MAGNETIC AND MAGETOCALORIC PROPERTIES OF (Er_{1-x}Y_x)Co₂ COMPOUNDS

<u>Istvan BALASZ-MURESAN¹</u>, Izabela BALASZ¹, Emil BURZO¹

¹ Faculty of Physics, Babes-Bolyai University 40084 Cluj-Napoca, Romania

The $(Er_{1-x}Y_x)Co_2$ compounds with $x \le 0.3$ crystallise in a cubic MgCu₂-type structure. The

compounds ate ferrimagnetically ordered. The magnetic transitions are of first order for compounds with $x \leq 0.1 - \mathrm{Fig.1} - \mathrm{and}$ for higher Y content of second order. The reciprocal susceptibilities follow non-linear temperture dependences.

The entropy chnages, ΔS , have been determined from magnetizations isotherms by using Maxwell relation. High

magnetocaloric effect has been observed in compounds which show first order magnetic transition. As example, Er_{0.9}Y_{0.1}Co₂, a value Δ S=-28 J/kg K was observed at T \cong K, in field of 2.25 T- Fig.2.

The ΔS_{max} values increase with external field, according to a H^n law, in fields H>1 T, in agreement with the predicition of mean field theory. The magnetocaloric effect is strongly diminished in compounds which show a second order magnetic transition.

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI), grant no. PN-II-ID-PCE-2012-4-0028.