



#### **Crystal Structures, Magnetic and Transport Properties of Calcium Based Perovskites**

#### E. Burzo Faculty of Physics, Babes-Bolyai University, 400084, Cluj-Napoca

Double perovskites

 $Ca_2Fe_{1-x}Ni_xMoO_6$   $x \le 0.2$ 

 $Ca_{1.5}La_{0.5}FeMo_{1-x}W_{x}O_{6}$   $x \le 0.3$ 

Preparation: Solid state reaction

- mixed powders calcinated in argon atmosphere at 900 °C
- pelletized
- sintered at 1300 °C, 8 h in argon with 3 % hydrogen

#### 1. Crystal structure

 $\begin{array}{ll} \mathsf{Ca}_{1.5}\mathsf{La}_{0.5}\mathsf{FeMo}_{1\text{-}x}\mathsf{W}_x\mathsf{O}_6 & x \leq 0.3 \\ & \text{monoclinic }\mathsf{P2}_1/n \text{ type structure} \\ \mathsf{Ca}_2\mathsf{Fe}_{1\text{-}x}\mathsf{Ni}_x\mathsf{MoO}_6 \\ & x \leq 0.2 \text{ solid solutions} \\ & \mathsf{P2}_1/n \text{ space group} \end{array}$ 



Crystal structure



#### Lattice parameters increase with x





#### Ca<sub>2</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>MoO<sub>6</sub>

### monoclinic $P2_1/n$ space group

 $(x \le 0.2)$ 



Antisite content increases with Ni<sup>2+</sup> substitutions

#### $Ca_{1.5}La_{0.5}FeMo_{1-x}W_{x}O_{6}$ monoclinic P2<sub>1</sub>/n space group (x ≤ 0.3)



Crystallographic ordering increases with W content

#### 2. Magnetic properties

Ca<sub>2</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>MoO<sub>6</sub>

- cluster glass behaviour superposed on essentially ferrimagnetic ordering
- moderate irreversibility T  $\leq$  240 K





H > 20 kOe Magnetic moments of clusters aligned

Magnetic moments at B and B' sites antiparalelly oriented

$$\begin{array}{ll} x \leq 0.2 & \Delta M_s = -0.12 \ \mu_B \\ \Delta M_s = -0.6 \ \mu_B / \text{Ni atom} \end{array} \end{array}$$

 $Ca_{1.5}La_{0.5}FeMo_{1-x}W_{x}O_{6}$ cluster glass on mainly ferrimagnetic behaviour





#### Magnetic saturation ↓ at lower fields as W content increases



 $\Delta M_s \cong +3.5 \ \mu_B/W \text{ atom} \\ \downarrow \\ \text{increase degree of ordering} \\$ 

 $\begin{array}{l} {\sf Ca_2FeMoO_6} \\ {\sf T} > {\sf T}_{\sf C} \\ \chi^{-1} = -85 + \frac{{\sf T}}{3.58} - \frac{3530}{{\sf T}-390} \\ {\sf N}\acute{{\sf e}}{\sf l}{\sf -type} \ {\sf dependence} \\ {\sf \bullet} \quad {\rm ionic\ model} \\ {\sf C}{=}{\sf x}{\sf C}_{{\rm Fe}^{2+}}{\sf +}(1{\sf -x})\ {\sf C}_{{\rm Fe}^{3+}}{\sf +}(1{\sf -x})\ {\sf C}_{{\rm Mo}^{5+}} \end{array}$ 

#### **Exchange interactions**

66 % Fe<sup>2+</sup>; 34 % Fe<sup>3+</sup>; 34 % Mo<sup>5+</sup>

$$\chi^{-1} = \chi_0^{-1} + TC^{-1} - \sigma(T - \theta)^{-1}$$
  
C-Curie constant,  $\chi_0$ ,  $\sigma$ ,  $\theta = f(J_{BB'}, J_{B'B'}, J_{BB})$ 



## $\begin{array}{c} Ca_2Fe_{1-x}Ni_xMoO_6\\ \text{Distribution of ions in B and B' sites}\\ \downarrow \end{array}$

- number of antisites Mo<sup>5+</sup> in B site
- number of ions in different valence states
- nickel has +2 valence state

to fit the saturation magnetization at T = 4 K

- Fe<sup>2+</sup> ions only B sites
- Ni<sup>2+</sup> replaces Fe<sup>2+</sup> up to x = 0.1 in B sites, then located also in B' ones
- Fe<sup>3+</sup> ions mainly in B site; small fraction in B'
   ↓

good agreement with measured values



$$\begin{array}{c} \chi^{-1} = \chi_{0}^{-1} + TC^{-1} - \sigma(T - \theta)^{-1} \\ J_{BB'}, J_{BB} \text{ negative values} \\ J_{BB} = -270 \ (x = 0), -190 \ (x = 0.3) \\ \downarrow \end{array}$$

diminution of cluster glass contribution

$$J_{BB'}$$
 = -130 (x = 0), -170 (x=0.3  
 $\downarrow$   
increase T<sub>C</sub> values



Ca<sub>1.5</sub>La<sub>0.5</sub>FeMoO<sub>6</sub>: 70 % Fe<sup>2+</sup>, 68 % Mo<sup>5+</sup> increasing W content to x = 0.3  $\downarrow$ increase number o Fe<sup>2+</sup> by 10 % decrease number of Mo<sup>5+</sup> by 19 %

#### 3 Transport properties 3.1 Resistivities



#### metallic

Resistivities increases with x  $\downarrow \downarrow$ Fe<sup>3+</sup>+Mo<sup>5+</sup>  $\rightarrow$  Ni<sup>2+</sup>+Mo<sup>6+</sup>  $\rho \propto T^2$  40 K  $\leq T \leq 300$  K  $\frac{\partial \rho}{\partial T^2} = 0.82 \cdot 10^{-6} (x=0); 0.69 \cdot 10^{-6} (x=0.1)$   $= 0.024 \cdot 10^{-6} (x=0.2) \Omega \text{ cm K}^{-2}$ electron-electron scattering electron-magnon  $Ca_{1.5}La_{0.5}FeMo_{1-x}W_{x}O_{6}$ 



Resistivities increase with x: higher W<sup>6+</sup> content for x = 0.3; 18 K < T < 160 K Variable range hopping (VRH)  $\rho \propto T^{1/4}$ Semiconducting-metallic transition at T<sub>sm</sub>=204 K (x = 0); 221 K (0.1) = 249 K (x = 0.3)

#### 3.2 Magnetoresitivities

Ca<sub>2</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>MoO<sub>6</sub> Contributions:

- intergrain tunneling magnetoresistance (ITMR) across a single barrier
- $MR_{I} = -Pm(H)^{2}[1-Pm(H)^{-2}]^{-1}$
- P polarization degree
- m(H) approach to saturation near grain boundary (spin glass) m(H) =  $(1-aH^{1/2})$
- intragrain magnetoresistance spin disorder inside grains  $MR_{H}$ =-bH

$$MR = MR_{I} + MR_{H}$$



Model describes good experimental data P = 41 % at 10 K P = 10 % at 300 K





















## CONCLUSIONS

Crystal structure

Ca<sub>2</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>MoO<sub>6</sub> monoclinic  $P_2 1/n$  $x \le 0.2$  $Ca_{15}La_{15}FeMo_{1x}W_{x}O_{6}$   $x \le 0.3$ 

Magnetic properties: ferrimagnetic with small cluster glass contribution



- Resistivities
  - → metallic type  $Ca_2Fe_{1-x}Ni_xMoO_6$ ;  $\rho$  increases with x:  $Fe^{3+}-Mo^{5+} \rightarrow Ni^{2+}+Mo^{6+}$
  - > semiconductor-metallic transition  $Ca_{1.5}La_{0.5}FeMo_{1-x}W_xO_6$  (T  $\cong$  200 K)
- Magnetoresistivities
  - > intergrain tunneling
  - > intragrain disorder

Polarization higher in  $Ca_{1.5}La_{0.5}FeMo_{1-x}W_xO_6$ 

 $\downarrow$ 

10 K increases with ordering degree 40 % (x = 0)  $\rightarrow$  51 % (x= 0.3)

 $Ca_2FeMo_{1-x}Ni_xO_6$  x = 0; P = 41 %

decreases with increasing antisite positions

#### ACKNOWLEDGMENTS

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI), grant no. PN-II-ID-PCE-2012-4-0028.

# Thank you very much for your attention