MAGNETIC AND MAGETOCALORIC PROPERTIES OF (Er$_{1-x}$Y$_x$)Co$_2$ COMPOUNDS

Istvan BALASZ-MURESAN1, Izabela BALASZ1, Emil BURZO1

1 Faculty of Physics, Babes-Bolyai University 40084 Cluj-Napoca, Romania

The (Er$_{1-x}$Y$_x$)Co$_2$ compounds with x ≤ 0.3 crystallise in a cubic MgCu$_2$-type structure. The compounds are ferromagnetically ordered. The magnetic transitions are of first order for compounds with x ≤ 0.1 – Fig.1 – and for higher Y content of second order. The reciprocal susceptibilities follow non-linear temperature dependences. The entropy changes, ∆S, have been determined from magnetizations isotherms by using Maxwell relation. High magnetocaloric effect has been observed in compounds which show first order magnetic transition. As example, Er$_{0.9}$Y$_{0.1}$Co$_2$, a value ∆S=−28 J/kg K was observed at T≈30 K, in field of 2.25 T- Fig.2.

The ∆S$_{\text{max}}$ values increase with external field, according to a Hn law, in fields H > 1 T, in agreement with the prediction of mean field theory. The magnetocaloric effect is strongly diminished in compounds which show a second order magnetic transition.

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI), grant no. PN-II-ID-PCE-2012-4-0028.