 

a dielectric background.  Using fabrication techniques described in the next chapter, arrays of holes can 

be created using electron beam lithography and etching methods.  The result is a two-dimensional array 

of air holes in a semiconductor substrate.  Therefore, for our interests the dielectric function will be 

periodic only in the xy plane (uniform in the z direction). This results in some simplification for 

the expansion.  Although the structure studied is two-dimensional, propagation in all directions 

(including the out-of-plane propagation case) will be considered.  Extension of this method to three-

dimensional structures is straightforward and will be explained.  In the equations used, a is the lattice 

spacing of a unit cell; the lattice itself is triangular within a medium with dielectric 

constant  perforated by infinite air holes (atoms) of diameter d. The 2D triangular lattice unit cell has 

been widely covered in literature [2, 3,5,8] and the method described here has been tested and gives 

equivalent results for the same problems.  In this thesis, the triangular lattice supercell is further 

generalized to the Nx N case and method accuracy is treated.  First, we discuss the unit cell. 

The general formulas for the Fourier expansions in the three-dimensional case, assuming use of 

the expansion, are 

  

 

(21) 

 

(22) 

  



  

where the  vectors are related to the directions of periodicity.  They are actually the collection of 

reciprocal lattice vectors; the vectors represent the real lattice vectors, and their relationship is 

defined by  [8]. For the structure studied here, the real and reciprocal lattice vectors are 

shown in Figures 3 and 4, respectively. Because it is a two-dimensional structure, there are two 

reciprocal lattice vectors,  and . The lattice vectors shown can be expressed as 
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Figure 3:  Real lattice vectors for the 2D triangular lattice.  

  



 
Figure 4:  Reciprocal lattice vectors for the 2D triangular lattice. 

  

  

Equations (21) and (22) now become the following, specifically for the triangular lattice structure:  
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At this point the same process is used as in the one-dimensional case discussed in Section 2. 

Equations (27) and (28) are substituted back into the appropriate decoupled Maxwell equation 

(Equation (9)). Again, both sides of the resulting equation are multiplied by an orthogonal 

function and integrated over a unit cell (see Figure 5). The rectangular area in Figure 5 

represents one possible area of integration for the unit cell.  After algebraic simplification, the result is 

an ordinary eigenvalue equation with form similar to the one encountered in the one-dimensional case:  
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The matrix is given by the following, where : 

  

 

(30) 

  



  

Although Equations (29) and (30) are more complicated to convert into matrix form suitable for 

diagonalization, the process is carried out exactly as in the one-dimensional case and will not be 

discussed further here.  Certainly, more plane waves must be used to maintain accuracy than in the one-

dimensional case, but the method is the same.  The calculation of the Fourier dielectric 

coefficients  is also more complicated due to the area integral, but the method for doing so is 

equivalent.  The general formula for the dielectric coefficient is given by 

  

 

(31) 

  

where the area of integration is represented by the rectangular area within the solid lines in Figure 5. 

After changing to cylindrical coordinates, the integration is easy to split into two parts (inside the air 

holes and in the dielectric background). The dielectric function in each part then becomes a constant 

and the integral thus simplifies for the unit cell to 

  

 

(32) 

  

In the derivation of Equation (32), the following property has been used, where  is the nth-order 

Bessel function:  

  

 
(33) 

  

                                                                                                                   

  

 
Figure 5:  Unit cell.  The dotted line represents the actual cell and the solid line represents the area 

covered by the integral in the dielectric Fourier coefficient computation. 

  



Using another property   results in the simplification [8] 

  

 

(34) 

  

  

In previous studies of the triangular lattice unit cell, 140 to 225 plane waves were used [1,2,3] to 

calculate accurate dispersion curves.  Villeneuve and Piché [2] tested the convergence to 841 plane 

waves and found that only 225 were necessary for good convergence.  The accuracy of any given set of 

curves is difficult to predict because the convergence rates can change between differing structures. 

The plane wave expansion method was carried out to construct dispersion curves for along the 

Brillouin zone shown in Figure 4. The method described using the  expansion creates spurious modes 

with zero frequency, which were removed.  Also, in the in-plane propagation case modes can be 

separated by polarization into TE-like (  is in the xy plane) and TM-like (  is in the xy plane) 

modes.  Two examples have been carried out with  = 13.2 using 441 plane waves.  TE-like modes 

were separated from the result and are shown in Figures 6 and 7 for values of and along the Brillouin 

zone.  The gap between the first and second bands changes with the lattice dimensions, where d refers 

to the diameter of the air holes, and a to the lattice spacing.  Figure 8 shows the variation. 

  

 

Figure 6:  TE-like modes for air holes embedded in a background of = 13.2 with d/a = 0.5. 

  

  



 

Figure 7:  TE-like modes for air holes embedded in a background of = 13.2 with d/a = 0.8. 

 
Figure 8:  Variation of TE mode gap with lattice parameters.  The two bands plotted are the two bands 

with the lowest eigenfrequencies ( = 13.2). 

  

2.1.3  Supercell techniques 

  

If a defect is introduced into the otherwise periodic structure then defect modes can arise in the 

photonic band structure.  To study defect modes, the same plane wave expansion method can be 

used.  The basic idea is to replace the unit cell by a more complicated unit cell and preserve the 

periodicity.  For example, a 4 x 4 supercell with a central defect can give reasonable accuracy because 

the missing holes are spaced four lattice units apart.  As long as confined modes do not couple to one 

another, then the results of the calculation should equally apply to the case of an isolated defect 

(missing hole) in a large array of perfect photonic crystal. Supercells are often used to calculate defect 

states in photonic crystals [9,10], although different authors choose to use different sizes.  Although a 4 

x 4 supercell is a reasonable size cell for most calculations, in order to study certain modes with more 

accuracy larger supercell structures may be needed.  In this thesis, the dielectric coefficients for the 

general case of an N x N supercell with a point defect have been derived.  

The most basic example of a supercell is the unit cell itself (see Figure 5). The situation for a 

supercell is shown in Figure 2.9. The lattice spacing is now given byNa. For example, a 4 x 4 supercell 



has an overall periodicity of 4a with a defect appearing in the lattice once per period (every four unit 

cells). The eigenvalue equation taking this into account is identical to the unit cell case  (Equation 29), 

except the matrix now includes the effect of the N x N supercell, 

  

 
Figure 2.9:  Example of a 4 x 4 supercell.  The dotted line represents the supercell itself, and the solid 

line represents the area covered by the integral in the dielectric Fourier coefficient computation. 

  

where . Analogous to Equation (30) we obtain 

  

 

(35) 

  

  

The Area factor that appears outside the integral in Equation (31) is now dependent on the size of the 

supercell.  For example, in a 4 x 4 supercell this becomes . In addition, it is now more 

complicated to integrate in cylindrical coordinates, as many air holes are distributed at points other than 

the center of the coordinate system.  This can be accounted for by making the following substitutions 

into Equation (31):  

  

 

 



where represents the position of a hole in the supercell.  This creates constants which can be 

taken from the main integral and summed over all the positions of the photonic atoms as follows:  

  

 

(36) 

  

  

The integral over  depends on the position of each photonic atom.  As illustrated in Figure 10, 

depending on the supercell size N, several holes will be cut by the area of integration, and thus the 

integral about  will not be from 0 to 2 in each case.  Fortunately, the cut atoms can be combined due 

to their symmetry such that only one integration needs to be carried out.  To obtain the full equation, it 

is helpful to visualize the supercell in three parts:  two offset rectangular lattices (each with period a in 

x, in y) intermeshed to form the whole photonic atoms around the defect, and an even number of half 

atoms at the edges. The numbers and positions of the atoms change with the supercell size.  One of the 

rectangular lattices has an even number of atoms on a side and the other has an odd number of atoms 

on a side.  The odd mesh includes the central whole atoms which will be removed later.  The following 

quantities give these numbers, less one, as a function of N:  
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In Equations (37) and (38), the Floor function returns the largest integer less than or equal to the 

argument. The crucial summation over these photonic atoms and 

  

 
Figure 10:  N x N supercell area of integration.  For a given N, the four corner atoms that the rectangle 



cuts will not be present; the whole atoms inside the rectangle must be included (except the central 

defect). 

  

the combined half-atoms is given by 

  

 

 

 

(39) 

  

  

(The latter two large terms are the combined half-atoms, and the -1 removes the central atom.) When 

combined with the main equation, the final coefficients are obtained with complete generality of 

supercell size.  When determining the accuracy of the supercell method for a given number of plane 

waves, it is sometimes useful to create a supercell with no defects and compare the results to those of a 

unit cell.  In this case, a +2 term can be added to Equation (39) to give the proper summation.  (This 

effectively reinserts the central atom and the four quarter-atoms at the corners of the region of 

integration.) The Bessel function simplifications have been carried out as in the unit cell case:  

  

 
  

(40) 

  

  

An example of a supercell calculation was carried out for a defect in a 2D photonic crystal for the 

out-of-plane propagation case using a 4 x 4 supercell.  Figure 11 shows the fundamental mode in this 

case.  This is a plot of , or the time-averaged electric field.  Because of the tight confinement of the 

mode around the defect, a larger supercell would not give significantly different results in this case.  It 

does become important for higher-order mode calculations or calculations at lower frequencies, where 

the confinement is not so tight.  In this case, the confinement of the energy within a one lattice unit 

radius is 98.19%. The plot was generated by substituting the eigenvectors back into the Fourier 

expansion for the electric field. 



 

Figure 11:  Near field plot of lowest eigenmode ( ) for a structure of d/a = 0.3, = 0, = 

0, , = 12.25. 1089 plane waves were used in each direction. 

  

Figure 12 shows the in-plane defect mode calculated using a 4 x 4 supercell.  In this case, the defect 

mode is superimposed on the TE-like modes of the unit cell.  Folded bands from the supercell itself are 

not shown for clarity.  Note that the defect band appears almost in the middle of the gap.  This 

demonstrates that adding a defect introduces a localized confined state that is not present in the bulk 

photonic crystal.  The dispersion curve of the mode is independent of frequency because of this 

localization. 

  

 
Figure 2.12:  In-plane defect mode of a 4 x 4 supercell (with central defect) superimposed on TE-like 

modes of a unit cell for air holes embedded in a background of  = 13.2 with d/a = 0.8. (Folded bands 

are not shown.) 

  

2.2  Control of Accuracy 

  

As increasing numbers of planewaves are used, the eigenvalues approach the correct values 

asymptotically.  For the 4 x 4 supercell, Figure 2.1 shows this behavior. For this case, i = 12 should 

give sufficient accuracy for band diagrams around the point of calculation shown.  (This should 



correspond to i = 3 for a unit cell structure.) At high frequencies the accuracy for a given number of 

planewaves decreases, and the size of the supercell, if too small, will give incorrect defect mode 

eigenvalues because of coupling between adjacent supercells. 

 
Figure 2.13:  Plots of the four lowest eigenfrequencies (bands 1, 3, 5, 7 in ascending order) as a 

function of the (i x i) submatrix size, which is related to the number of plane waves given by . 

The structure is a 4 x 4 supercell with d/a = 0.20, = 12.25, and the position of calculation is = 

0, = 0, . With increasing numbers of plane waves used, each of the four curves 

approaches its actual value asymptotically. 

  

  

Still, the question remains which expansion ( , , or ) will give greater accuracy for a fixed 

matrix size.  The relationship was analyzed in [11] and it was found that for air holes in a square lattice 

the expansion gave consistently better convergence results, even when large numbers of plane waves 

(1000) were used. It is evident that for structures presented here, the  expansion should be used for 

this method. 

Other methods exist for solving the eigenequation.  Instead of solving for all the eigenfrequencies at 

once, iterative techniques can be used [5,9,12] to find eigenvalue and eigenvectors pairs one at a 

time.  These methods seem to rely on ordinary Hermitian eigenvalue problems, so the is exclusively 

used.  Computing time can be saved by use of the fast Fourier transform to carry out the operation 

in Fourier space, instead of real space as was done here [9]. These methods usually suffer from poor 

convergence times at high frequencies [13]. 

The plane wave method presented here can also be extended to calculate transmission spectra 

[1,8,14], as well as modal characteristics [15,16]. 
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Programs and PWM manual written by Shangping Guo 

http://phys.ubbcluj.ro/~evinteler/nanofotonica/pwmmanual_Guo.pdf 

http://phys.ubbcluj.ro/~evinteler/nanofotonica/programs 

 

1D photonic crystal: photo1d3.m, inplane1d.m, offplane1dte.m, offplane1dtm.m, gapkyte1d.m, 

gapkytm1d.m 

2D photonic crystal: square: sqideal2d.m, sqband.m (supercell), sqdos2d.m 

    triangular:photo2dtm.m, triang2dte.m, triang2dtm.m 

    honeycomb: honeyte.m, honeytm.m 

3D photonic crystal: diamond: diamond3d.m 

 

 

 

 

http://phys.ubbcluj.ro/~evinteler/nanofotonica/pwmmanual_Guo.pdf
http://phys.ubbcluj.ro/~evinteler/nanofotonica/programs


Evaluation tests  

1.1D photonic crystal 

Using program photo1d3.m obtain the following band structures for 1D photonic crystal (from 

Joannopoulos book p.46). Explain in what conditions appear the band gap.  What represent the blue 

curves? Define the Brillouin zone in this case. 

 

2. Off-plane propagation 

Write PWM equations for TM and TE modes and compare with the code in offplane1dte.m and 

offplane1dtm.m. Using the previous programs plot the band structure for TM and TE modes. For which 

frequencies we have band gaps? Define the Brillouin zone in this case. 

 

3. 1D Band structure  

What is plotted with blue and green curves in programs gapkyte1d.m and gapkytm1d.m? 

 



Explain the obtained plots. 

 

4. 2D Brillouin zone. 

Derive lattice vectors for direct (a1,a2) and reciprocal lattice (b1,b2)  in two cases: square and 

triangular lattice. Compare the results with eqs.(23-26).  

Compare the results with the code for  lattice vectors in the programs sqideal2d.m and triang2dte.m. 

Take in account that in code the complex plane is used,  instead of usual bidimensional real space.  

What represents the variable G in the previous code? 

Using fig.4 plot the Brillouin zone for square and triangular lattice. Compare the frontier of the  

Brillouin zone with the code for wave vectors k1,k2,k3 in the programs sqideal2d.m and triang2dte.m.. 

 

5. 2D Fourier transform of  dielectric constant 

Derive Fourier coefficients of the inverse of dielectric constant (eq. 34) from its definition (eq. 

31). Write down  for the case of square and triangular lattice (with lattice step a) of cylinders with 

radius R. 

Another derivation of   it is first to calculate Fourier coefficients of dielectric constant (which in 

2D form a matrix) and after to invert the obtained matrix and get the  Fourier coefficients of the inverse 

of dielectric constant. This is the way used in the programs sqideal2d.m and triang2dte.m.  

Show that the Fourier transform of dielectric constant is: 

 

For the full lattice G=m1b1+m2b2, replaces k (valid only for the unit cell case) , where b1,b2 are the 

reciprocal lattice vectors. 

Compare the result with the code for matrix eps2(x,y) and eps21 in  triang2dte.m and respectively  

sqideal2d.m. What represents the coefficient f in the code? 

Hint: look in the PWM manual of Shangping Guo at derivation of equation (42). 

 

6. 2D PWM equation  

From relation (7) (in components in eq.(10)) 

 

 

 

using the Fourier expansion of  inverse of dielectric constant eq.(13) and H field (similar to relation 14 

for E field) derive PWM equation for H field (similar to relation 39 for E field): 

 



Show that the matricial equation reduces to two independent relations for TM and TE waves: 

 

for special orientation of polarization vectors of H as in figure. 

 

Compare with the code in programs sqideal2d.m and triang2dte.m. (take in account that the matrix M 

for eigenvalue problem is written in complex plane): 

Hint: look in the PWM manual of Shangping Guo at derivation of equation (31). 

 

7. 2D Eigenvalue problem 

In the programs sqideal2d.m and triang2dte.m we have the code E=sort(abs(eig(M))) that sorts the 

absolute value of eigenvalues of matrix M. Write alternative code for solving  eigenvalues of matrix M 

using the Jacobi method. 

 

8. 2D dispersion curves 

Obtain the plots in fig.6 and 7 by modifying the programs triang2dte.m and triang2dtm.m. Obtain also 

dispersion curves for TM modes. Where is located the band gap for TE and TM modes?  

 

9. 2D supercell 

Obtain the plot in fig.2.12 by modifying the program sqband.m. What represents the straight line in 

figure 2.12? 

 

10. 3D diamond Brillouin zone. 

Derive lattice vectors for direct (a1,a2,a3) and reciprocal lattice (b1,b2,b3) for diamond lattice. 

Compare the results with the code for  lattice vectors in the program diamond3d.m. 



Plot the Brillouin zone for diamond lattice. Compare the frontier of the  Brillouin zone with the code 

for wave vectors k1,k2,k3,k4,k5,k6 in the program diamond3d.m 

Plot the dispersion curves. Where is located the band gap? 

The simulation is one of the hallmarks in the study of photonic band gap structures and was first made 

in the article K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990). It opened a 

way for the fabrication of the fi 



rst photonic structure with a complete photonic band gap (CPBG) and advanced the  



eld considerably. One of its main conclusions is that, regarding a CPBG, the diamond structure fares 

much better than a simple face-centered-cubic (fcc) one: (i) the threshold value of the di- 

electric contrast ε to open a CPBG is 4 (8.2 for an fcc structure), (ii) a CPBG opens between the 2nd 

and 3rd bands (the 8th-9th bands for an fcc structure), and, consequently, is much more stable against 

disorder, and (iii) a CPBG is signi 



cantly larger (15% and 5%, for the respective diamond and fcc closed packed lattice of spheres with a 

dielectric contrast ε  = 12.96). 

 

Hint: look in the PWM manual of Shangping Guo at page 21 

 

     

  

  

  

  

  

  

  

   

 


