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Introduction
In this notebook we present some of the basic techniques for performing standard operations in calculus, 
including differentiation,Taylor expansion, and integration.  

Initialization

ClearAll@"Global`∗"D;
Off@General::spell, General::spell1D

$DefaultFont={"Times", 12}; 
$TextStyle={FontFamily→"Courier", FontSize→12,FontSlant→"Italic"}; 

Needs@"Utilities`Notation`"D



Differentiation

Partial derivatives
Partial derivatives are produced by the function D[f,x], where the expression f should be either an implicit 
or explicit function of the variable x for which the derivative is sought.  Partial derivatives with respect to 
several variables simultaneously are obtained by using a sequence of variables in the argument list.  Multi-
ple derivatives with respect to the same variable are specified by arguments of the form {x,n} where n is 
the degree of differentiation or by including n instances of x in the sequence of differentiation variables.  

There are many equivalent input forms for this function to reflect common usages. 

-The prime notation is convenient for writing ordinary differential equations and can be entered directly from 

the keyboard; a slightly more appealing form is obtained by entering Â'Â in a superscript box.  

- The ∂8x,n<,8y,m< f @x, yD notation is more flexible and more rigorous, superseding the traditional ∑n+mf @x,yD
∑nx ∑my

 

notation with its cumbersome fractions which do not divide out. 

- That traditional notation cannot be used without constructing special notation palettes first.  The partial 

derivative symbol is entered as ÂpdÂ.

D@f@xD, xD =
∂f@xD
∂x

= f'@xD = f�@xD = ∂xf@xD

D@f@xD, 8x, n<D =
∂nf@xD
∂xn

= ∂8x,n<f@xD

D@f@x, yD, x, yD =
∂2f@x, yD
∂x ∂y

= ∂x,yf@x, yD

D@f@x, yD, 8x, n<, 8y, m<D =
∂n+m f@x, yD
∂nx ∂m y

= ∂8x,n<,8y,m<f@x, yD

D@f@xD, xD

f�@xD

D@f@x, yD, 8x, n<, 8y, m<D

fHn,mL@x, yD
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∂8x,n<,8y,m<f@x, yD

fHn,mL@x, yD

∂x,xf@xD

f��@xD

∂8x,4<f@xD

fH4L@xD

f''''@xD

fH4L@xD

fH4L@XD

f4@XD

with an exponent box returns a power instead of a derivative, parentheses notwithstanding.  You would 

need to develop special notation palettes to use traditional notations like f I4M@xD or ∑4 f ë∑x4.

D employs all the basic rules for differentiating products and quotients and uses the chain rule.

Clear@f, gD

D@f@xD g@xD, xD

g@xD f�@xD + f@xD g�@xD

D@f@x yD, xD

y f�@x yD

D@f@g@xDD, xD

f�@g@xDD g�@xD
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DB‡
a

x
f@tD Åt, xF

f@xD

DB‡
a

Cos@xD
f@tD Åt, xF

−f@Cos@xDD Sin@xD

It is always important to remember that because D evaluates partial derivatives it treats all symbols that are 
not declared variable as constants.  Symbols are declared as variable either by inclusion in the argument 
list or by means of the option NonConstantsØlist.  Suppose that x is an implicit function of t, where x is the 
position of a parcel of fluid and t is time.  The expression

D@f@x, tD, tD

fH0,1L@x, tD

then evaluates the derivative of f with respect to t at a fixed position, whereas

D@f@x, tD, t, NonConstants → xD

fH0,1L@x, tD + D@x, t, NonConstants → 8x<D fH1,0L@x, tD

evaluates the convective derivative for a particular moving parcel of fluid.  Of course, the same effect is 
achieved by declaring x to be an explicit function of t.

D@f@x@tD, tD, tD

fH0,1L@x@tD, tD + x�@tD fH1,0L@x@tD, tD
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Locate the extrema of x3 - 2 x2 - 10 x+ 5.

Find the maximum of x4

„x+1
 for positive x (both position and value).  [Hint: simplify the equation first 

to eliminate the trivial but spurious solution.  Then use Solve, NSolve, or FindRoot; all should agree!]

Total derivatives

The total derivative Dt[f,x] evaluates the derivative df

dx
 by interpreting any variable that appears in the 

expression f as a function of x.  Consider, for example, a function of position x and time t where x is an 
implicit function of time.  The total derivative with respect to time 

Dt@f@x, tD, tD

fH0,1L@x, tD + Dt@x, tD fH1,0L@x, tD

contains two contributions, one arising from the explicit dependence upon t and a second arising from the 
implicit dependence of x upon t.  Similarly, multiple or mixed derivatives can be defined also.

Dt@f@x, tD, x, x, tD

Dt@t, 8x, 2<D IfH0,2L@x, tD + Dt@x, tD fH1,1L@x, tDM +
fH2,1L@x, tD + Dt@t, xD IfH1,2L@x, tD + Dt@x, tD fH2,1L@x, tDM +
Dt@t, xD IfH1,2L@x, tD + Dt@t, xD IfH0,3L@x, tD + Dt@x, tD fH1,2L@x, tDM +

Dt@x, tD fH2,1L@x, tDM + Dt@x, tD fH3,0L@x, tD

A closely related quantity is the total differential 

Dt@f@x, y, z, tDD

Dt@tD fH0,0,0,1L@x, y, z, tD + Dt@zD fH0,0,1,0L@x, y, z, tD +
Dt@yD fH0,1,0,0L@x, y, z, tD + Dt@xD fH1,0,0,0L@x, y, z, tD

which represents the differential change in a function arising from differential changes in each variable that 
is not explicitly constant.  One or more variables can be held constant by using the option Constants to 
specify a list of constants.

Dt@f@x, y, z, tD, Constants → 8x, y<D

Dt@t, Constants → 8x, y<D fH0,0,0,1L@x, y, z, tD +
Dt@z, Constants → 8x, y<D fH0,0,1,0L@x, y, z, tD
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Alternatively, we can eliminate selected differentials

Dt@f@x, y, z, tDD ê. 8Dt@xD → 0, Dt@yD → 0<

Dt@tD fH0,0,0,1L@x, y, z, tD + Dt@zD fH0,0,1,0L@x, y, z, tD

and obtain a slightly simpler result that does not propagate the option in the result.  The best choice 
depends upon the application.

If expressions involve symbols which should always be constant, such as constants of nature, it is best to 
declare them constants by setting the appropriate attribute.

SetAttributes@8—, m<, ConstantD

DtB−
—2

2 m
∂8x,2<ψ@x, tD, tF

−
—2 IψH2,1L@x, tD + Dt@x, tD ψH3,0L@x, tDM

2 m

Implicit differentiation
Suppose that two variables, x and y, are connected by an equation of constraint, eq.  Evaluation of Dt[eq] 
will then produce a relationship between variations of x, Dt[x], and variations of y, Dt[y].  For example, 
suppose that a ladder of length  leans against a wall but that the base of the ladder slides along the 
ground.  To compare the rate the top falls with the rate the bottom slides, we differentiate the equation

eq = x2 + y2 m 2;
newEq = Dt@eqD

2 x Dt@xD + 2 y Dt@yD m 2 Dt@ D

that evaluates the length of the ladder in terms of the coordinates of its ends.  Requiring the length to be 
constant then implies

sol = Solve@newEq ê. Dt@ D → 0, Dt@yDDP1T

:Dt@yD → −
x Dt@xD

y
>

We can express the result in terms of the position of the bottom ladder by using the solution to the con-
straint equation
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solP1, 2T ê. Solve@eq, yDP2T

−
x Dt@xD

−x2 + 2

A lemniscate is described by the equation Ix2 + y2M2 ä x2 - y2.  Use ImplicitPlot to display this curve 

and implicit differentiation to find the points at which its tangent is horizontal.

A person who is 6 ft tall walks toward a street lamp that is 20 ft above its base.  How fast does that 

person's shadow shrink?  Use similar triangles to establish a constraint equation and implicit differen-

tiation to relate the length change to the distance walked.

Derivatives as functionals
D will evaluate the derivatives for any function for which Mathematica knows the necessary rules, but when 
rules are not available it returns a generic Derivative object.

g = ∂8x,n<,8y,m<f@x, yD

fHn,mL@x, yD

FullForm@gD

Derivative@n, mD@fD@x, yD

Notice that Derivative[n,m][f] represents a pure function whose arguments are [x,y].

Head@gD êê FullForm

Derivative@n, mD@fD

f� êê FullForm

Derivative@1D@fD

This internal representation of derivatives actually embodies a very important concept.  Consider for a 
moment the traditional notation f £@xD.  This notation really means
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f £@xD =
∑ f @tD

∑ t t=x

where t is a dummy variable that replaced by the desired argument after the derivative is evaluated.  

Hence, we interpret f ¢@2D as H f ¢@xDLx=2 even though no variable appears in the traditional notation.  

Thus, differentiation is an operator which acts upon a function to produce another function.  In Mathematica 
the result of differentiation is represented by a pure function that can be evaluated either for symbolic or 
numerical arguments.  The operation of differentiation itself can be viewed as a pure function whose argu-
ment is a function.

Head@gD

fHn,mL

Head@Head@gDD

Derivative@n, mD

By this means one can view the symbolic differentiation rules associated with standard mathematical 
functions.

f = Sin�

Cos@Ó1D &

The result is a pure function which can be applied to any argument.

:f@xD, fB
π

2
F>

8Cos@xD, 0<

Integrate@f@xD, xD

Sin@xD
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Locating minima

Using FindMinimum
The extrema of a function (maxima, minima, and inflection points) can be determined by solving equations, 
either symbolically or numerically, that set first derivatives to zero and then ascertaining the characteristics 
of the second derivatives.  Symbolic methods will usually reveal all extrema, while numerical methods 
search for extrema near a specified starting point.  Mathematica provides a built-in function FindMini-
mum which searches for a local minimum near the starting point automatically, without the user having to 
establish the equations for the first derivative or to test the second.  The result is usually the nearest mini-
mum, which may not be the absolute minimum of the function — it is simply a nearby local minimum.  If you 
need an absolute minimum, it is usually necessary to examine the function graphically in order to supply a 
reasonably good starting value or set of starting values.  You also need to check that the result truly is the 
desired minimum — sometimes FindMinimum wanders away from your starting values and sometimes it 
returns incorrect results.

à Example: a function of one variable

The basic syntax is FindMinimum[f,9x,x0=] where f  is a function of x and x0 is the starting value.  The 

function must evaluate to a real number given a numerical value for x.  You can limit the range of x by 
including xmin, xmax after x0.

Clear@fD;
f = I1 + x − x2M ExpA−x2 ë 4E;
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Plot@f, 8x, −5, 5<D

−4 −2 2 4

−1.5

−1.0

−0.5

0.5

1.0

The positive minimum is found using an appropriate choice of x.  The result is returned as a list whose first 
element is the value of the function as the minimum and the second is a list of replacement rules specifying 
the location of the minimum.

FindMinimum@f, 8x, 3<D

8−0.583234, 8x → 2.61803<<

Both minima can be found by mapping FindMinimum onto a list of starting points.  

FindMinimum@f, 8x, Ó<D & ê@ 8−3, 3<

88−1.8394, 8x → −2.<<, 8−0.583234, 8x → 2.61803<<<

How can you locate the maximum using FindMinimum?  Try it!

à Example: a function of two variables

The basic syntax is FindMinimum[f,9x,x0=,9y,y0=] where f  is a function of x and y and where the 

starting point has coordinates {x0, y0}.  Additional variables can be appended as necessary.  You can limit 
the variable ranges in the same manner as before, also.

Clear@fD;
f = x2 Sin@x yD ExpA−x2E;
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ContourPlot@f, 8x, −2, 2<, 8y, −2, 2<, ContourShading → FalseD

Although ContourPlot does not reveal the sign of the function directly, inspection of the definition sug-
gests that minima are found in quadrants 2 and 4, while maxima live in quadrants 1 and 3.  Plot3D would 
show this, but is unnecessary.  Therefore, we give FindMinimum starting values in quadrant 2 and it 
reports the following minimum.

FindMinimum@f, 8x, −1<, 8y, 1<D

8−0.367879, 8x → −1., y → 1.5708<<

It is useful to verify this extremum by examining the function in its immediate vicinity.
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ContourPlot@f, 8x, −1.1`, −0.9`<, 8y, 1.4`, 1.8`<, Contours → 50,
ContourShading → FalseD

Classifying critical points
The Taylor series expansion of a multidimensional function can be expressed in the form

f@xD ª f@x0D+ g@x0D.Hx- x0L +
1

2
Hx- x0L.h@x0D.Hx- x0L + ∫

where

g@x0D = TableB
∂f@xD
∂xi

xÆx0 , 8i, 1, n<F

is the gradient vector evaluated at x0 and

h@x0D = TableB
∂2 f@xD
∂xi ∂xj

xÆx0 , 8i, 1, n<, 8j, 1, n<F

is the matrix of second derivatives sometimes known as the Hessian matrix.  We assume that the function 
f[x] is analytic at x0 and, hence, that the Hessian matrix is symmetric.  Therefore, an important theorem of 
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linear algebra tells us that an n-dimensional Hessian matrix has n real eigenvalues and that the correspond-
ing eigenvectors are mutually orthogonal.  Furthermore, the Hessian matrix is diagonalized by the transfor-
mation d = S-1.h.S where S is the orthogonal matrix whose columns contain the normalized eigenvectors 
of  h and where d is the diagonal matrix composed of the corresponding eigenvalues.

A point x0 where the gradient vanishes, such that g@x0Dä 0, is called a critical point and is considered an 
ordinary critical point if it lies within the domain of analyticity of f[x].  In one dimension an ordinary critical 
point is a local minimum if the second derivative is positive, a local maximum if the second derivative is 
negative, or an inflection point if the second derivative vanishes.  In two dimensions, a critical point is 
classified as a saddle point if it is a local minimum for variations along one direction (not necessarily a 
coordinate direction) while simultaneously a local maximum for variations along the orthogonal direction.  
Finally, the function exhibits a ridge if there exists a direction in which the both the first and second deriva-
tives vanish.  Simple examples of a saddle and a ridge are shown below.

Plot3DAy2 − x2, 8x, −2, 2<, 8y, −2, 2<, PlotLabel → "A Simple Saddle"E
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Plot3DAy2 I1 − x2M, 8x, −2, 2<, 8y, −2, 2<, PlotLabel → "A Simple Ridge",

ViewPoint → 8−0.122`, −3.114`, 1.26`<E

More generally, the behavior of a function near a critical point can be characterized in terms of the eigenval-
ues and eigenvectors of the Hessian matrix.  Let 8vi < represent the set of orthonormal eigenvectors and 
8li < the corresponding eigenvalues.  Furthermore, let ui=vi. Hx-x0L represent the displacements from the 
critical point with respect to the local coordinate system specified by the eigendirections.  The variation of 
f[x]near the critical point then separates 

f@xD ª f@x0D+
1

2
‚
i=1

n

li ui
2 + ∫

into a sum of independent contributions.  If all eigenvalues have a common sign, the critical point is a local 
minimum if that sign is positive or a local maximum if negative, but if the signs are mixed the critical point is 
a saddle with respect to pairs of directions whose eigenvalues have opposite signs.  A vanishing eigen-
value indicates the existence of a ridge along the corresponding eigendirection.

This technique finds widespread applications in many fields.  For example, data analysis using least-
squares fitting of a model function to data is an optimization problem in which one searches a multidimen-
sional parameter space for the minimum squared deviation between the model and the data.  Alternatively, 
a linear-stability analysis of the behavior of systems obeying nonlinear differential equations near a fixed 
point is performed in this manner.
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Write a gradient function using Map and a Hessian function using Outer.  [Do not use Table!]

Evaluate the eigenvalues and eigenvectors of the Hessian matrices for the examples shown above.

Each of the following functions has a critical point at the origin.  Diagonalize the Hessian matrix and 

classify the critical point as a minimum, maximum, saddle, or ridge.  Also, determine the angle 

between the eigensystem and the original coordinate axes.

a) x y Cos[x y]

b) Hx − 2 yL2 ExpA−Ix2 + y2ME

c) I2 x2 + y2M ExpA−I2 x2 + y2ME

d) Cos@x + yD ExpA−Ix2 + y2ME

Analyze the behavior of the function f=(x+2y-3)(y-z+1)(x+z) near the origin by locating a critical 

point and constructing the eigensystem for the corresponding Hessian matrix.  [Hint: if you use Solve 

for g==0, inverse functions are returned because there exists a ridge for which the gradient equations 

are degenerate.]

Taylor series

Power series in one variable
The Taylor series expansion of a function f HxL about the point x = x0 is produced using 
Series[f,8x,x0,n<] where n is the highest power retained in the expansion.  Series can expand 
about ¶, will usually detect essential singularities, and will give a finite number of negative powers or 
logarithmic terms when necessary.  

For example, the Lenard-Jones potential

Symbolize@v0D; Symbolize@r0D

v = −v0 2
r0

r

6

−
r0

r

12

;

is often used as a simple model of the interaction between two atoms in a diatomic molecule.  This 
parametrization obviously has a minimum at r0.  Thus, it is useful to construct a power-series expansion 
that approximates the potential near its minimum.
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vSeries = Series@v, 8r, r0, 4<D

−v0 +
36 v0 Hr − r0L2

r02
−

252 v0 Hr − r0L3

r03
+

1113 v0 Hr − r0L4

r04
+ O@r − r0D5

Although this result appears, at first glance, to be printed as an ordinary expression, the presence of the 
final term representing all omitted terms of order n + 1 and higher shows that this expression is not simply 
an algebraic expression.  (How would one evaluate the truncation term?).  In fact, Series actually returns 
a SeriesData object whose arguments are the expansion variable, the expansion point, a list of terms, 
and a description of the omitted terms.

FullForm@vSeriesD

SeriesData@r, r0, List@Times@−1, v0D, 0,
Times@36, Power@r0, −2D, v0D, Times@−252, Power@r0, −3D, v0D,
Times@1113, Power@r0, −4D, v0DD, 0, 5, 1D

A SeriesData object is converted to an ordinary algebraic expression using Normal[SeriesDataObg

ject].

Normal@vSeriesD

−v0 +
1113 Hr − r0L4 v0

r04
−

252 Hr − r0L3 v0

r03
+

36 Hr − r0L2 v0

r02

FullForm@Normal@vSeriesDD

Plus@Times@−1, v0D,
Times@1113, Power@Plus@r, Times@−1, r0DD, 4D, Power@r0, −4D, v0D,
Times@−252, Power@Plus@r, Times@−1, r0DD, 3D, Power@r0, −3D, v0D,
Times@36, Power@Plus@r, Times@−1, r0DD, 2D, Power@r0, −2D, v0DD

The coefficient of the term with order n is selected by SeriesCoefficient[series,n].  Thus, in this 
case the coefficient of Hr - r0L3 is

SeriesCoefficient@vSeries, 3D

−
252 v0

r03
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Let U[y]=Tanh[y] or U[t]=Tanh[1/t] be two representations of the same function.  Compare the 

Taylor expansion of U[y] for small y with the Taylor expansion of U[t] for large t (expand about •).

Use series expansions to characterize the behavior of f @zD = 1- z

z2+R2
 for both small and large 

values of z, assuming that R > 0.  Compare these approximations with the original function graphi-

cally and describe their regions of validity.  How does one obtain a useful approximation for z ª R?

Singularities
Mathematica will often be able to provide useful expansions near singularities.  Consider the familiar 
function G@xD with singularities for negative integers.

Gamma@−5D

ComplexInfinity

If a function f @xD has a simple pole at x = x0, the power series takes the form

f @xD º
R

x - x0
+ a0 + a1 Hx - x0L + ∫

where R is the residue of f  at x0.  Thus, for this function we find

Series@Gamma@xD, 8x, −5, 2<D

−
1

120 Hx + 5L
+ −

137

7200
+

EulerGamma

120
+

I−12 019 + 8220 EulerGamma − 1800 EulerGamma2 − 300 π2M Hx + 5L
432 000

+

1

25 920 000
I−874 853 + 721 140 EulerGamma −

246 600 EulerGamma2 + 36 000 EulerGamma3 − 41 100 π2 +

18 000 EulerGamma π2 − 36 000 PolyGamma@2, 1DM Hx + 5L2 + O@x + 5D3

Residue@Gamma@xD, 8x, −5<D

−
1

120

Series sometimes returns an expansion in fractional powers
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SeriesBSinB x F, 8x, 0, 2<F

x −
x3ê2

6
+ O@xD5ê2

or will isolate other characteristic behaviors.

Series@PolyLog@2, zD, 8z, 1, 2<D êê Normal êê Simplify

π2

6
+ Ç π I3 − 4 z + z2M FloorB−

Arg@−1 + zD
2 π

F +

H−1 + zL H1 − Ç π − Log@−1 + zDL +
1

4
H−1 + zL2 H−1 + 2 Ç π + 2 Log@−1 + zDL

Useful information can often be obtained even near an essential singularity.

Series@Exp@Sin@xDD, 8x, ∞, 2<D

ÆSin@xD

Limit[Exp[Sin[x]], x→∞]

IntervalB:
1

Æ
, Æ>F

Here we are told that even though this function oscillates wildly near its essential singularity, the range of 
oscillation is confined to a finite interval.  

Directional limits can be obtained for some functions.

LimitB
1

x
, x → 0, Direction → −1F

∞

LimitB
1

x
, x → 0, Direction → +1F

−∞
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Find the residue of x tanHxL at p
2

.

Evaluate the limit of TanhB 1
x
F as xÆ0.  How does the result depend upon direction?

Compare the behaviors of BesselJ[2,z] and BesselK[2,z] as zÆ•.

Multivariate power series
Series[f, 8x, x0, nx<, 9y, y0, ny= ] expands a function of two variables with respect to x first, then with 

respect to y.  Additional variables can be added to the sequence also.  Note that the reference guide 
describes the order of these operations incorrectly; the net result is usually the same in either order, but the 
presentation depends upon order.

Series@Log@1 − x yD, 8x, 1, 3<D

Log@1 − yD +
y Hx − 1L
−1 + y

−
y2 Hx − 1L2

2 H−1 + yL2
+

y3 Hx − 1L3

3 H−1 + yL3
+ O@x − 1D4

Series@%, 8y, 0, 3<D

−y −
y2

2
−

y3

3
+ O@yD4 + I−y − y2 − y3 + O@yD4M Hx − 1L +

−
y2

2
− y3 + O@yD4 Hx − 1L2 + −

y3

3
+ O@yD4 Hx − 1L3 + O@x − 1D4

xySeries = Series@Log@1 − x yD, 8x, 1, 3<, 8y, 0, 3<D

−y −
y2

2
−

y3

3
+ O@yD4 + I−y − y2 − y3 + O@yD4M Hx − 1L +

−
y2

2
− y3 + O@yD4 Hx − 1L2 + −

y3

3
+ O@yD4 Hx − 1L3 + O@x − 1D4
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yxSeries = Series@Log@1 − x yD, 8y, 0, 3<, 8x, 1, 3<D

I−1 − Hx − 1L + O@x − 1D4M y + −
1

2
− Hx − 1L −

1

2
Hx − 1L2 + O@x − 1D4 y2 +

−
1

3
− Hx − 1L − Hx − 1L2 −

1

3
Hx − 1L3 + O@x − 1D4 y3 + O@yD4

Normal@xySeriesD − Normal@yxSeriesD êê Simplify

0

Symbolic integration

Symbolic integration in one dimension
The basic syntax for symbolic one-dimensional integration is Integrate[f[x],x] for an indefinite 
integral or Integrate[f[x],{x,a,b}] for a definite integral over the range 8a, b<.  The traditional forms 
can be entered from the BasicInput palette as

‡ f @xD „ x for indefinite, or ‡
a

b
f @xD „ x for definite integrals, „ = ÂddÂ.

à Indefinite integrals

Notice that indefinite integrals

‡ xn ax Åx

−x1+n Gamma@1 + n, −x Log@aDD H−x Log@aDL−1−n

are returned without constants of integration and can be checked easily by differentiation

D@%, xD êê Simplify

ax xn

although simplification is often needed to recover the original form.  Also notice that Mathematica makes no 
a priori assumptions about the parameters involved in indefinite integrals
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‡ Exp@−a xD Cos@b xD Åx êê Simplify

Æ−a x H−a Cos@b xD + b Sin@b xDL
a2 + b2

so that the results apply to real or complex parameters.  On the other hand, it does not check special cases 
either.  Thus, the following integral 

‡ xμ Åx

x1+μ

1 + μ

does not appear to be correct if the parameter m happens to be -1.  Mathematica assumes that parameters 
in indefinite integrals should be interpreted generically.

Consider the generic indefinite integral

 Ÿa
bxm ‚ x = bm+1-am+1

m+1
  

 for b > a > 0.  Show that the correct result for m = -1 can be obtained by series expansion with 

respect to m.

Evaluate and check the following integrals.

a) Ÿ xm

a+xn ‚ x 

b) Ÿ BesselJ[n,x] BesselJ[m,x] x ‚x

à Definite integrals

Definite integrals with symbolic parameters in the integrand often return a conditional statement rather than 
a unique result.  Thus,

‡
0

1
xn Åx

IfBRe@nD > −1,
1

1 + n
, Integrate@xn, 8x, 0, 1<, Assumptions → Re@nD ≤ −1DF

correctly restricts its evaluation to exponents greater than -1.   Similarly,
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‡
0

∞
Exp@a xD Åx

IfBRe@aD < 0, −
1

a
, Integrate@Æa x, 8x, 0, ∞<, Assumptions → Re@aD ≥ 0DF

can be evaluated only when the parameter a has negative real part.  If we happen to know that the parame-
ter will always satisfy this condition, we can incorporate this assumption in the integration command using 
the option Assumptions as follows.

Integrate@Exp@a xD, 8x, 0, ∞<, Assumptions → Re@aD < 0D

−
1

a

Assumptions can be supplied to typeset integrals using Assuming[assumptions,expression] where 
assumptions is a list of assumptions to be used in evaluation of an expression.  Thus, the preceding result 
can also be obtained as follows.

AssumingBRe@aD < 0, ‡
0

∞
Exp@a xD ÅxF

−
1

a

Alternatively, a reckless person could disable conditional-testing using

Integrate@Exp@a xD, 8x, 0, ∞<, GenerateConditions → FalseD

−
1

a

but that practice is apt to generate nonsense and is strongly discouraged unless you are certain that the 
conditions would be satisfied for your parameters.

Definite integrals with several parameters are often expressed in terms of composite conditions:
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result = IntegrateB
Exp@−a xD
b2 + x2

, 8x, 0, ∞<F

IfBRe@aD > 0 && IReAb2E ≥ 0 »» ImAb2E ≠ 0M,

1

2

1

b2
2 CosIntegralB

a

1

b2

F SinBa
1

b2
b2F +

CosBa
1

b2
b2F π − 2 SinIntegralB

a

1

b2

F , IntegrateB
Æ−a x

b2 + x2
,

8x, 0, ∞<, Assumptions → IImAb2E m 0 && ReAb2E < 0M »» Re@aD ≤ 0FF

Assuming that the conditions are satisfied, the desired integral can be extracted from the second part of 
result.

resultP2T

1

2

1

b2
2 CosIntegralB

a

1

b2

F SinBa
1

b2
b2F +

CosBa
1

b2
b2F π − 2 SinIntegralB

a

1

b2

F

In previous versions definite integrals with symbolic limits were treated in much the same manner as 
indefinite integrals and, hence, were evaluated without regard to restrictions upon the values of their 
parameters or limits.  In version 5 we obtain a compilation of possibilities according to the nature of the 
symbolic limits.
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‡
a

b
xn Åx

IfB
Re@−b Im@aD + a Im@bDD

Im@a − bD
≤ 0 &&

ImB
a

−a + b
F ≠ 0 »» ReB

a

a − b
F ≥ 1 »»

a

a − b
≠ 0 && ReB

a

−a + b
F ≥ 0 ,

−a1+n + b1+n

1 + n
, IntegrateBxn, 8x, a, b<,

Assumptions → !
−Im@bD Re@aD + Im@aD Re@bD

Im@aD − Im@bD
≥ 0 &&

ReB
a

−a + b
F ≥ 0 &&

a

−a + b
≠ 0 »» ReB

a

a − b
F ≥ 1 »» ImB

a

−a + b
F ≠ 0 FF

However, this procedure does not appear to examine the nature of the parameters in the integrand and is 
not correct for n = -1 even when the limits are real. 

Compare

a) Ÿ0
πCos@tD

3
2 Åt

b) Ÿ0
πCos@tDn+

1
2 Åt

Evaluate the following integrals.

a) Ÿ0
∞ x BesselJ@n,xD

J1+x2Nm+
1
2

Åx 

Evaluate the following integrals.

a) Ÿ0
2 πCos@z Sin@tDD Åt

b) Ÿ0
2 πExp@z Sin@tDD Åt

Evaluate Ÿ0
wD w3

„wêT-1
‚w which occurs in the Debye theory of lattice vibrations.

Evaluate Ÿ0
∞ ω4 Æω

IÆω−1M2
.

rms radius for spherical distribution (symbolic)

The root-mean-square (rms) radius for a spherically symmetric radial distribution function r(r) is 
defined as
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rms =
Ÿ0

¶ r r4 „ r

Ÿ0
¶ r r2 „ r

Write a function which evaluates the rms radius for an arbitrary distribution symbolically.  Test 
using a uniform distribution for r § 1.  Then evaluate the rms radius for r = ExpA-Hr êaL2E.

à Principal value

In general one must treat singularities of an integrand with great care.  For the present purposes it suffices 
to mention that Mathematica provides an option for the Cauchy principal value in which a small interval 
surrounding a singularity is excised and the integral is evaluated in the limit that the excluded interval 
shrinks to zero.

pv = IntegrateB
Exp@xD

Hx + 1L Hx + 2L
, 8x, −∞, 0<, PrincipalValue → TrueF

Æ ExpIntegralEi@1D − ExpIntegralEi@2D
Æ2

pv êê N

0.0266922

Line integrals
A line integral evaluates and integrates a function along a specified path through a multidimensional space, 
returning a scalar result.  Here we consider two types of line integral.  The integral of scalar function 
against the path length for a curve in two dimensions takes the form

‡
C

f @x, yD „ s where C denotes a curve and

„ s = H„ xL2 + H„ yL2 represents the path length along the curve.

 The curve is generally represented by the parametric equations C = 8x Ø x@tD, y Ø y@tD< such that the path 

length becomes „ s = „ t J „x
„t

N2
+ J „y

„t
N2

.  

Similarly, the component of a vector field that is parallel to a curve is integrated using

‡
C

f @x, yD.„ s” where „ s” = „ t :
„ x

„ t
,

„ y

„ t
> is the differential displacement along the curve.

How to evaluates these types of path integrals symbolically?  

The path-integration function is an implicit function of the two variables represented by patterns x_ and y_.  
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The path is defined using a pattern argument path:{pattern rules} in which the pattern 
rules are a list of rewrite rules of the form x_Øu_ that replace the variable on the lhs by the pattern on the 
rhs; hence, blank patterns are used on both sides of the arrow.  The parameter defining the progress along 
the curve is given by t_.  Two versions are given, one for scalar functions and the other for vector functions 
in two dimensions.  Obviously, it is simple matter to generalize to arbitrary dimensionality.

ClearAll@pathIntegrateD

pathIntegrate::usage =
"pathIntegrate@f,8x→u,y→v<,t,tmin,tmax,optsD evaluates

the line integral of the scalar function f along a
curve expressed as a parametric function of t. \n
pathIntegrate@8fx,fy<,8x→u,y→v<,t,tmin,tmaxD evaluates
the line integral of the tangential component of a
vector field along a curve expressed as a parametric
function of t.";

pathIntegrate@f_ ê; HNot@VectorQ@fDDL, path : 8x_ → u_, y_ → v_<,
t_, tmin_, tmax_, opts___RuleD :=

IntegrateAf,ID@u, tD2 + D@v, tD2M ê. path, 8t, tmin, tmax<, optsE;

pathIntegrate@field : 8f_, g_<, path : 8x_ → u_, y_ → v_<, t_,
tmin_, tmax_, opts___RuleD :=

Integrate@Hf D@u, tD + g D@v, tDL ê. path, 8t, tmin, tmax<, optsD

à Examples

pathIntegrateB
1

x2 + y2
, 8x → Cos@tD, y → Sin@tD<, t, 0, 2 πF

2 π

pathIntegrateB
1

x2 + y2
, 8x → t, y → t<, t, 1, 2F

1

2 2
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pathIntegrateB
1

x2 + y2
, 8x → a + t, y → b t<, t, 0, 1,

Assumptions → 8a ∈ Reals, b ∈ Reals<F

1 + b2 IfB 1 + a ImB
1

−Ç + b
F ≤ 0 »» a ReB

1

−Ç + b
F ≠ 0 &&

a ImB
1

Ç + b
F ≥ 1 »» a ReB

1

Ç + b
F ≠ 0 »» a ≥ 0,

−ArcCot@bD + ArcCotB a b

1+a+b2
F

a b
, IntegrateB

1

b2 t2 + Ha + tL2
, 8t, 0, 1<,

Assumptions → H−1 < a < 0 && b m 0L »» H−1 < a < 0 && b m 0LFF

pathIntegrateA9x2, y=, 8x → t, y → t<, t, 0, 2E

14

3

pathIntegrateB9x2, y=, 8x → 2 Sin@tD, y → 2 Sin@tD<, t, 0,
π

2
F

14

3

pathIntegrateA8y, x<, 9x → a tn, y → b tm=, t, 0, 1E

IfARe@m + nD > 0, a b,

IntegrateAa b m t−1+m+n + a b n t−1+m+n, 8t, 0, 1<, Assumptions → Re@m + nD ≤ 0EE

Write line integration functions applicable to arbitrary dimensionality.

Multiple integrals
Multiple integrals are entered simply by replacing the integration variable (and limits) with a sequence of 
integration variables.  The integrals are evaluated from right to left, so that the integration limits for earlier 
variables can be functions of the later variables to define a region of integration that is not simply rectangu-
lar.  Thus,
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Clear@f, x, y, xmin, xmax, ymin, ymaxD;
Integrate@f@x, yD, 8y, ymin, ymax<, 8x, xmin, xmax<D

‡
ymin

ymax

‡
xmin

xmax
f@x, yD Åx Åy

A trivial indefinite double integral is

IntegrateAx y2, x, yE

x2 y3

6

while the integration over a rectangular region is given by

IntegrateAx y2, 8x, xmin, xmax<, 8y, ymin, ymax<E

1

6
Ixmax2 − xmin2M Iymax3 − ymin3M

The following example integrates within the triangular wedge defined by 0 § x § y and 0 § y § 2.  Thus,

IntegrateAx y2, 8y, 0, 2<, 8x, 0, y<E

16

5

‡
0

2

‡
0

y
x y2 Åx Åy

16

5

A more interesting example is the function ylmCoeff which uses the orthonormality of spherical harmon-
ics to produce expansion coefficients for angular functions.

ylmCoeff@λ_, m_, f_D :=
H−1Lm Integrate@f SphericalHarmonicY@λ, −m, θ, φD Sin@θD,

8θ, 0, π<, 8φ, 0, 2 π<D

28 IntrodIIIII1].nb



Table@ylmCoeff@2, m, SphericalHarmonicY@2, −1, θ, φDD, 8m, −2, 2<D

80, 1, 0, 0, 0<

TableAylmCoeffA2, m, Cos@θD2 Sin@2 φDE, 8m, −2, 2<E êê Simplify

:Ç
π

30
, 0, 0, 0, −Ç

π

30
>

Table@ylmCoeff@2, m, Cos@θD Sin@φDD, 8m, −2, 2<D êê Simplify

:0,
1

16
Ç

15

2
π3ê2, 0,

1

16
Ç

15

2
π3ê2, 0>

Area using change of variables

Here is a typical problem in multiple integration drawn from a calculus text.  We seek to compute the area 
in the first quadrant bounded by the curves 
borders@x, yD = 9x2 − y2 m a2, x2 − y2 m b2, y m 0, y m 1

2
x=

where b ¥ a ¥ 0.

a) Use Graphics`ImplicitPlot` to display the region bounded by these curves.   For the sake of 
display choose 8a Ø 1, b Ø 2<, but the integral is to be computed for arbitrary {a,b} consistent with 
b ¥ a ¥ 0.

b) Evaluate borders[u,v]obtained by the change of variables {x → u Cosh[v],y → u 
Sinh[v]}.  Show that the region is rectangular in these variables.  Note that to use ImplicitPlot 
here it will be necessary to specify ranges for both u and v.

c) Compute the Jacobian of transformation using the function derived earlier (based upon Outer, D, and 
Det).

d) Integrate the Jacobian over the appropriate region of {u,v}.

Contour integration
Contour integrals are very similar to line integrals except that the path lives in the complex plane.  If z is a 
complex variable, a contour can be defined by a parametric function z Ø z@tD where t varies between values 
that take z@tD from the beginning to the end of the desired path.  The following function replaces the com-
plex variable by its value on the contour and converts the displacement from „ z to „ t by means of the 
partial derivative D@z, tD.
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contourIntegrate@f_, contour : Hz_ → ζ_L, 8t_, tmin_, tmax_<D :=
Integrate@f D@ζ, tD ê. contour, 8t, tmin, tmax<D

The theorem of residues tells us that the integral of a function that is regular (analytic and single-valued) on 
a simple, closed, counterclockwise contour and the enclosed domain, except for a finite number of isolated 
singularities, is equal to 2 p Âtimes the sum of the residues for the singularities within the contour.  Hence, 
we test our function using a function whose one simple pole has unit residue

contourIntegrateB
1

z − 1

2

, z → Cos@tD + Ç Sin@tD, 8t, 0, 2 π<F

2 Ç π

and obtain the correct answer.  Integration along the more complicated limaçon contour suggested by 
Gass should give 4 p Â because the contour encircles the pole twice.  

plotContour@f_, 8t_, tmin_, tmax_<, opts___RuleD :=
ParametricPlot@Evaluate@8Re@fD, Im@fD<D, 8t, tmin, tmax<, optsD
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ShowB:plotContourAÆÇ t H2 Cos@tD + 1L, 8t, 0, 2 π<, AspectRatio → Automatic,

DisplayFunction → IdentityE,

GraphicsB:AbsolutePointSize@10D, PointB:
1

2
, 0>F>F>F

0.5 1.0 1.5 2.0 2.5 3.0

−1.5

−1.0

−0.5

0.5

1.0

1.5

contourIntegrateB
1

z − 1

2

, z → Exp@Ç tD H2 Cos@tD + 1L, 8t, 0, 2 π<F êê

Simplify

H1 + 4 ÇL π
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Evaluate a contour integral in which a simple pole is enclosed by a circle that is traversed twice.  

Compare with the situation in which two loops of different sizes enclose the same pole.

Integrate 1

z- 1
2

- 2
z-‰-1

 on both of the following contours: zÆCos[t]+‰ Sin[t] and zÆExp[‰ t](2Cos[t]+1) 

for {t,0,2p}.  Comment on your results.

Numerical integration

Basic syntax
Although Mathematica will often succeed in producing symbolic integrals for some quite unpromising 
integrands, many interesting integrals cannot be performed symbolically.  Furthermore, it is often more 
efficient to evaluate an integral numerically even when a symbolic result is available because many 
symbolic integrals are expressed in terms of rather complicated and unfamiliar functions anyway.  Not 
surprisingly, the function Mathematica provides for numerical integration is called NIntegrate and is used 
with syntax virtually identical to that for symbolic integration.  Of course, the integrand must evaluate to a 
number, which sometimes requires wrapping the function Evaluate around the integrand.

IntegrateAExpA Cos@tD2E, 8t, 0, 2 π<E

2 Æ π BesselIB0,
1

2
F

% êê N

11.0169

NIntegrateAExpA Cos@tD2E, 8t, 0, 2 π<E

11.0169
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integral = IntegrateB
x2 Exp@−xD

1 + x3
, 8x, 0, ∞<F

MeijerGB880<, 8<<, ::0, 0, 1

3
, 2

3
>, 8<>, 1

27
F

2 3 π

8time1, ans1< = Timing@N@integralDD

80.078, 0.279861<

while direct numerical evaluation of the integral is faster

8time2, ans2< = TimingBNIntegrateB
x2 Exp@−xD

1 + x3
, 8x, 0, ∞<FF

80.015, 0.279861<

and gives the same result to high accuracy

ans1 − ans2

−8.10857 × 10−12

This difference in speed is unimportant for a single evaluation, one often needs to evaluate an integral 
many times within a larger program or loop for which efficiency does become important.  

Finally, one should always remember that no numerical algorithm is guaranteed to succeed for any input.  
The integrand for the present example is so well behaved that numerical integration is obviously straightfor-
ward  
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PlotB
x2 Æ−x

1 + x3
, 8x, 0, 5<F

1 2 3 4 5

0.05

0.10

0.15

but Murphy's Law decrees that the integral you need for your work will not be as compliant.  You must treat 
any singularities or unusually rapid changes carefully.  Numerical integration often has difficulties with 
infinite ranges if the integrand does not decrease sufficiently rapidly or oscillates.  Often one can improve 
the convergence by a suitable change of variable or by subdividing the integration range.  NIntegrate 
also provides several options 

Options@NIntegrateD

8AccuracyGoal → ∞, Compiled → Automatic,
EvaluationMonitor → None, Exclusions → None, MaxPoints → Automatic,
MaxRecursion → Automatic, Method → Automatic, MinRecursion → 0,
PrecisionGoal → Automatic, WorkingPrecision → MachinePrecision<

which can often tame a slowly convergent integral by brute force, but insight into the properties of your 
integral is usually preferred.  However, a systematic treatment of reluctant integrals is beyond the scope of 
this course.
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Compare symbolic and numerical evaluations of Ÿ0
1 ω4 Æω

IÆω−1M2
.

Evaluate Ÿ0
∞ ω4 Æω

IÆω−1M2
 numerically.  [Hint: use LogPlot to examine the integrand.]

à Example: finite Fourier-Bessel transform

Consider a spherically symmetric three-dimensional density of charge or mass that is relatively large near 
the origin and vanishingly small for large distances.  An example dear to the author's heart is the density of 
atomic nuclei, which is reasonably well approximated by the simple function

Clear@ρD;

ρ =
1 + w Hr ê cL2

1 + Exp@Hr − cL ê aD
;

A typical case is shown below.  Note that the central density is normalized artificially to unity.  The density 
is fairly constant for small radii and then decays to zero in a distance of order a near the surface radius c.

values = 8c → 2.5, a → 0.5, w → 0.2<;

Plot@Evaluate@ρ ê. valuesD, 8r, 0, 8<D

2 4 6 8

0.2

0.4

0.6

0.8

1.0

When analyzing measurements of such a density distribution, one commonly employs a Fourier-Bessel 
transform

fbe@rD = ‚
n=1

nmax

an 0B
n p r

R
F for r § R

within a limited volume whose radius is several times the root-mean-square radius of the distribution.  
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Using known properties of the spherical Bessel functions, one can show that the expansion coefficients are 
given by the integral

an =
2

R3
1B n p r

R
F2 ‡

0

R
r@rD 0B

n p r

R
F r2 „ r

Thus, we wish to construct a function which evaluates the expansion coefficients by numerical integration.  
We also test this function by comparing the expansion with the original function.

Clear@sbessj, fbeCoeffD;

sbessj@n_, z_ ê; z ≠ 0D := Sqrt@ Pi ê H2 zLD BesselJBn +
1

2
, zF;

sbessj@0, 0D := 1;
sbessj@n_ ê; n > 0, 0 D := 0

fbeCoeff@ρ_, params_, n_, R_D :=
2

R3 sbessj@1, n π D2
NIntegrateBEvaluateBr2 ρ sbessjB0,

n π r

R
F ê. paramsF,

8r, 0, R<F

fbe@r_, coeffs_, R_D :=

coeffs.TableBsbessjB0,
n π r

R
F, 8n, 1, Length@coeffsD<F

coeffs = Table@fbeCoeff@ρ, 8c → 2.5, a → 0.5, w → 0.2<, n, 8.D, 8n, 1, 10<D

80.280313, 0.593799, 0.405115, −0.00177325, −0.198592,
−0.143097, −0.01894, 0.0426634, 0.0362552, 0.00864849<
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Plot@Evaluate@ρ − fbe@r, coeffs, 8.`D ê. 8c → 2.5`, a → 0.5`, w → 0.2`<D,
8r, 0, 8<D

2 4 6 8

−0.002

−0.001

0.001

0.002

0.003

For this choice of cut-off radius we achieve better than 1% accuracy with 10 terms of the Fourier-Bessel 
expansion.

rms radius for spherical distribution (numerical)

The root-mean-square (rms) radius for a spherically symmetric radial distribution function r(r) is defined as

rms =
Ÿ0

¶ r r4 „ r

Ÿ0
¶ r r2 „ r

Write a function which evaluates the rms radius for an arbitrary distribution numerically.  Test using a 

uniform distribution for r § R.  Then evaluate the rms radius for r = 1+w HrêcL2
1+Exp@Hr-cLêaD

 and compare with the 

Fourier-Bessel expansion of same.

Numerical contour integration
Contour integration along a path defined as a series of connected line segments can be performed using 

the syntax NIntegrate[ f , 9z, z1, z2, ∫, zn=] where the zi are complex numbers that plot the contour.  For 

example, the following integral is performed along a square contour centered on the origin with edges 
parallel to the real and imaginary axis.
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NIntegrateB
Exp@zD

z
, 8z, −1 − Ç, 1 − Ç, 1 + Ç, −1 + Ç, −1 − Ç<F

−2.08167 × 10−17 + 6.28319 Ç

Because we chose a function exhibiting only one simple pole with unit residue inside the contour, the result 
is just 2 p Â.  Complex analysis tells us that the same result should be obtained for any other contour which 
encompasses the same poles and which can be deformed continuously into the first without crossing 
singularities or branch cuts.  Thus, the diamond-shaped contour

NIntegrateB
Exp@zD

z
, 8z, −1, −Ç, 1, Ç, −1<F

0. + 6.28319 Ç

does indeed give the same result.

More general contours can be defined in terms of the same type of replacement rules we employed above 
for symbolic contour integration.

contourNIntegrate@f_, contour : Hz_ → ζ_L, 8t_, tmin_, tmax_<D :=
NIntegrate@Evaluate@f D@ζ, tD ê. contourD, 8t, tmin, tmax<D

Applying this over a circle, 

contourNIntegrateB
Exp@zD

z
, z → Cos@tD + Ç Sin@tD, 8t, 0, 2 π<F êê

Chop

6.28319 Ç

we again obtain the same result when the contour encloses a single pole.  Returning to our earlier 
example in which the pole is circled twice, we now obtain the correct answer because numerical 
integration counts both loops.

contourNIntegrateB
1

z − 1

2

, z → Exp@Ç tD H2 Cos@tD + 1L, 8t, 0, 2 π<F êê

Chop

12.5664 Ç

Nor is the spurious real part produced by the symbolic integral present in the numerical integral.  

Numerical integration is often more reliable than symbolic integration and should be used to check 
suspicious symbolic results.
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Numerically integrate 1

z- 1
2

- 2
z-‰-1

 on both of the following contours for {t,0,2p}: 

a) zÆCos[t]+‰ Sin[t]  

[Hint: do not separate the integrand.]

b) zÆExp[‰ t](2Cos[t]+1)

[Hint: you may need to handle the two terms separately for the two-loop contour because nearby 

poles tend to cause problems with numerical stability.]  

Comment on your results.  

Exercises
Chain and cyclic rules

In thermodynamics, one frequently wishes to connect the dependencies of three variables 8x, y, z< for 
which there exists a single state function that reduces the number of degrees freedom to two.  Thus, we can 

express x as x@y, zD or y as y@x, zD and deduce relationships among the partial derivatives K ∑x
∑y

O
z
, J ∑y

∑z
N

x
, and 

J ∑z
∑x

N
y
 where the subscript indicates the constrained variable.

a) Evaluate Dt[x]mDt[x[y,z]] and Dt[y]mDt[y[x,z]] symbolically.  Then eliminate Dt[y] 
and find the coefficients of Dt[x] and Dt[z] for an equation of the form Dt[x]m0.

b) Because we are free to vary any two variables independently, the coefficients of Dt[x] and Dt[z] 
must each vanish separately.  Obtain thereby two relationships among the partial derivatives — one will be 
the familiar chain rule and the second will be a less familiar cyclic rule that is very important in thermody-
namic analysis.

c) The equation of state for a simple compressible system can be expressed in the form V = V @T , pD, where 

p is pressure, T  is temperature, and V  is volume.  Use the cyclic rule to express J ∑p

∑T
N
V

 in terms of the 

isobaric expansivity, a = 1
V

J ∑V
∑T

N
p
, and the isothermal compressibility, kT = - 1

V
K ∑V

∑p
O

T
.

Interference maxima

If n equally spaced identical antennas radiate in phase, the angular distribution is described by an interfer-
ence pattern of the form

f @n, aD =
Sin@n aD2

Sin@aD2

where

a =
d

l
Sin@qD
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and where d is the spacing between sources and l is the wave length.

a) Plot the distribution in a for several values of n and determine the locations of the principal maxima.  
How many minor maxima are found between principal maxima?

b) Write a function which produces a numerical list of positions for the minor maxima. with 0 < a < p.

Small amplitude oscillations

Consider a particle of mass m is the presence of a potential V @rD.  The equation of motion is then

m
∑2 r

∑ t2
ã -

∑V

∑r

Furthermore, suppose the potential exhibits a minimum at r = r0 such that a Taylor series expansion near 
the minimum takes the form

V @rD º V0 +
1

2
k Hr - r0L2 + ∫

where V0 = V @r0D.
a) Show that for small amplitude oscillations, r@tD has sinusoidal solutions and deduce the relationship 
between the frequency w and the parameters m and k.  Then deduce the relationship between k and the 
original potential.

b) Determine the position and depth of the minimum in the generalized Morse potential 

V @rD = -
d

1 - 2 c2
IExp@-2 aHr - bL êcD - 2 c2 Exp@-aHr - bL êcDM

symbolically and deduce the frequency for small amplitude oscillations.  

c) Choose units of energy and length for which d = 1 and b = 1.  For copper atoms in a face-centered-cubic 
lattice, one finds that experimental data for specific heats are fit well using a = 3.02 in these units.  Plot the 
potential for c = 81, 2, 0.5< on the same figure and interpret the parameters.  Note that the usual Morse 
potential corresponds to c Ø 1.

d) Compare graphically the quadratic approximation with the original potential using c = 1.5 and the 
parameters of the preceding part.

Fourier-sine series for periodic functions with step-discontinuities

An odd periodic function, for which f @-xD ã - f @xD and f @x + bD ã f @xD, can be represented as a Fourier-

Sine series of the form f @xD = ⁄n=1
¶ an SinB2 p n x

b
F where the coefficients are given by 

an = 2
b Ÿ0

b f @xD SinB2 p n x
b
F „ x.  

a) Determine the expansion coefficients for a sawtooth function which varies between +1 and -1 in a unit 
interval, and verify graphically that the sawtooth function is obtained by summation of the Fourier-Sine 
series for finite n § nmax.

b) Mathematica does not produce a closed-form summation of this Fourier-Sine series without some 
coaching.  Let us assume, without formal proof, that the sine functions can be converted to exponentials, 
such that the series is separated into two series with exponentials whose arguments differ in time, and that 
these two series can be summed separately and then combined.   Show that these series can be summed 
and obtain a result for the Fourier-Sine series.  How does this function produce step discontinuities?
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c) Repeat parts a) and b) for a square wave.

Potential for conservative vector field

A conservative vector field f  can be expressed in terms of a potential as f = -“ f.  Hence, given an 
expression for such a field we can construct the corresponding potential using the path integral

f@r”D - f@r”0D = -‡
r”0

r”
f .„ r”

where r”0 is a reference point and f@r”0D is an arbitrary value assigned to the reference point.  One can show 
that for a conservative field the integral is independent of the path between these points.  Hence, one way 
to construct the potential function is to use a path consisting of three segments in which only one variable 
changes over the segment.  Write a function which implements this algorithm.  Test by constructing the 
potential for the vector field 8y, x, 0< and then evaluating the gradient of the potential.

angle between curves

The angle, q, between two curves, y1@xD and y2@xD, at a point of intersection is defined as the angle between 
the tangents at that point.

a) Derive a formula for Tan@qD in terms of the slopes mi = „ yi ê„ x.

b) Recall the "cylinder in a trough" problem from the algebra notebook.  A cylinder of radius R is dropped 
into a parabolic trough and becomes wedged when its center is at height h.  Another way to determine h is 
to evaluate the angle between the curves x2 + Hy - hL2 = R2 and y = a x2 at their points of intersection.  
Clearly, this angle should be zero at the proper value of h.
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