resistive systems with perpendicular magnetic anisotropy, with the aim of identifying the magnetization orientation through an electrical signal. We measure the all-optical switching in Pt/Co/Pt and Tb$_2$Co$_2$ based Hall crosses via the anomalous Hall effect. This new way of probing the all-optical switching enables a statistical quantification of the switching ratio for different laser parameters. We will present results on hall crosses for both ferrimagnetic and ferromagnetic materials.

Magnetic behaviour of RCo$_2$ compounds where R is a heavy rare-earth

Emil Burzo
Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania

Above the Curie temperatures, in an external field, the magnetic moments of rare earths and cobalt atoms, in RCo$_2$ (R = Tb, Ho, Er, Tm) compounds, are antiparallelly oriented. Some authors correlated this behaviour with the occurrence of short-range magnetic order [1]. Staring from polarized neutron studies, magnetic measurements and band structure calculations, no evidence of magnetically ordered clusters was shown in ferrimagnetic RCo$_2$ compounds, at $T > T_c$. The relative orientations of R and Co moments are determined by the balance between exchange and thermal energies, as well as that involved by interactions with external fields. The nature of the quantum critical fluctuations was studied. The Grüneisen exponent is in agreement with the 3D-SDWQCP prediction, located at the magnetic transition temperature, T_c.