
Vibrational spectroscopy 

IR absorption spectroscopy  

Raman spectroscopy 

UV-Viz absorption  

Fluorescence spectroscopy 

based on optical 

principles and devices 
(Optical spectroscopy) 

Microwave spectroscopy 

Electromagnetic radiation can 

determine a molecule to change his 

energy! (rotational, vibrational, electronic) 

A lot of energy levels !!!   

 - rotational 

 - vibrational  

 - electronic 

(ground state / excited state) 

deal with molecules 

vibrations 

molecules rotations 



What is spectroscopy?  

 

     Spectroscopy study the properties of matter through its interaction with 

electromagnetic radiation (different frequency components).  

 

  Latin: “spectron”  — ghost (or spirit)  

  Greek: “σκοπειν” — (scopie = to see)  

 

     In spectroscopy, we aren’t looking directly at the molecules (the matter), 

we study its “ghost”, obtained from the interaction of electromagnetic waves 

with molecules.  

 

     Different type of spectroscopy (incident electromagnetic waves with 

different frequency/wavelength/wavenumber/energy) involve different picture 

(different spectrum).  

RMN RES Micro 

waves 

Raman 

IR 

Visible UV 
Fluorescence 

X -Ray Γ - Ray 

λ[m] 102 1 10-2 10-4 10-6 10-8 10-10 10-12 

   [cm-1] 10-4 10-2 1 102 104 106 108 1010 

ν[Hz] 3x106 3x108 3x1010 3x1012 3x1014 3x1016 3x1018 3x1020 





  

 From spectroscopy measurements we can to extract different information 

(energies of electronic, vibrational, rotational states; structure and symmetry of 

molecules; dynamic information, etc).  

 

 

Goal:  to understand: 

             - how electromagnetic radiations interacts with matter and  

             - how we can use the obtained information in order to understand the sample.  



Spectroscopy applications 

Gas Liquid Solid 

Finger print 
IR, Raman 

Microwave 

IR, Raman 

UV-Vis, MS 

NMR 

IR, Raman 

UV-Vis, MS 

X-Ray diff. 

Functional 

groups 

IR, Raman 

MS 

NMR 

IR, Raman 

MS 

NMR 

IR, Raman 

MS,  NMR 

Mossbauer 

Molecular 

symmetry 

IR, Raman 

Microwave 

e-diffraction 

IR, Raman 

MS 

NMR 

IR, Raman 

MS, NMR 

Mossbauer 

Bond distances 

Bond angles 

IR, Raman 

Microwave 

e-diffraction 

EXAFS 

LC-NMR/MS 

X-Ray diff. 

neutron diff. 

Electronic 

structure 

UV-Vis 

UPS 

ESR 

UV-Vis 

UPS 

ESR 

UV-Vis, UPS, ESR 

Mossbauer, NQR 

X-Ray diff. 

neutron diff. 

EXAFS: Extended X-Ray Absorption Fine Structure,  

MS: Mass Spectrometry,  

NQR: Nuclear Quadrupolar Resonance,  

LC-MNR/MS: Liquid Chromatograph Nuclear Magnetic Resonance Mass Spectrometer,  

UPS: Ultraviolet photoemission spectroscopy 



The basic idea: 

electromagnetic wave  

(light)  
Sample 

Characterize light after sample 

Characterize change in sample 

(photoacoustic spectroscopy)  

(borders on photochemistry) 

1 
2a 

2b 

Questions: 

What does light do to sample?  

How do we produce a spectrum?  

What does a spectrum measure? 

Interaction of light with a sample can influence - the sample  

          - the light 

(1) excitation;     (2) detection 



In vibrational spectroscopy we measure how a sample modifies the incident light, 

in order to understand what light do to the sample! 

1) Absorption:  The sample can absorb a part of incident light   

  A change in the intensity appear: emergent light differs from incident light  

  Sample attenuates  the incident light (at particular frequencies).  

     Two type of measurements: 

      → absorbance  A = log(I0/I) 

      → transmission T = I/I0  

        If we measure the absorbance of light on entire range of incident radiation, 

we will obtained the absorption spectrum.  

 

A  - frequency (Hz, 1/s) 

λ - wavelength (nm, mm) 

   - wavenumber (cm-1) 

  Microwaves absorption (involve rotational transitions) 

 Infrared absorption        (involve vibrational transitions)  

  UV-Vis absorption          (involve electronical transitions)  
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2) Emission:  

 

Excitation can induces emission of light from the sample (usually of different 

frequency from incident light!).  

(Emitted in all directions)  

same frequency: 

 Rayleigh scattering  

different frequency 

 Raman scattering  (vibrational transitions are involved)  

 Fluorescence         (emission from excited electronic singlet states)  

  Phosphorescence (emission from excited electronic triplet states)  

3) Optical Rotation:  

 Phase change of light incident on sample (rotation of polarization plane)  

 (- no spectroscopy) 



Ex  = E0sin(2·t- (2/λ)·z)                Hy = H0sin(ωt-kz) 

     angular frequency  (ω = 2π) [radians/sec] 

k       wave vector (k = 2π/λ = ω/c) 

       frequency ( = ω/2π) [sec-1, Hertz] 

       wavelength (nm, Ǻ) 

         wavenumber (cm-1) 

c       light speed (3·108 m/s) 

E      energy   (E = h·) [J] , energy can be expressed as cm-1 using E/hc! 



     An electromagnetic wave is composed from an electric field (Ex) and 

a magnetic field (Hy) that are perpendicular each other, and perpendicular 

to the direction of travel (Oz).  
 

    The wave equation for electromagnetic waves arises from Maxwell's 

equations:  
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Types of molecule motion 

  Motion of whole molecule 

 

• Translational motion: whole molecule changes 

its location in three dimensional space  

 

• Rotational motion: whole molecule spins around 

an axis in three dimensional space  

Motion within molecule 

 
• Vibrational motion: motion that changes the shape of 

the molecule (periodic motion of atoms)  

                   - stretching (bonds length deformation) 

                   - bending (bonds angle deformation) 



     A molecular vibration occurs when atoms in a molecule are in periodic motion. 

The frequency of the periodic motion is known as the vibration frequency. 

        A molecular vibration is a periodic distortion of a molecule from its 

equilibrium geometry.  

     The energy required for a molecule to vibrate is not continuous  (is quantized) and 

is (generally) in the infrared region of the electromagnetic spectrum. 

Molecular vibrations 

D-F H-F 

N2O 

H-Cl 

H2O 

asymmetrical stretching 

symmetrical stretching 

bending 

CO2 



Symmetrical 

stretching 

Asymmetrical 

stretching 
Scissoring 

 

 

 

 

 

Rocking Wagging Twisting 

 

 

 

 

 

 

 
Vibrational motion of 3 atoms group: 

Molecular vibrations can be classified in 

 -  stretching 

 -  bending  

 -  torsion (more that 3 atoms involved) 

In plane vibrations 

     - stretching 

     - scissoring 

     - rocking 

 

Out of plane vibrations 

     - wagging 

     - twisting 



http://www2.ess.ucla.edu/~schauble/molecular_vibrations.htm 

http://www2.ess.ucla.edu/~schauble/molecular_vibrations.htm


Molecular vibrations of molecules 
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        Isolated molecule →  total energy (E), linear momentum (p) and angular 

momentum (M) are constants.  
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OXYZ:   fixed reference frame               

O’x’y’z’: center of mass reference frame  



In the center of mass reference frame (CM), linear 

momentum (p) and angular momentum (M) are zero! 

0dm 






0drm 0  







Eckart conditions: 

0rrd 




Only movement which meet the Eckart conditions are vibrations! 
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relative 

speed  

(CM frame) 

α atom speed 

(fixed frame) 

- total kinetic energy  

We almost can separate the kinetic energy of the three type of molecule motion!!! 

 The kinetic energy of an isolated molecule in the 

center of mass reference frame (CM): 



Diatomic molecule vibration       

       
 

     The simplest model to describe the vibration of a diatomic molecule (two atoms 

linked by a chemical bond) is the classical analog of a spring connecting two bodies.  

 

     The strength of the bond corresponds to the force constant k of the spring  

 

     The spring behavior gives us a description of how the molecule energy changes if 

we distort the bond. 

     When the spring equation (F = -kx) is applied to the 

vibrating particles the frequency of the vibration is related 

to the masses of the particles and to the force constant k. 

 

 

     In a similar way, the frequency of the molecule vibration 

(ν) is related to the masses of the atoms (m) and to the 

strength of the chemical bond (k). 



In order to describe the molecule vibration we must define the potential energy (V) 

of the molecule. 

 

The potential energy of a harmonic oscillator (ideal molecule) is  V(x) = 1/2k·x2   

where  V(x) = potential energy,  

                k = chemical bond (force constant) 

                x = elongation/compression of the bond from its equilibrium position 

At the equilibrium position, the potential energy is zero! 
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The molecule is considered isolated, so total energy (E), linear momentum (p) 

and angular momentum (M) are constants. 
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The vibration motion of a diatomic 

molecule is model with a "Simple 

Harmonic Oscillator" (SHO) using 

Hooke's law as a linear restoring 

force. 

Classically: kx
dt
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The exact classical solution (depends upon the initial conditions) generally take the form: 

    - k is the force constant of the spring in N/m 
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The frequency of oscillation is given by: 

The frequency ν does not depend on 

the amplitude (A). 
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The Harmonic Oscillator Approximation  → Classical description 



The vibration of a diatomic molecule (ideal moecule): 

Simple harmonic oscillator → the mass m is fixed to a wall: 

Diatomic molecules → there are two masses, m1 and m2. 

21

21

mm

mm


m

m


k

2

1


The frequency of oscillation is given by: 
m

k

2

1




The frequency of vibration is given by: 

μ reduce mass 

k   bond force constant 



Simple harmonic oscillator (SHO) → Quantum Mechanical  

  

To get the QM solution, we need the potential energy stored in the SHO: 

Potential energy: 

Hamiltonian: 
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When we solve the Schrödinger equation, we always obtain two things: 

Schrödinger equation: 

1.  a set of wave functions (eigenstates): 2. a set energies (eigenvalues): 

The energy of a vibrating molecule is quantized! 
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Energy levels: 

Wavefunctions Hv (x) = Hermite polynomials 

Wavenumber: 

Diatomic molecule - one vibration!  (stretching) 
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 wavenumber 
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The simple harmonic oscillator wave functions 

(solutions to the one dimensional Schrödinger 

equation) are known as the "Hermite Polynomials". 

     The vibrational wave functions  of a simple harmonic oscillator have 

alternate parity (even/odd ↔ symmetry/asymmetry). 
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Wave function representations for 

the first eight quantum states. 

SHO Wave functions 

The distance between two adjacent 

levels (Ev+1 - Ev) is h·c·𝝂 ! 

Ev+1 - Ev = h·c·𝜈  

For an ideal molecule, the vibrational 

energy levels are equidistant! 



For the simple harmonic oscillator: quantum mechanical predicts the existence of 

discrete, evenly spaced, vibrational energy levels. 

► v - vibrational quantum number 

 

 

► For the ground state (v = 0), E0 = 1/2·h·c·𝜈         E0 = 1/2·h·c·           E0  0!!!    

    This is called the zero point energy. 
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Even in ground state there is some kind of vibration! 



If a more realistic potential (V) is used in the Schrödinger Equation, 

the energy levels get scrunched together! 
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harmonic:  

• we consider only term 2 

• we neglected superior terms 3, 4, 5, ...  

- în equilibrium position we have a minimum, so  

 

- we supposed zero potential in equilibrium position: 
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anharmonic:  

• we consider terms 3 and 4 

• we neglect terms 5,6, ... 
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From Schrödinger equation:  

ν0 - harmonic oscillator frequency              v - quantum number 
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► For the ground state (v = 0): E0 = 1/2·h0 (1- 1/4·xe) 

► The distance between two adjacent levels (Ev+1 - Ev) depend on vibrational 

quantum number (v): 
Ev+1 -Ev = h0 (1- 2xe(v+1)) 
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Dissociation energy = the distance between the minimum of the potential curve 

and the continuum! 
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The anharmonicity constant  is small:    xe ~ 0.005 - 0.02 

The anharmonicity constant (xe) and dissociation energy (De) are linked, they are 

specific to molecule! 



In anharmonic approximation the 

number of vibrational levels is finite! 

 

When energy increase the molecule can 

dissociate. 

In harmonic approximation the number 

of vibrational levels is infinite! 



Vibration of polyatomic molecules. Normal modes 

     For a molecule with N atoms, each atom has three motional degrees of 

freedom. Thus, the molecule possesses a total of 3N degrees of freedom.  

     Chemical bonds serve to constrain the motion of the atoms to well defined 

vibrational modes (normal modes).  

     Linear molecules have three unique translations, but only two unique rotations.  

     The rotation about the bond axis does not count, since it changes neither 

positions of the atoms, nor does it change the angular momentum.  

     Thus, from the total of 3N degrees of freedom, we subtract three translations and 

two rotations, leaving 3N-5 vibrational degrees of freedom. 

     Non-linear molecules have three unique translations, and three unique rotations.  

     Thus, from the total of 3N degrees of freedom, we subtract three translations and 

three rotations, leaving 3N-6 vibrational degrees of freedom. 

    The number of “normal modes” is equal to the vibrational degree of freedom.  



The vibrations of a molecule are given by its normal modes.  

Normal modes 

Linear molecules have 3N - 5 normal modes, where N is the number of atoms.  

Non-linear molecules have 3N - 6 normal modes. 

Non-circular molecules have N-1 stretching modes. 

 

        Linear molecules have 2N-4 bending modes. 

        Non-linear molecules have 2N-5 bending modes. 

     A normal mode is a molecular vibration where some or all atoms vibrate 

together with the same frequency in a defined manner.  

 

     Normal modes are basic vibrations in terms of which any other vibration is 

derived by superposing suitable modes in the required proportion.  

 

     No normal mode is expressible in terms of any other normal mode. Each one is 

pure and has no component of any other normal mode (i.e. they are orthogonal 

to each other).   



The normal modes are described in normal coordinate (Q). 

independent 

movement equations 
cupled movement 

equations 

Cartesian (xi)    

reference frame               

Normal (Qi) reference 

frame 
iii   x  mq 

cartesian coordinate (xi) 

ponderat coordinate (qi) 

normal coordinate (Qi): the normal amplitudes depend from ponderat amplitudes! 
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Characteristics of Normal Modes 

 

1. Each normal mode acts like a simple harmonic oscillator. 

 

2. All atoms oscillate with same frequency.   

    A normal mode is a concerted motion of many atoms. 

 

3. The center of mass doesn’t move. 

 

4. All atoms pass through their equilibrium positions at the same time. 

 

5. Normal modes are independent; they don’t interact. 

Normal modes are useful in order to describe the vibration of polyatomic 

molecules! 



http://www2.ess.ucla.edu/~schauble/molecular_vibrations.htm 

All atoms oscillate with same frequency. 

The center of mass doesn’t move. 

All atoms pass through their equilibrium positions at the same time. 

http://www2.ess.ucla.edu/~schauble/molecular_vibrations.htm
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Total wavefunction: 

Total energy: 

k = 0, 1, ...., 3N-5     for linear molecules; 

k = 0, 1, ...., 3N-6     for nonlinear molecules; 

Polyatomic molecules 

An excited vibrational state (of a polyatomic molecule) involve more than one 

level of energy (more than one vibrational quantum number must be used!). 



Normal modes of vibration for CO2 molecule:   

The vibrational energy state of CO2 molecule can be described by three quantum 

numbers: (v1v2v3) 

v1 = Symmetric stretching quantum number. 

v2 = Bending quantum number. 

v3 = Asymmetric stretching quantum number. 

- 4 normal modes (3·3-5 = 4), but 2 are degenerated (bending modes).  

Ex: 

CO2 have 3 different vibrations (normal modes)! 



 

→ Symmetric stretching mode (v100) - corresponds to a symmetric stretching along 

the internuclear axis (both oxygen atoms moving away from or toward the carbon 

atom at the same time). 

 

→ Asymmetric stretching mode (00v3) - corresponds to an asymmetric stretching 

along the internuclear axis (both oxygen atoms moving to the left or right together 

while the carbon atom moves in the opposite direction between them). 

→ Bending mode (0v20) - corresponds to a vibrational bending motion perpendicular 

to the internuclear axis. 

(v100) 
(00v3) 

(0v20) (0v20) 



E(000) - the vibrational ground state of 

molecule; (is not 0!) 

Vibrational energy levels in the 

electronic ground state of CO2: 
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E(100) - the first excited symmetric 

stretching state;  

 

E(001) - the first excited asymmetric 

stretching state;  

 

E(010) - the first excited bending 

state;  

 

E(020) - two quanta of the excited 

bending state;  

 

   and so on. 



Summary 
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u = 1,66 ·10-27 kg 

M - molar mass 

u - atomic mass unit (amu) 
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1. For the following molecules: NH3, C6H6 (cyclic), C10H8, CH4, C2H2 (linear).  

 a) find the number of vibrational modes  

 b) find the number of stretching modes  

 c) find the number of bending modes  

 

2. Calculate the vibrational frequency of CO given the following data:  

 MC = 12.01 u, MO = 16 u, k = 1.86·103 kg/s2  

 

3. Calculate the vibrational energy in (Joules) of a normal mode in question 2, in its 

ground state of v = 0. 

 

4. Assuming the force constant to be the same for H2O and D2O. A normal mode 

for H2O is at 3650 cm−1. Do you expect the corresponding D2O wave number to 

be higher or lower? Why? 

 

5. The wavenumber of the fundamental vibrational transition of 79Br81Br is 320 cm−1.  

Calculate the force constant of the bond (in N/m). 

 

Questions: 

1 u = 1.67·10-27 kg, c = 3·108 m/s, h = 6.626·10-34 J·s 


