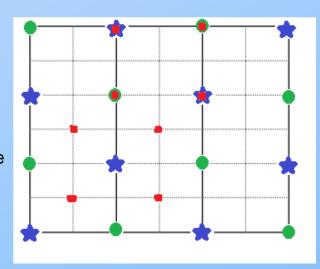
Spin polarized transport properties in Fe/NaBr(001) based heterojunctions

E. Burzo and P. Vlaic Faculty of Physics, Babes-Bolyai University Cluj-Napoca

- 1. Computing method
- 2. Ground state electronic and magnetic properties
- 4. Interlayer exchange coupling
- 5. Spin-polarized transport properties
- 6. Conclusions

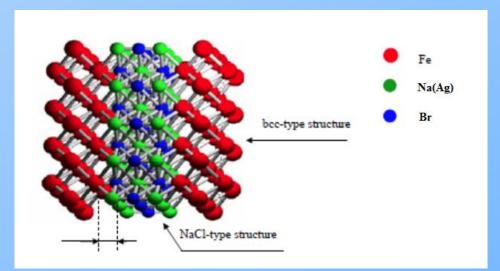

1. Computing method

Ground state electronic structure and magnetic properties of semi-infinite Fe(001)/nFe/mNaBr(AgBr)/nFe(001)/semi infinite Fe(001) studied by:

- ➤ first-principles, scalar-relativistic and spin polarized surface Green's function technique implemented within the TB-LMTO method in ASA approximation.
- exchange correlation potential considered in the LSDA by means of Vosko-Wilk-Nusair parameterization.
- > spin-resolved ballistic conductances in the CPP geometry at T = 0 K and zero-bias, calculated within TB-LMTO-CPA formalism and including the vertex corrections.
- > tunneling magnetoresistance ratios TMR = $(\sigma_{FM} \sigma_{AFM})/\sigma_{AFM}$ expressed by the asymmetry of FM and AFM conductances

2. Structure Model interfaces:

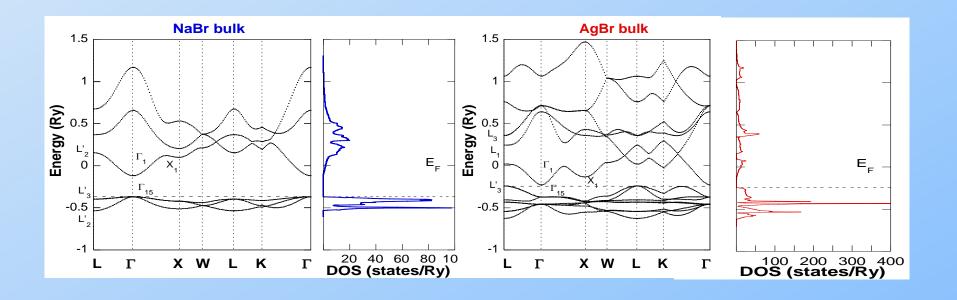
Calculations: lattice parameters epitaxially fixed at lattice spacing of iron a_{NaBr}≅2 a_{Fe}, a_{AgBr}≅2a_{Fe} NaBr, AgBr epitaxially fit bcc Fe structure



Model interfaces

C1:Fe sitting a top Ag(Na) and Br positions C2: Fe atoms located above the hollow sites between Ag(Na) and Br.

Lattice constant:


NaBr a_{exp} =5.97 Å, a_{calc} =5.68 Å AgBr a_{exp} =5.64 Å, a_{calc} =5.58 Å

Open structure: to fulfill ASA space filling

Fe/AgCl C1 interface: two empty spheres were introduced.

Band structures NaBr and AgBr

NaBr Eg:7.1 eV (exp): 3.6 eV (calc)
AgBr Eg: 2.68 (exp) 0.9 eV (calc)

Due empty sphere planes introduced between adjacent NaBr(AgBr): spacers are non-symmetric

Symmetric junctions

(even number of atomic monolayers)

Non symmetric electrodes (n, n+1) iron layers

6Fe/9NaBr/7Fe

Atomic monolayers

I, I-1, I-2 magnetic slab

I, I+1, I+2 barrier

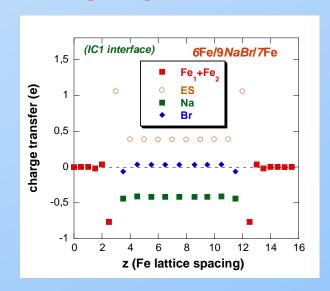
Ground state electronic and magnetic properties

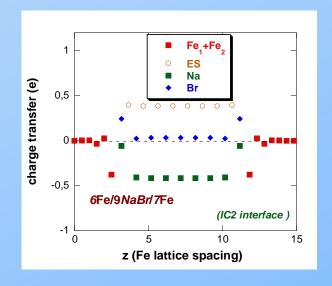
Electronic states:

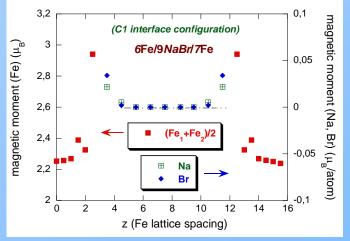
6Fe/9NaBr/7Fe

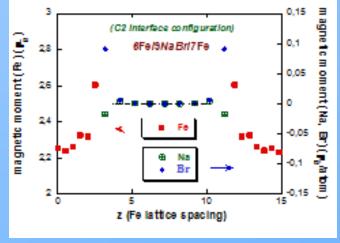
Charge transfer

C1 interface


Br decreases by $\approx 0.03 e^{-1}$


Na decreases by $\approx 0.02 e^{-1}$


C2 interface


Br increases by $\approx 0.22 e^{-1}$

Na increases by $\cong 0.35 e^{-}$

Magnetic moments

Interfacial iron moments enhanced over bulk value:

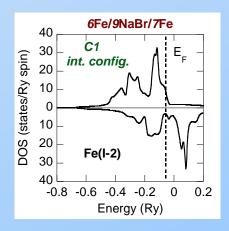
 $\begin{array}{cccc} \text{C1} & \text{Fe} & \text{M}_{\text{Fe}} \!\!\!\! \cong 2.94 \; \mu_{\text{B}} \\ \text{C2} & \text{Fe} & \text{M}_{\text{Fe}} \!\!\!\! \cong 2.60 \; \mu_{\text{B}} \end{array}$

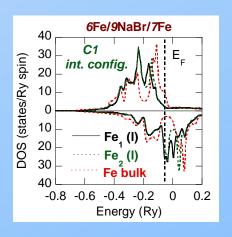
Small polarizations induced on Na and Br:

C1
$$M_{Na}$$
=0.02 μ_{B} z =3, 12 M_{Br} =0.03 μ_{B} M_{Na} , M_{Br} =0 μ_{B} M_{Br} =0.03 M_{Br} =0 M_{Br} =0.00 M

C2
$$M_{Na}$$
=-0.02 μ_{B} z =3, 12 M_{Br} =+0.09 μ_{B} M_{Na} = M_{Br} = 0 μ_{B} 4 \leq z \leq 11

Similar behaviour for AgBr spacer


Layer and atom-resolved spin-polarized DOS 6Fe/9NaBr/7Fe


C1 configuration:

➤ Away from interface, Fe(I-2),

DOS of Fe: bulk like with partially filled majority-spin 3d sub-band

E_F located at a dip in the minority-spin 3d sub-band.

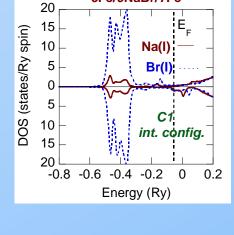
Interface, (FeI)
DOS modified: lower coordination number of Fe atoms and interaction with NaBr interfacial layer minority spin band, nearly fully occupied majority spin band, nearly empty

Metal induced gap states (MIGs)

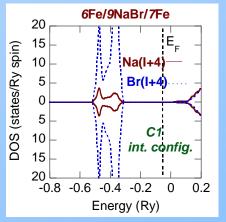
C1 interface:

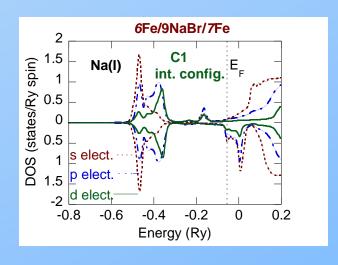
Iron metal induced gap states:

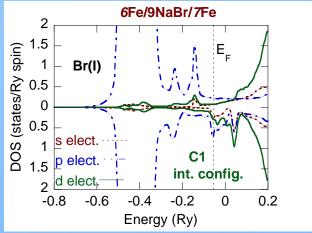
in NaBr barrier near the interfaces on both Na and Br


Fe/NaBr(001) interfaces practically metallic

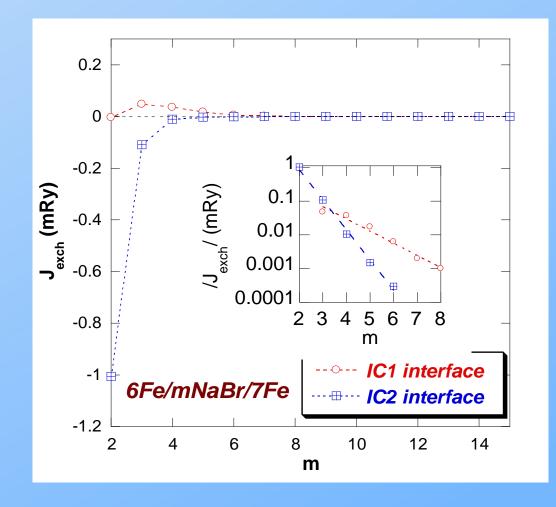
Departing from interfaces:


isolating character recovered


C2 interface: near the same behaviour


Induced gap states contributions from d, p and s electrons

6Fe/9NaBr/7Fe



Interlayer exchange couplings (IEC)

Exchange coupling between Fe(001) magnetic slabs and the NaBr and AgBr spacers:

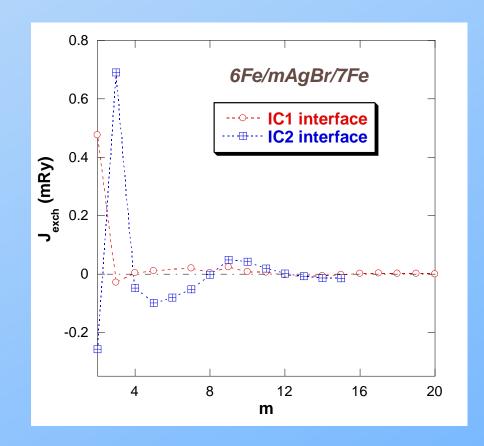
NaBr C1 interface small positive, $3 \le m \le 8$ exponential decay C2 interface negative, $m \le 6$

Negative $k_F^2 < k_F^\uparrow k_F^\downarrow$ Positive $k_F^2 > k_F^\uparrow k_F^\downarrow$ k_F in the barrier $k_F^\uparrow, k_F^\downarrow$ vawe vector in magnetic electrode (Fe) $k_F^2 \propto \sqrt{U_{eff}}$; depends on barrier height k_F high in C1 interfaces small in C2 interfaces

AgBr oscillatory:

thin barrier m < 2 C1 interfaces

m < 4 C2 interfaces


J_{exch}

positive

Larger amount of MIGs near interfaces

Damped oscillations:

related: small barrier height

Spin dependent transport properties

6Fe/mNaBr/7Fe

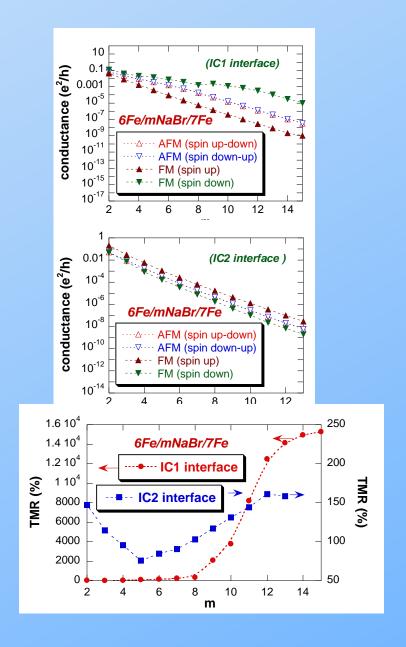
Exponential decay with barrier thickness:

Dominant contributions

C1 interface

FM (spin down) with change in slope m=8

C2 interface


near the same contributions for all spin channels

Tunneling magnetoresistance:

High TMR

C1 interface, m > 11, $\approx 10^4$ %

C2 interface $\approx 10^2 \%$

k_{II}-resolved conductances

Transmission across a planar junction described by complex band structure of barrier

 \bigcup

Interface: wave vector split in: k_{\parallel} conserved during scattering

k_z along the transmission direction

Inside barrier band gap $k_z = q+i$; the imaginary part i describes exponential decay of the corresponding evanescent state.

Transmission probability for k_{\parallel} T \propto exp(-2kd), d –barrier thickness.

Presence of tunneling across the NaBr(AgBr) barrier: confirmed by exponentially decay of conductances in the asymptotic region.

Conductances

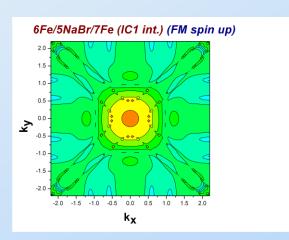
Majority spin (up) conductances

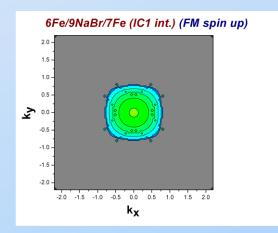
FM conductances: free electron-like with broad and large transmission maximum at $\overline{\Gamma}$ point. Conduction determined by Δ_1 states

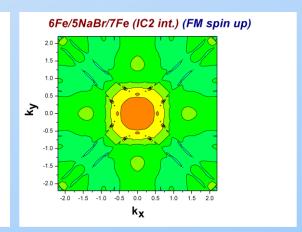
NaBr: conduction band minium, at the center of Brillouin zone occurs at Γ_1 point, while the top valence band occurs at the Γ_{15} point

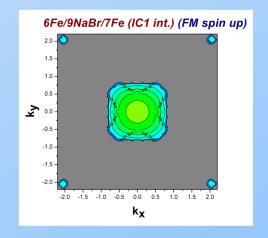
Bottom of the conduction band and the top of valence band will be connected by purely imaginary band with Δ_1 symmetry

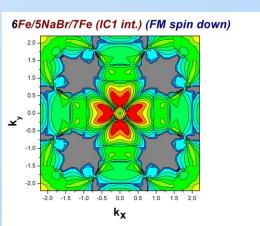
lower Δ_1 decay parameter

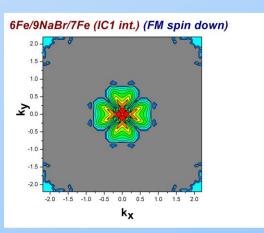

States with other symmetrical decay much faster(negligible contribution to tunneling)

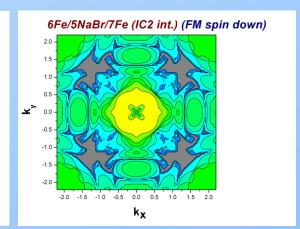

 Δ_1 channel: only direct tunneling channel across NaBr(AgBr) barriers

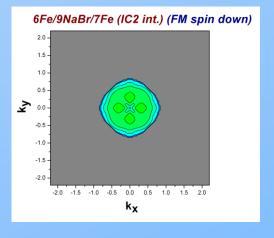

Minority-spin FM and AFM conductances

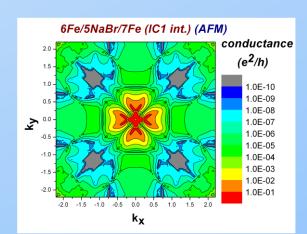

Dominated by hot-spots or spike-like peaks around $\overline{\Gamma}$ point Spikes:

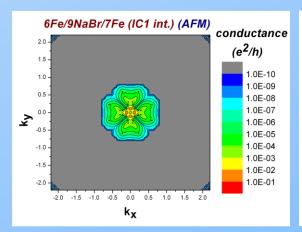

- originate from the minority-spin interface resonant states
- increase the transmission by resonant tunneling

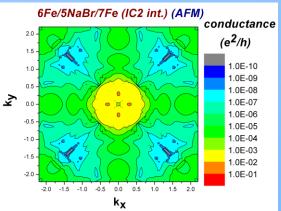


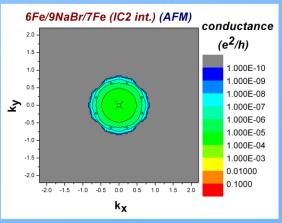










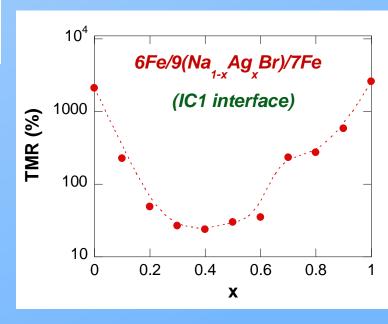


Transport properties of Fe/Na_{1-x}Ag_xBr/Fe MTJ

C1 interface Conductances

FM conductances

spin down, dominates at x < 0.2 spin up, dominates at x > 0.8


0.01 conductance (e²/h) IC1 interface $6Fe/9(Na_{1-x}Ag_xBr)/7Fe$ 10⁻⁶ AFM (spin up-down) AFM (spin down-up) 10⁻⁸ FM (spin down) 10⁻¹⁰ 0.2 0.4 0.6 8.0 0 X

Intermediate region near the same for spin down and spin up

TMR

 $>10^3$ % for x =0 or 1

decrease in intermediate region

CONCLUSIONS

- Fe/NaBr(001) and Fe/AgBr(001) interfaces are stable both for C1 and C2 interfaces
- Interfacial iron's magnetic moment enhanced over bulk value
- Exchange coupling along a barrier
 6Fe/mNaBr/7Fe C1 and C2 interfaces
 decrease up to m=6. From m>6 is nill
 6Fe/mAgBr/7Fe C1 and C2 interfaces
 oscillatory

Attractive in the context of magnetoelectronics.

Spin dependent transport properties

	resonant tunnel	ing mechanism	
TMR	6Fe/mNaBr/Fe	C1: 5·10 ⁴ %	for m > 12
		C2: 1.5·10 ² %	for m > 10
	6Fe/mAgBr/Fe	C1: 3·10 ³ %	for m > 8
	_	C2: 2·10 ² %	

ACKNOWLEDGMENTS

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI), grant no. PN-II-ID-PCE-2012-4-0028.

Thank you very much for your attention