
ECE3300

The Finite-Difference Time-Domain (FDTD) Algorithm

James R. Nagel

Overview: It is difficult to overstate the importance of simulation to the world of engineering. Simu-
lation is useful because it allows us to test our designs without going through all the hassle of physically
constructing any devices. In fact, the market for quality simulation is quite rich, and one could easily
make an entire career out of developing cheap, efficient, and accurate tools for simulation.

The finite-difference time-domain (FDTD) algorithm is an especially popular tool because it is
simple, robust, and easy to understand. Basically, the algorithm works by taking the telegrapher’s
equations and approximating all of the derivatives as finite-differences. The system is then incremented
by little time steps, and the solution effectively “plays itself out” in time. In fact, virtually any
physical system that is governed by a time-dependent partial differential equation (PDE) can be readily
simulated through the use of FDTD. Engineers routinely test their designs through FDTD simulations
of the heat equation, Maxwell’s equations, and even the Schrödinger equation.

1. THE TELEGRAPHER’S EQUATIONS

The telegrapher’s equations are basically nothing more than a pair of coupled partial differential equa-
tions (PDEs) in space and time. Together, they represent the fundamental governing equations of all
transmission line theory, and are given as

−∂v(z, t)
∂z

= R′i(z, t) + L′
∂i(z, t)
∂t

, (1)

−∂i(z, t)
∂z

= G′v(z, t) + C ′
∂v(z, t)
∂t

, (2)

where v(z, t) and i(z, t) represent the instantaneous voltage and current at position z and time t. The
R′, L′, G′, and C ′ terms represent the resistance, inductance, conductance, and capacitance per unit
length.

Because computers only have a finite capacity for memory storage, the first step in applying FDTD
is to define a mesh, which is a set of discrete points in space and time that will sample our functions.
Shown in figure 1, this is done by fixing a grid spacing of ∆z in space and ∆t in time. The points that
lie on the mesh are then defined as

zk = k∆z , (3)
tn = n∆t . (4)

where k and n are integers confined by sets 1 ≤ k ≤ K, and 1 ≤ n ≤ N .
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Figure 1. A simple FDTD mesh defined in space and time.

Now that the voltage and current functions have been sampled on a discrete, finite grid, we are ready
to define a stencil, which is simply a numerical approximation for the derivative that uses neighboring
points along the mesh. For example, the spatial derivative acting on the voltage function can be
approximated through the use of a forward finite-difference:

∂v(z, t)
∂z

≈ v(z + ∆z, t)− v(z, t)
∆z

. (5)

At this point, it is convenient to introduce a more compact notation for the function v(zk, tn) by simply
shortening it to vn

k . In other words, the subscript index represents the spatial grid point, while the
superscript index represents the temporal grid point. Using this notation, the numerical derivative is
rewritten as

∂

∂z
vn
k ≈

vn
k+1 − vn

k

∆z
. (6)

Note that as long as the difference length ∆z is very small, this approximation can provide us
with reasonably accurate results. Nevertheless, we still would like to minimize the error from this
approximation. It is therefore best to approximate all of our derivatives by using the central-difference
method because it is more accurate than either forward- or backwards-differences. We shall therefore
impose the approximation

∂v(z, t)
∂z

≈ v(z + ∆z, t)− v(z −∆z, t)
2∆z

, (7)

or equivalently,
∂

∂z
vn
k ≈

vn
k+1 − vn

k−1

2∆z
. (8)

Similarly, we can apply the same approximation to the time-derivatives. For example, the time-
derivative on the current function i(z, t) can be rewritten as

∂

∂t
ink ≈

in+1
k − in−1

k

2∆t
. (9)
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Figure 2. Revised FDTD mesh using the staggered grid. The red X’s represent voltage samples while the black
circles represent current samples.

Using these new expressions, we are now ready to transform the telegrapher’s equations into a pair of
coupled, finite-difference equations. In terms of our new stencil notation, this is written as

−
vn
k+1 − vn

k−1

2∆z
= R′ink + L′

in+1
k − in−1

k

2∆t
, (10)

−
ink+1 − ink−1

2∆z
= G′ink + C ′

vn+1
k − vn−1

k

2∆t
. (11)

Comparing with equations (1) and (2), it is easy to see that all we have done so far is approximate
the continuous derivatives of the telegrapher’s equations with discrete finite-differences. Although this
is a perfectly acceptable approximation, there is still one final trick we can use to improve the algorithm.
Mathematically, there is no reason why the voltage and currents must be defined along the same grid
points in space and time. This may seem a little counter-intuitive at first, but we can exploit it to
improve accuracy without sacrificing any computational efficiency.

To see how this works, suppose that we redefine all of our samples to exist at half-step increments
away from the each other. Shown in figure 2, the voltage mesh is staggered from the current mesh in
both space and time by the convention

vn
k → vn

k+1/2

ink → i
n+1/2
k .

The reason for redefining the meshes this way is so that we can approximate the spatial derivative on
v as

∂

∂z
vn
k ≈

vn
k+1/2 − v

n
k−1/2

∆z
. (12)

In other words, the spatial derivative on v, centered around the point k, is defined in terms of the spatial
points k + 1/2 and k − 1/2. Notice however, that the central-difference approximation only spans a
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length of ∆z instead of 2∆z. Similarly, the temporal derivative on the current is approximated by
centering around the nth time step using

∂

∂t
ink ≈

i
n+1/2
k − in−1/2

k

∆t
. (13)

Putting these ideas together and applying them to equations (1) and (2) then gives a new set of
finite-difference equations given by

−
vn
k+1/2 − v

n
k−1/2

∆z
= R′ ink + L′

i
n+1/2
k − in−1/2

k

∆t
, (14)

−
i
n+1/2
k+1 − in+1/2

k

∆z
= G′ v

n+1/2
k+1/2 + C ′

vn+1
k+1/2 − v

n
k+1/2

∆t
. (15)

This is almost the expression we are after. However, the terms ink and v
n+1/2
k+1/2 do not fit in with

their proper grid points. To correct this, we simply redefine these terms by the average value between
the two nearest temporal points along the stencil. That is,

v
n+1/2
k+1/2 ≈

vn+1
k+1/2 + vn

k+1/2

2
, (16)

ink ≈
i
n+1/2
k + i

n−1/2
k

2
. (17)

Finally, plug these expressions back into the telegrapher’s equations to find a pair of coupled, finite-
difference equations, with all points defined along a staggered mesh. This represents a direct numerical
approximation to the telegrapher’s equations that can be worked out by a computer:

−
vn
k+1/2 − v

n
k−1/2

∆z
=

1
2
R′
(
i
n+1/2
k + i

n−1/2
k

)
+ L′

i
n+1/2
k − in−1/2

k

∆t
, (18)

−
i
n+1/2
k+1 − in+1/2

k

∆z
=

1
2
G′
(
vn+1
k+1/2 + vn

k+1/2

)
+ C ′

vn+1
k+1/2 − v

n
k+1/2

∆t
. (19)

2. UPDATE EQUATIONS

The key concept behind the FDTD algorithm is to begin with some given “present” state for a system
and then solve for the nearest “future” state. This is accomplished by taking the numerical telegrapher’s
equations and solving for the “future” terms. For example, the future term in equation (18) is in+1/2

k

because it exists at the latest point in time. Similarly, the future term in equation (19) is vn+1
k+1/2.

Solving for these two terms therefore gives the update equations of the FDTD algorithm, which are

i
n+1/2
k = c1

(
vn
k+1/2 − v

n
k−1/2

)
+ c2 i

n−1/2
k , (20)

and

vn+1
k+1/2 = c3

(
i
n+1/2
k+1 − in+1/2

k

)
+ c4 v

n
k+1/2 , (21)
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Figure 3. Schematic representation of how a current sample at in+1/2
k is solved for in terms of in−1/2

k , vn
k−1/2,

and vn
k+1/2.

where the constant coefficients are given by

c1 = − 2∆t
∆t∆zR′ + 2∆zL′

(22)

c2 =
2L′ −∆tR′

2L′ + ∆tR′
(23)

c3 = − 2∆t
∆t∆zG′ + 2∆zC ′

(24)

c4 =
2C ′ −∆tG′

2C ′ + ∆tG′
. (25)

The importance of equations (20) and (21) is that they provide a way to solve for the future state
of the system in terms of surrounding points in space and time. This is illustrated in figure 3, which
indicates the points that determine how a value is updated. The system then “leap frogs” between
voltage and current as it is updated in half-step time increments. A summary of the algorithm is
provided below:

1. Instantiate the samples of voltage and current over the simulation domain to their initial values.

2. Loop over all values of k and solve for the future state of the current, in+1/2
k .

3. Loop over all values of k and solve for future state of the voltage, vn+1
k+1/2.

4. Increment n.

5. Process the new state of the system (ie, plot a graph, compute power flow, etc).

6. If n is greater than the desired simulation time N , terminate the loop. Else, return to step 2.
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3. STABILITY

If one were to attempt the algorithm defined above for FDTD, one would quickly discover that cer-
tain configurations of the physical constants are unstable, and the simulated system rapidly increases
without bound. To gain insight into this phenomenon, it helps to study the physical solutions to the
telegrapher’s equations and see how they behave under the FDTD scheme.

To illustrate, consider a lossless transmission line where R′ = G′ = 0. The general solutions for the
voltage and current take on the form of forward- and reverse-traveling waves, given by

v(z, t) = V +
0 cos(ωt− βz + φ+) + V −0 cos(ωt+ βz + φ−) , (26)

i(z, t) =
V +

0

Z0
cos(ωt− βz + φ+)− V −0

Z0
cos(ωt+ βz + φ−) . (27)

where Z0 =
√
L′/C ′. For simplicity, let us only consider the case of a basic, forward-traveling wave,

such that V +
0 = 1.0 V, and V −0 = 0. Also, we may neglect the phase term so that φ+ = 0, leaving

v(z, t) = cos(ωt− βz) , (28)

i(z, t) =
1
Z0

cos(ωt− βz) . (29)

In terms of our FDTD stencil, the solutions to the telegrapher’s equations can now be expressed as

vn
k = cos(ωn∆t− βk∆z) , (30)

ink =
1
Z0

cos(ωn∆t− βk∆z) . (31)

For convenience, it helps to define the constants A, B, and C such that

A = ωn∆t− βk∆z (32)
B = ω∆t (33)
C = β∆z . (34)

This allows us to rewrite the stencils within the update equations as

vn
k+1/2 = cos(A− C/2) , (35)

vn+1
k+1/2 = cos(A+B − C/2) , (36)

i
n+1/2
k = cos(A+B/2) , (37)

i
n−1/2
k = cos(A−B/2) , (38)

and so on. If these expressions are plugged back into an update equation such as (21), we find

cos(A+B − C/2) =
c3
Z0

[cos(A+B/2)− cos(A−B/2)] + cos(A− C/2) , (39)

where c4 = 1 under the lossless condition.
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The importance of equation (39) is that it places constraints on the available choices for c3. As
long as A, B, and C are real numbers, the left side of the expression is bounded by the interval [−1, 1].
However, the constant c3 is arbitrary, and could easily be chosen such that the amplitude of the cosine
terms on the right side exceeds the natural bounds on the left. When this happens, error quickly
accumulates in the simulation, and the system is said to be unstable or blow up.

To prevent the simulation from being unstable, all we need to do is define the system parameters
in such a way that equation (39) never exceeds its natural bounds. This is usually accomplished by
solving for a value of ∆t that guarantees stability under the maximum possible extremes for the cosine
terms. To illustrate, suppose that cos(A + B − C/2) = 1 and cos(A − C/2) = −1. We are then left
with

2 ≤ c3
Z0

[cos(A+B/2)− cos(A−B/2)] (40)

≤ −∆t
∆zC ′

√
C ′

L′
[cos(A+B/2)− cos(A−B/2)] . (41)

Next, we suppose the cosine terms in the brackets sum together at an extreme value of 2, and we are
left with

1 ≤ −∆t
∆zC ′

√
C ′

L′
. (42)

Finally, substitute the propagation velocity vp = 1/
√
L′C ′ and solve for ∆t to find

∆t ≤ ∆z
vp

. (43)

The upper limit on ∆t is called the critical time step ∆tc, and represents the maximum allowable
time increment for a stable simulation. It also provides an intuitive physical picture because we cannot
increment the simulation any more than the time required for a wave to travel one grid step in space.

4. BOUNDARY CONDITIONS

The final step to implementing any FDTD algorithm is figuring out how to handle the boundaries.
The simplest boundary condition (BC) is called the Dirichlet boundary, and works by fixing the end
points of a simulation to some specified value. For example, the short-circuit load on a transmission
line can easily be simulated by enforcing a voltage of zero at the far-right boundary. For a simulation
domain of size K, this implies

vn+1
K+1/2 = 0 (Short-Circuit Boundary) . (44)

Another special BC is called the Neumann boundary, which only fixes the derivative of a function to
some specified value. This can be used to simulate the open-circuit load by enforcing the condition

vn+1
K+1/2 = vn+1

K−1/2 (Open-Circuit Boundary) . (45)

In other words, the boundary point is assigned the same value as the first inner point, giving a slope
of zero between them.

It should finally be noted that these conditions are complementary between voltage and current.
That is, a Dirichlet condition on the voltage acts the same as a Neumann condition on the current,
and vice versa.
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