MAGNETIC AND ELECTRICAL PROPERTIES OF Ca₂Fe_{1-x}Ni_xMoO₆ DOUBLE PEROVSKITES

I. Balasz-Muresan, A. Farcas and E. Burzo

Faculty of Physics, Babes-Bolyai University, RO-400084, Cluj-Napoca, Romania

To obtain information of magnetic and electrical properties of $Ca_2Fe_{1-x}Ni_xMoO_6$ double perovskites, were studied by X-rays, magnetic measurements and resistivities.

Ca₂FeMoO6

INTRODUCTION ________

> A₂B'B"O₆, where A is an alkaline-earth, the transition-metal sites are occupied randomly by cations B' and B" >Ca₂FeMoO₆ is ferromagnetic compound with magnetic transition temperature $T_c \approx 377 \text{ K}$ [1] > The nickel will change the physical properties of the

- $ightharpoonup Ca_2Fe_{1-x}Ni_xMoO6$ with $x \le 0.2 \Rightarrow$ prepared by solid state reaction. The samples were sintered at 1250°C in a stream of 3% of H_2/Ar during 4 hours.
- \succ X-ray diffraction analyses \Rightarrow all the samples shows only one phase (Bruker D8 Advance AXS diffractometer with Cu Ka radiation)
- Magnetic measurements \Rightarrow in magnetic fields $\mu_0 H \le 12*10^4$ Oe and $4.2 \le T \le 500$ K (Oxford Instruments)
- \triangleright Resistivity measurements \Rightarrow with conventional four probe method, in 4 K \leq T \leq 290 K and magnetic fields $\mu_0 H \leq 7*10^4$ Oe (Oxford Cryogenic Limited System)

RESULTS AND DISCUSSION

 \nearrow XRD \Rightarrow the samples crystallize in a monoclinic lattice of P2₁/n type [1,2]. All lattice parameters increase when the when Ni content is higher. The above behavior can be correlated with a greater radius of Ni²⁺(0.83 Å) ion, as compared to those of Fe^{2+} (0.75 Å) or Fe^{3+} (0.69 Å) ones.

Fig. 1. Monoclinic lattice (P2₁/n) of Ca2Fe1-xNixMoO6

Table 1.	a (Å)	b (Å)	c (Å)	β (0)	Cry Size (nm)	$V (Å^3)$
Ca ₂ FeMoO ₆	5.4139	5.5223	7.7058	90.034	235.2	230.379
$Ca_{2}Fe_{0.9}Ni_{0.1}MoO_{6}$	5.4158	5.5298	7.7125	89.955	250.3	231.209
$Ca_{2}Fe_{0.8}Ni_{0.2}MoO_{6}$	5.4254	5.5486	7.7211	90.157	240.2	232.428

 \gt Magnetic measurements \Rightarrow at 4.2 K the magnetizations decrease when the nickel content increases. The above behavior can be correlated with the change of the proportion of iron valence state, from Fe3+ to Fe2+. Spin-glass behavior was observed at low temperatures (Fig. 3).

Fig. 2. Magnetization isotherms at 4.2 K.

Fig. 3. The ZFC and FC magnetizations for Ca₂FeMoO₆ in field of 500 Oe.

\triangleright Resistivity measurements (1) \Rightarrow The magnetoresistivities of Ca₂Fe_{1-x}Ni_xMoO₆ (Fig. 4.). The experimental data were analyzed by considering the contributions of the intergrain tunneling magnetoresistence (ITMR) between grains and intra-grain magnetoresistence.

Fig. 5. the temperature dependences of resistivity in O T field

> Resistivity measurements (2) \Rightarrow Network of tunnel junctions, whose electrodes are ideal perovskite grains and an insulating oxid layer separating each one

 $\Delta \rho / \rho_0 = -P^2 m_o (H)^2 [1 + P^2 m_o (H)^2]^{-1} - bH$

where $m_a(H)$ is the magnetization from the disordered region over the grain boundaries, P the polarization and respectivelly the -bH the intra-grain contribution to magnetorezistence [2]. Assuming a spin glass model, with weak anisotropy field, the $m_a(H)$ behaviour can been described

by the relation: $m_a(H) = (1 - aH^{-1/2})[2]$. Ca₂FeMoO₆ - 290 K - 10 K μ₀H*10⁴ (Oe)

Fig. 6. The field dependences of the magnetoresistivities at 10 and 290 K. By solid lines are plotted the prediction of the above relation with parameter P, b and a given in Fig. 7.

0.008

Fig. 7. Temperature dependences of the spin polarization P, spin disorder coefficient b and parameter a, proportional to exchange anisotropy and reciprocal exchange strength, respectively.

CONCLUSSION

The substitution of iron with nickel in Ca₂FeMoO₆ decrease the magnetic interaction and also the transport properties!!!

REFERENCES

[1] Asok Poddar, R. N. Bhowmik and I. Panneer Muthuselvam, JOURNAL OF APPLIED PHYSICS 108 (2010) 103908

[2] E. Burzo, I. Balasz, M. Valeanu and I.G. Pop, J. Alloy. Compd. 509 (2011) 105

Acknowledgements

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI),

grant no. PN- II- ID- PCE-2012- 4- 0028.