
Complex variables

Initialization

ClearAll@"Global`∗"D;
Off@General::spell, General::spell1D;

Introduction
Mathematica does not automatically assume that variables are real 
or that real variables are positive; its symbolic manipulations are 
intended to be as general as possible unless given specific informa-
tion about the properties of particular variables. If you are certain 
that all variables in an expression are real and positive, PowerEx-
pand will perform the desired simplification.

expr = SqrtA a2 b2 c2E;
expr êê Simplify
expr êê PowerExpand

a2 b2 c2

a b c

Many other functions do not respond to Simplify without making 
assumptions about their arguments which determine the appropri-
ate branch for functions of complex variables.



Log@exprD êê Simplify
Log@exprD êê PowerExpand
Log@exprD êê PowerExpand êê Simplify

1
2

LogAa2 b2 c2E

1
2
H2 Log@aD + 2 Log@bD + 2 Log@cDL

Log@aD + Log@bD + Log@cD

 ComplexExpand separates an expression into its real and imagi-
nary parts assuming that all variables within that expression are 
real. 

z = x + I y;

9Cos@zD, CoshAz2E, Log@zD= êê ComplexExpand

:Cos@xD Cosh@yD − Ç Sin@xD Sinh@yD,

Cos@2 x yD CoshAx2 − y2E + Ç Sin@2 x yD SinhAx2 − y2E,

Ç Arg@x + Ç yD + 1
2

LogAx2 + y2E>

We can use ComplexExpand to simplify expressions involving 
complex variables by supplying a list of complex arguments as an 
optional argument, such that ComplexExpand[expr,{z1,z2...}] 
expands expr assuming that variables matching any of the xi are 

complex.

Clear@k, zD;
ComplexExpand@ Exp@I k zD + Exp@−I k zD, kD

Æ−z Im@kD Cos@z Re@kDD + Æz Im@kD Cos@z Re@kDD +
Ç IÆ−z Im@kD Sin@z Re@kDD − Æz Im@kD Sin@z Re@kDDM
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Another useful option for functions such as ComplexExpand that 
specifies what functions to attempt to generate in the output is 
TargetFunctionsØ {Abs, Arg}

Clear@k, zD;
ComplexExpand@ Exp@I k zD + Exp@−I k zD, k,
TargetFunctions → 8Abs, Arg<D

Æ−z Abs@kD Sin@Arg@kDD Cos@z Abs@kD Cos@Arg@kDDD +
Æz Abs@kD Sin@Arg@kDD Cos@z Abs@kD Cos@Arg@kDDD +
Ç IÆ−z Abs@kD Sin@Arg@kDD Sin@z Abs@kD Cos@Arg@kDDD −

Æz Abs@kD Sin@Arg@kDD Sin@z Abs@kD Cos@Arg@kDDDM

Clear@k, zD;
ComplexExpand@ Exp@I k zD + Exp@−I k zD, k,

TargetFunctions → 8Abs, Arg<D ê.
8Abs@kD → κ, Arg@kD → ϕ<

Æ−z κ Sin@ϕD Cos@z κ Cos@ϕDD + Æz κ Sin@ϕD Cos@z κ Cos@ϕDD + Ç
IÆ−z κ Sin@ϕD Sin@z κ Cos@ϕDD − Æz κ Sin@ϕD Sin@z κ Cos@ϕDDM

Built-in Functions: Re, Im, Abs, Conjugate
The built-in functions Re, Im, Abs, and Conjugate return the real 
part, imaginary part, absolute value, and complex conjugate of 
complex numbers, but make no a priori assumptions about their 
arguments.  Hence, the evaluation of many expressions appears 
incomplete.
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Clear@a, b, zD;
z = a + 2 I b;
8Re@zD, Im@zD, Abs@zD, Conjugate@zD<

8−2 Im@bD + Re@aD, Im@aD + 2 Re@bD,
Abs@a + 2 Ç bD, Conjugate@aD − 2 Ç Conjugate@bD<

Now suppose that we declare a and b to be real by associating 
rules with those symbols that nullify their imaginary parts.For that 
reason we tray to use f ê: lhs = rhs assigns rhs to be the value of lhs, 
and associates the assignment with the symbol f . 

Clear@a, b, zD;
a ê: Im@aD = 0;
b ê: Im@bD = 0;
z = a + 2 I b;
8Re@zD, Im@zD, Abs@zD, Conjugate@zD<

8Re@aD, 2 Re@bD, Abs@a + 2 Ç bD,
Conjugate@aD − 2 Ç Conjugate@bD<

Better results are obtained, but notice that setting Im@aDØ 0 does 
not automatically ensure that Re@aDØ a.  

Clear@a, b, zD;
a ê: Im@aD = 0;
a ê: Re@aD = a;
b ê: Im@bD = 0;
b ê: Re@bD = b;
z = a + 2 I b;
8Re@zD, Im@zD, Abs@zD, Conjugate@zD<

8a, 2 b, Abs@a + 2 Ç bD,
Conjugate@aD − 2 Ç Conjugate@bD<
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Abs and Conjugate still do not behave as we would like.  These 
deficiencies arise because this family of functions is defined for 
numerical arguments and do not have rules attached to guide the 
evaluation of expressions.  Although we have supplemented these 
rules by attaching declarations to some of the symbols, it is a 
rather incomplete solution.  For example, even if we declare a to 
be real, Re does not recognize that Cos@aD is then real and so we 
can use ComplexExpand to obtain the real or imaginary parts of 
functions.

Re@Cos@aDD

Re@Cos@aDD

Re@Cos@aDD êê ComplexExpand

Cos@aD

Conjugate does not utilize associate or distributive properties.

Conjugate@zD

Conjugate@aD − 2 Ç Conjugate@bD

Conjugate@zD êê ComplexExpand

a − 2 Ç b

The symbol I nor its internal representation Complex[0,1] is pres-
ent in the expression for z.  Thus, the replacement rule has no 
effect.  Fortunately, this problem is easily circumvented by defin-
ing our own complex conjugation function as suggested by Zimmer-
man and Olness by introducing a rule that transforms lhs to rhs, 
evaluating rhs after the rule is used:

lhs     :>     rhs      or    lhs      :->      rhs
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conjugate::usage =

"A simple method for computing the conjugate
of an object which is explicitly complex.";

conjugateRule =

Complex@re_, im_D :> Complex@re, −imD;
conjugate@exp__D := exp ê. conjugateRule;

conjugate@zD

a − 2 Ç b

conjugate@x − I yD

x + Ç y

However, this function will not work for arbitrary expressions 
because it assumes that all symbols are real and conjugates only 
the numerical coefficients expressed in terms of Complex.

Exercises

Explain why Re@ ComplexExpand@a + I bD D and ComplexExpand@ Re@a + I bD D 
give different results.  Which should be preferred?

Determine the real and imaginary parts of Cosh@k zD for real z and 
complex k.

Plot the real and imaginary parts of BesselJ@3, zD for complex z.

Write a function which properly simplifies Abs@exprD assuming that 
the variables in expr are real.  Thus, your function should yield 
abs@x + I yD→SqrtAx2+y2E and similar results for related expressions.  
Use your function to obtain a simple expression for abs@ Cos@x+I yD D 
involving only real quantities.

Write a function which declares a variable to be real.  Your 
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function should specify values for Re, Im, and Conjugate.

Using the package ReIm

The package is used  to extend the functionality of the built-

in functions that manipulate complex variables.

Needs@"Algebra`ReIm`"D;

If we declare certain variables to be real, expressions involving 
those variables can be simplified in the expected manner.

Clear@a, b, zD;
a ê: Im@aD = 0;
b ê: Im@bD = 0;
z = a + I b;

8Re@zD, Im@zD, Abs@zD, Conjugate@zD,
z Conjugate@zD< êê Simplify

8Re@aD, Re@bD, Abs@a + Ç bD,
Conjugate@aD − Ç Conjugate@bD,
Ha + Ç bL HConjugate@aD − Ç Conjugate@bDL<

Notice that now it is not necessary to give two rules to get a real 
number, simply nullifying the imaginary part is sufficient when 
ReIm is active.  However, the absolute value function still does 
not operate as we would like, but we can work around that with a 
replacement rule.  Furthermore, expressions involving variables of 
unspecified type are handled as if they are complex.
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Conjugate@x − I yD

Conjugate@xD + Ç Conjugate@yD

Log@zD êê ComplexExpand

Ç Arg@a + Ç bD + 1
2

LogAa2 + b2E

Efficiency issues for ReIm

Although ReIm provides a set of rules which performs many simpli-
fications of expressions involving complex variables in a manner 
that is transparent to the user, this package is quite inefficient and 
can slow down calculations enormously.  To illustrate this problem, 
we borrow the following example from Bahder.  Before evaluating 
the following expression, quit the kernel in order to unload the 
package.

expr = IntegrateB a x2 + b x + c

c x + a
, xF

I−a2 + b cM x

c2
+

a x2

2 c
+
Ia3 − a b c + c3M Log@a + c xD

c3

The time needed to evaluate the real part of this result, assuming 
that the coefficients a, b, c are complex while the integration vari-
able x is real can now be obtained using Timing.

ComplexExpand@ Re@exprD, 8a, b, c<D; êê Timing

80., Null<

Now we reload the package, declare x to be real, and evaluate the 
Re@exprD using the rules from the package.  Note that ComplexEx-

8 Complex.nb



pand is not needed when using the package.

Needs@"Algebra`ReIm`"D

x ê: Im@xD = 0;
Re@exprD; êê Timing

80., Null<

Thus, similar evaluations take much longer using ReIm compared 
with ComplexExpand.  Bahder ascribes this inefficiency to the 
need to test all of the rules associated with Re that are contained 
in the package, whether or not they are actually relevant to the 
expression being evaluated.  Therefore, for most purposes it is 
better to simplify expressions manually, with appropriate replace-
ment rules, or to supply a set of user-defined rules pertinent to 
the expressions encountered in one's applications.  Some guidance 
in constructing those rules can be obtained from the package itself 
because the package is a text file which can be edited by the user.  
Of course, the user is advised to work on a copy rather than the 
original! 
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