MAGNETIC AND MAGNETOCALORIC PROPERTIES OF $(Er_{1-x}Y_{x})Co_{2}$ COMPOUNDS

István BALASZ-MURESAN, Izabela BALASZ, Liviu CHIONCEL* and Emil BURZO

Faculty of Physics, Babes-Bolyai University, RO-400084, Cluj-Napoca, Romania

*Institut für Physik, Universisty Augsburg, 86135 Augsburg, Germany To obtain information of physical properties of $(Er_{1-x}Y_x)Co_2$ compounds,

were studied by X-rays, magnetic measurements and band structure calculations.

> The rare earth - transition metal intermetallic compounds

> (Er_{1-x}Y_x)Co₂ with x \leq 0.3 \Rightarrow in an induction furnace, under high purity argon

R-TM (R - rare earth; TM - transition metal) exhibit a rich number of challenging physical phenomena [1]

> ErCo₂ is ferrimagnetically ordered compound with magnetic transition temperature $T_c \approx 35$ K [1]

 \succ The ytrium will change the physical properties of the ErCo₂.

atmosphere.

 \rightarrow <u>X-ray diffraction analyses</u> \Rightarrow all the samples shows only one phase (Bruker D8) Advance AXS diffractometer with Cu K α radiation)

 \rightarrow <u>Magnetic measurements</u> \Rightarrow in magnetic fields $\mu_0 H \leq 12^*10^4$ Oe and $4.2 \leq T \leq 500$ K (Oxford Instruments)

RESULTS AND DISCUSSION

 $ightarrow XRD \Rightarrow (Er_{1-x}Y_x)Co_2$ compounds with x ≤ 0.3 crystallize in a cubic MgCu₂-type structure [1]. The lattice parameters, determined at room temperature, show a Veguard-type dependence.

 \blacktriangleright Magnetic measurements (1) \Rightarrow The temperature dependences of magnetizations of zero field cooled (ZFC) and field cooled (FC) Ero, 740, 3Co2 compound is given in Fig.3. The compounds are ferrimagnetically order - Fig.4.

Fig. 1. Cubic MgCu₂-type structure of ErCo₂

Fig. 2. Lattice parameters of $Er_{1-x}Y_{x}Co_{2}$

 \rightarrow Magnetic measurements (2) \Rightarrow The cobalt moments determined from saturation data ($H \le 12$ T, T = 4.2 K) decrease when Y content is higher-Fig. 5.

Fig.6. Reciprocal susceptibilities in $Er_{1-x}Y_{x}Co_{2}$

The reciprocal susceptibilities follows non-linear characteristic for a ferrimagnetic system – Fig. 6.

> Magnetic measurements (4) \Rightarrow The computed entropy changes, ΔS , for the $Er_{0,1}Y_{0,9}Co_2$ compound is plotted in - Fig. 9. The $-\Delta S_{max}$ values follow a H^{2/3} type [3] dependence as expected in mean field model - Fig. 10. The specific renormalized power in a field H < 2.25 T an only constant for a given composition decrease from 60 J/kg*T (x=0) to 12 J/kg*T (x=0.2).

 \rightarrow Magnetic measurements (3) \Rightarrow Assuming that the effective erbium moment is given by its free ion value [2], the contributions of cobalt atoms to the Curie constants were determined. The effective cobalt moments, $M_{eff}(Co)$, decrease little in the investigated composition range - Fig.7. The ratio $r = S_p/S_o$ between the number of spins determined from effective cobalt moment and saturation one can be founded in spin fluctuation $(r \propto T_c^{-2/3})$ model - Fig 8.

effective cobalt moments and Curie temperatures

Fig. 9. Magnetocaloric effect for $Er_{0.9}Y_{0.1}Co_2$

Fig. 10. $-\Delta S_{max}$ for $Er_{1-x}Y_{x}Co_{2}$

CONCLUSSION

The substitution of erbium with ytrium in ErCo₂ decrease the magnetic interaction and also the magnetocaloric effect!!!

REFERENCES

[1] E. Burzo, A. Chelkovski & H. R. Kirchmayr, Compounds of rare-earth elements and 3d elements.Landolt Börnstein Handbook, vol. 19d2, Springer Verlag, (1990). [2] E.Burzo, Int. J. Magn. 3, 171 (1972) [3] Q.Y.Dong, H.W.Zhang, J.L.Shen, J.R.Sun, B.G.Shen, J. Magn. Magn. Mater. 319, 56 (2007)

Acknowledgements

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI),

grant no. PN-II-ID-PCE-2012-4-0028.