Electronic properties of Fe/LiF(LiBr)/Fe magnetic tunnel junctions

E.Burzo and P.Vlaic Faculty of Physics, Babes-Bolyai University Cluj-Napoca

- 1. Computing method
- 2. Structural stability
- 3. Ground state electronic and magnetic properties
- 4. Interlayer exchange coupling
- 5. Spin-polarized transport properties
- 6. Interdifusion at Fe/LiF/Fe interfaces
- 7. Conclusions

1. Computing method

Ground state electronic structure and magnetic properties of semiinfinite Fe(001)/nFe/mLiF(LiBr)/nFe(001)/semi infinite Fe(001) studied by:

- First-principles, scalar-relativistic and spin polarized surface Green's function technique implemented within the TB-LMTO method in ASA approximation, together with CPA in order to describe the disorder effects like the intermixing at interfaces.
- exchnage correlation potential considered in the LSDA by means of Vosko-Wilk-Nusair parameterization.
- > spin-resolved ballistic conductances in the CPP geometry at T = 0 K and zero-bias, calculated within TB-LMTO-CPA formalism and including the vertex corrections.
- > tunneling magnetoresistance ratios TMR = $(\sigma_{FM} \sigma_{AFM})/\sigma_{AFM}$ expressed by the asymetry of FM and AFM conductances

2. Structure

- BCC structure considered for Fe electrodes
- rock salt structure for LiF and LiBr

$$a_{LiF} = 4.02 \text{ Å},$$

$$a_{liBr} = 5.5 \text{ Å}$$

$$a_{LiBr} = 2a_{Fe}$$

$$a_{LiF} = \sqrt{2}a_{Fe}$$

LiF, LiBr epitaxially fit bcc Fe structure

LiF insulator direct band gap 13.6 eV

LiBr insulator direct band gap 8 eV

Fe/LiF(LiBr)/Fe MTJ feasible heterostructures for spintronic applications

Due to open structure of LiF, to fulfil ASA space filling requirement two empty spheres (ES) at interstices positions at Fe/LiF (100) interface; Fe located atop of F

Model interfaces

Fe atoms located above Li(Br) sites

Fe atoms located above F atoms

Band structure LiF

Stable configuration

Equilibrium lattice constant 3.78 Å smaller by 5.3 % than experimental value 4.02 Å

Band structure for equilibrium lattice parameter

LiF

Direct band gap $E_g = 9 \text{ eV}$

Interface stability

Fe/LiF (001)

Relative to Fe lattice constants

IC_{Fe-F} Fe/LiF (001) interface with Fe atoms located atop F ones – Fig.a Fe magnetic moments at interface: enhanced over the bulk value – Fig.b.

Fe/LiBr(001) interface

Stable for Fe atoms located both above Li and Br sites

Interface stability as effect of mixing

Interdiffusion of Li and F, respectively at Fe/LiF interfaces

IC_{Fe-F} interface

Interfacial layers having compositions

$$Fe_2(Fe_1)_{1-x}F_x/F_{1-x}Fe_xLi$$
; $Fe_2(Fe_1)_{1-x}Li_x/Li_{1-x}Fe_xF$
Configuration 6Fe/5LiF/6Fe

F-Fe intermixing: Fe interdiffusion: E_{tot} (AFM, FM): increase up to x = 0.6 and then decrease Li-Fe intermixing: Li interdiffusion: E_{tot} (AFM, FM): increases

F interdiffusion (interstitial): E_{tot} (FM, AFM) decreases at x < 0.5 and then increases

Li interdiffusion (interstitial): E_{tot} (FM, AFM) increases up to x = 0.6 and then decreases

Magnetic properties:

F and Li interdiffusion (interstitial)

Fe magnetic moments: decrease in the slab, when x increases

Fe and Li interdiffusion (mixing)

Fe magnetic moments:

decrease at Fe barrier

increase in the Fe slab

when x increases

IC_{Fe-I} interface

ΔE total (Ry)

0.2

6Fe/5LiF/6Fe

 $Fe_{2}(Fe_{1})_{1-x}F_{x}/F_{1-x}Fe_{x}Li$

0.4

0.2

2.2

 $Fe_2(Fe_1)_{1-x}Li_x/Li_{1-x}Fe_xF$

Decreasing total energy for both FM and AF configurations for x < 0.5

F interdiffusion (interstitial)

Increasing total energy both for AF and FM configurations

F interdiffusion (Li-Fe intermixing)

Fe interdiffusion (F-Fe intermixing) $x \le 0.6$

Li interdiffusion (interstitial) x < 0.5

Magnetic properties

Interdiffusion (F-Fe, Li-Fe intermixing)

M_{Fe} at barrier decreases with x

M_{Fe} in the slab increases with x

Interdiffusion (F and Li interstitial)

M_{Fe} decreases with x

3. Charge transfer and magnetic properties

Layered- and atom-resolved spin-polarized DOS 6Fe/5LiF/6Fe heterostructure

IC_{Fe-F} Fe/LiF(001)

Away from interface, Fe (I-2):

DOS of Fe bulk-like with partially filled majority-spin 3d sub-band

E_F located at a dip in the minority –spin 3d sub-band

At interface Fe(I):

DOS modified: lower coordination number of Fe atoms and interaction with LiF interfacial layer: majority-spin subbands almost fully occupied.

Metal induced gap states (MIGs) in LiF barrier near interfaces.

IC_{Fe-Li} Fe/LiF(001)

- minority-spin interface states: slightly displaced at lower energy
- peak in DOS appears at E_F

Iron (metal) induced gap states (MIGs) in LiF barriers near interfaces on both Li, F ions

Fe/LiF (001) interfaces practically metallic Departing from interface: isolating character recovered

Atom and orbital resolved interfacial DOS at IC_{Fe-F and} IC_{Fe-Li} interfaces

MIGs:

- majority-spin state around E_F mainly due to s electrons of cationic sites and p electrons of anionic sites
- minority-spin state, more localized, peak around E_F
 largest contribution from p- and d-electrons

at interface

minority spin: predominantly: conduction band character for Li ions valence band character for F ions

majority spin: valence band for both ions

Charge transfer and magnetization profiles IC_{Fe-F} and IC_{Fe-I i} interfaces

Charge transfer

 IC_{Fe-F} Fe(I) – 0.46 e

 IC_{Fe-Ii} Fe(I) - 0.41 e

difference: higher electronegativity of F

Charge modulation of interfacial

Fe(IC_{Fe-F}) atoms

₩

charge modulation in the interfacial iron layer

 \downarrow

stabilization of IC_{Fe-F} interface

F (IC_{Fe-F}) decrease by 0.033 e from $\Delta q(LiF)$ 0.325 e

F (IC_{Fe-Li}) decrease by 0.037 e from $\Delta q(LiF)$ 0.315 e

Li (IC_{Fe-F}) increase by 0.02 e from -0.62 e

Li (IC_{Fe-Li}) increase by 0.03 e from -0.633 e

Magnetic moments

Interfacial iron moment: enhanced over bulk value

Fe (
$$IC_{Fe-F}$$
) $M_{Fe} = 2.85 \mu_B$

Fe (IC_{Fe-Li})
$$M_{Fe} = 2.81 \mu_{B}$$

Small positive polarizations induced on F and Li

Li (IC_{Fe-Li})
$$M_{Li} = 0.0075 \ \mu_B$$

$$z = 3, 6$$

$$M_F = 0.0185 \ \mu_B$$

$$M_{Li}, M_F = 0 \ \mu_B$$

$$4 \le z \le 5$$

4. Interlayer exchange coupling

$$J_{\text{exch}} = E_{\text{tot}}^{\text{AFM}} - E_{\text{tot}}^{\text{FM}}$$

6Fe/mLiF/6Fe: no exchange coupling

6Fe/mLiBr/6Fe: small ferromagnetic coupling, decreasing exponentially with barrier thickness

5. Spin polarized electronic transport properties

6Fe/mLiF/6Fe heterostructure

IC_{Fe-F}, IC_{Fe-Li} interfacial configuration

Largest contributions: FM conductance with spin down electrons IC_{Fe-F} , IC_{Fe-Li} ; exponentially decay

Identical contributions: AFM conductances with spin-up and spin-down electrons

Smallest contributions: FM conductance with spin-up electrons

All decrease exponentially with barrier thickness

Tunneling magnetoresistance

 IC_{Fe-F} : TMR increases with barrier thickness with change in slope at m = 3

 IC_{Fe-Li} : TMR increases up to m = 5, followed by a decrease

TMR of 500 % predicted for IC_{Fe-F} (most stable) interface

Fe/nLiBr/Fe heterostructure

Conductances:

largest contribution: FM with spin down electrons; decreases nearly exponentially with a change in slope at n = 11.

smallest contribution: FM with spin-up electrons

identical contributions: AFM with spin-up and spin-down electrons

High increase of TMR at n = 11 asymptotic region (n > 11) TMR \cong 3.2 ·10⁴

Transmission across a planar junction described by complex band structure of barrier

 \bigcup

Interface: wave vector split in: k_{\parallel} conserved during scattering

k_z along the transmission direction

Inside barrier band gap $k_z = q+i$; the imaginary part i describes exponential decay of the corresponding evanescent state.

Transmission probability for $k_{||}$ $T \propto exp(-2kd)$, d –barrier thickness.

Presence of tunneling across the LiF(LiBr) barrier: confirmed by exponentially decay of conductances

$k_{\rm II}$ – partial resolved conductances of 6Fe/5LiF/6Fe (IC_{Fe-F}, IC_{Fe-Li}) Reciprocal vector $\pi/\sqrt{2}a_{\rm Fe}$

Majority-spin FM conductances: free electron-like with broad peak and large transmission maximum at $\overline{\Gamma}$ point. Conductance determined by Δ_1 states.

At center of Brillouin zone

conduction band minimum of LiCl(LiBr) occurs at Γ_1 point, top valence band occurring at Γ_{15}

Bottom conduction band and top of valence band connected by purely imaginary band Δ_1 symmetry

lower Δ_1 decay parameter

States with other symmetries decay much faster

 Δ_1 channel \rightarrow only direct tunneling channel across LiF (LiBr) barriers.

Minority-spin FM and AFM conductances dominated by hot-spots or spike-like peaks around $\overline{\Gamma}$ point.

Spikes: originate from minority-spin interface resonant states; increase the transmission by resonant tunneling.

6. Interdiffusion at Fe/LiF/Fe interface

IC_{F-Fe} interface

 $Fe_2(Fe_1)_{1-x}F_x/F_{1-x}Fe_xLi$ interdiffusion

Fe₂(Fe₁)_{1-x}Li_x/Li_{1-x}Fe_xF interdiffusion

F-Fe intermixing

FM, AFM conductances increase with x

TMR decrease up to x = 0.15; for x > 0.15 nearly constant

Li-Fe intermixing

FM (spin up), AFM increase up to x = 0.5; constant at x > 0.5

FM (spin down) increases with x

TMR decreases up to x = 0.15; x > 0.15 nearly constant

F interstitial

FM, AFM conductances increase

TMR decreases in irregular fashion

Li interstitial

FM, AFM conductances decrease up to x = 0.2; $0.2 \le x \le 0.7$ nearly constant, x > 0.7 irregular variation

IC_{Li-Fe} interface

F-Fe or Li-Fe interdiffusion (intermixing, interstitial)

$$Fe_{2}(Fe_{1})_{1-x}Li_{x}/Li_{1-x}Fe_{x}F$$

 $Fe_{2}(Fe_{1})_{1-x}F_{x}/F_{1-x}Fe_{x}Li$

F-Fe intermixing

FM conductances increase with x

AFM conductances, decrease up to x = 0.05 and then increase

TMR decreases up to x = 0.1 and then constant, TMR = 10^2

Fe-Li intermixing

FM and AFM conductances increase up to x = 0.3 and then nearly

constant

TMR decreases for x < 0.1; x > 0.1 nearly constant

F interdiffusion (interstitial)

FM (spin-up) conductances increase with x

FM (spin-down, AFM total) conductances decrease up to x = 0.1, then increasing

TMR decreases gradually

Li interdiffusion (intestitial)

FM, AFM conductances decrease up to x = 0.2, increasing up to x = 0.6 and constant for $x \ge 0.6$.

TMR decreases up to x = 0.15 and then is constant.

CONCLUSIONS

Most stable interfaces:

Fe/LiF (001) interfaces: Fe atoms located atop F ones.

Fe/LiBr (001) interfaces: Fe ones located above Li and Br sites.

Interfacial iron's magnetic moments enhanced over bulk value

Fe/LiF/Fe heterostructures: no exchange coupling.

Fe/LiBr/Fe heterostructure: small ferromagnetic coupling exponentially decreasing with barrier thickness.

TMR

Fe/LiF/Fe rather small 5·10² %

Fe/LiBr/Fe high 3.3·10⁴ %

Spin dependent transport properties: resonant tunneling mechanism.

ACKNOWLEDGMENTS

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI), grant no. PN-II-ID-PCE-2012-4-0028.

Thank you very much for your attention