
Algebra

Initialization

In[1]:= ClearAllA"Global`*"E;
Off@General::spell, General::spell1D

In[3]:= NeedsA"Notation`"E

Manipulation of algebraic expressions

Rational expressions

Together collects terms over a common denominator and cancels
common factors.

In[4]:=
a

b + c
-

d

e - f
êê Together

Out[4]=
-b d - c d + a e - a f

Hb + cL He - fL

Apart separates an expression into a sum of terms with simpler
denominators.

In[5]:= % êê Apart

Out[5]=
a

b + c
+

d

-e + f

Cancel cancels common factors between the numerator and denom-
inator of a rational expression.

In[6]:=
2 a2 b

Hb + cL a
êê Cancel

Out[6]=
2 a b

b + c

The Numerator or Denominator of a rational function of polynomi-
als can be extracted using functions of the same name. Note that
the numerator is considered the part of the expression which does
not have a "superficially" negative power.

In[7]:= expr =
a b-2 g-n

Hc - dL He - fL-1
;

8Numerator@exprD, Denominator@exprD<

Out[8]= 9a He - fL, b2 Hc - dL gn=

Note that the option Trig→True is needed for use with trigonomet-

ric expressions to avoid automatic conversions of expressions of
the type 1 êCos@xDØSec@xD.

Algebra_I.nb 2

In[9]:= expr =
SinAx2E
CosAx3E

;

8Numerator@exprD, Denominator@exprD,
Denominator@expr, Trig Ø TrueD<

Out[10]=

9SecAx3E SinAx2E, 1, CosAx3E=

Combine: x
1-x2 - 1

1+x

Expanding products

ExpandNumerator expands numerators while ExpandDenominator
expands denominators. (Duh!)

In[11]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê ExpandNumerator

Out[11]=

-2 a2 - a b + b2

a Ha - bL

In[12]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê ExpandDenominator

Out[12]=

H-2 a + bL Ha + bL
a2 - a b

Expand expands numerators leaving denominators in factored
form, cancelling common factors where possible.

Algebra_I.nb 3

In[13]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê Expand

Out[13]=

-
2 a

a - b
-

b

a - b
+

b2

a Ha - bL

ExpandAll expands both numerators and denominators. Note that
common factors are not cancelled.

In[14]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê ExpandAll

Out[14]=

-
2 a2

a2 - a b
-

a b

a2 - a b
+

b2

a2 - a b

Cancel common factors from the expression above.

Factoring sums

Factor reduces an expression to a product of factors.
In[15]:=

Ha + bL H2 a - bL Hc - aL Hd + bL êê Expand

Out[15]=

-2 a3 b - a2 b2 + a b3 + 2 a2 b c + a b2 c - b3 c -

2 a3 d - a2 b d + a b2 d + 2 a2 c d + a b c d - b2 c d

Algebra_I.nb 4

In[16]:=

% êê Factor

Out[16]=

-H2 a - bL Ha + bL Ha - cL Hb + dL

In[17]:=

Ha + bL H2 a - bL
Hc - aL Hd + bL

êê ExpandAll

Out[17]=

2 a2

-a b + b c - a d + c d
+

a b

-a b + b c - a d + c d
-

b2

-a b + b c - a d + c d

In[18]:=

% êê Factor

Out[18]=

-
H2 a - bL Ha + bL
Ha - cL Hb + dL

By default, Factor is limited to integers and thus will not factor
In[19]:=

x2 + 1 êê Factor

Out[19]=

1 + x2

The option GaussianIntegers→True can be used to extend

Factor to complex numbers.

Algebra_I.nb 5

In[20]:=

FactorAx2 + 1, GaussianIntegers Ø TrueE
Out[20]=

H-Â + xL HÂ + xL

In[21]:=

Options@FactorD
Out[21]=

8Extension Ø None, GaussianIntegers Ø False,

Modulus Ø 0, Trig Ø False<

Similarly, with the option Trig→True multiple-angle formulae are

used to factor expressions involving trigonometric and hyperbolic
functions.

In[22]:=

Factor@Sin@xD Sin@3 xD, Trig Ø TrueD
Out[22]=

H1 + 2 Cos@2 xDL Sin@xD2

In[23]:=

Factor@Sinh@2 xD Cosh@2 xD, Trig Ø TrueD
Out[23]=

2 Cosh@xD Cosh@2 xD Sinh@xD

Factor : -24 x + 12 x2 - 24 y + 4 x y + 10 x2 y -
3 x3 y - 8 y2 + 10 x y2 - x2 y2 - x3 y2 + 2 x y3 - x2 y3

Factor:
a) Cos[x]+Cos[y] b) Cosh[x]+Cosh[y]

Algebra_I.nb 6

Collecting terms

Collect[expr,x] collects terms involving the same powers of x.
In[24]:=

Ha + b xL Ic x - d x2M êê Collect@Ò, xD &

Out[24]=

a c x + Hb c - a dL x2 - b d x3

Collect[expr,x,f] applies the function f to each coefficient sepa-

rately. Thus, Collect[expr,x,Simplify] can be used to simplify

the coefficients or Collect[expr,x,Factor] to factor them.
In[25]:=

Ha + b xL Ia c x - d x2M êê Collect@Ò, x, FactorD &

Out[25]=

a2 c x + a Hb c - dL x2 - b d x3

Collect[expr,{x1,x2}] collects terms involving the same powers

from a list of objects.
In[26]:=

Ha y + b x + fL Ic y2 - d x2 - gM êê Collect@Ò, 8x, y<D &

Out[26]=

-f g - b d x3 - a g y + c f y2 +

a c y3 + x2 H-d f - a d yL + x I-b g + b c y2M

Algebra_I.nb 7

In[27]:=

Ha y + b x + fL Ic y2 - d x2 - gM êê Collect@Ò, 8y, x<D &

Out[27]=

-f g - b g x - d f x2 - b d x3 +

I-a g - a d x2M y + Hc f + b c xL y2 + a c y3

Note that collection priority is ordered according to the listed order
of the variables.

FactorTerms[expr,x] extracts any that are independent of x.
In[28]:=

-a d x - b d y + a c x y + b c y2 êê FactorTerms@Ò, xD &

Out[28]=

-Ha x + b yL Hd - c yL

In[29]:=

-a d x - b d y + a c x y + b c y2 êê FactorTerms@Ò, 8x, y<D &

Out[29]=

Ha x + b yL H-d + c yL

With only one argument an overall rational factor is pulled out of a
polynomial.

In[30]:=

2 x +
1

2
+

x2

3
êê FactorTerms

Out[30]=

1

6
I3 + 12 x + 2 x2M

Algebra_I.nb 8

Coefficients are obtained using Coefficient or CoefficientList.
Coefficient[expr,x] reports the coefficient of x found in expres-

sion expr; note that for this purpose x2 is considered distinct from

x, such that the coefficient returned will not contain any power of
x. Coefficient[expr,x,n] returns the coefficient of xn.

In[31]:=

expr = a + 3 x y +
b

x

15

;

9CoefficientAexpr, x7E,
CoefficientAexpr, x2, 7E, Coefficient@expr, x, -3D=

Out[32]=

914073345 a8 y7 + 295540245 a6 b y8 +

1477701225 a4 b2 y9 + 1773241470 a2 b3 y10 +

241805655 b4 y11, 71744535 a y14,

455 a12 b3 + 45045 a10 b4 y + 1216215 a8 b5 y2 +

11351340 a6 b6 y3 + 36486450 a4 b7 y4 +

32837805 a2 b8 y5 + 3648645 b9 y6=

CoefficientList[expr,x] returns a list of coefficients beginning

with x0. Coefficient[expr,{x1,x2,...}] returns a rectangular

array. Note that since both Coefficient and CoefficientList

are both intended for use primarily with polynomials, functions
other than powers may appear in the coefficients. Also,
CoefficientList does not handle negative powers.

Algebra_I.nb 9

In[33]:=

expr = Hx + y Cos@yDL5;
CoefficientList@expr, xD

Out[34]=

9y5 Cos@yD5, 5 y4 Cos@yD4,
10 y3 Cos@yD3, 10 y2 Cos@yD2, 5 y Cos@yD, 1=

In[35]:=

CoefficientListAHx + yL5, 8x, y<E êê MatrixForm

Out[35]//MatrixForm=

0 0 0 0 0 1
0 0 0 0 5 0
0 0 0 10 0 0
0 0 10 0 0 0
0 5 0 0 0 0
1 0 0 0 0 0

Let expr = Nest[m #(1-#)&,x,4].
a) Use Collect to produce an explicit polynomial in m and to factor
the coefficients.
b) Alternatively, use CoefficientList to list the coefficients of mn and
then factor those coefficients.

Deduce the linear transformation x Ø a z + b that takes an arbitrary
quadratic function a x2 + b x + g to the simpler form z2 + c by
determining 8a, b, c< in terms of 8a, b, g<.

Using the AlgebraicManipulation palette

There exists an AlgebraicManipulation palette which can be

used to perform many of the operations by point-and-click rather
than by entering commands directly. If you are unsure of whether
that palette is active, use the Window submenu of the main tool-

Algebra_I.nb 10

bar to display a list of the active windows. If
AlgebraicManipulation is present, clicking on it will bring it to

the fore; otherwise use File # Palettes to activate it. The palette
contains a list of operations that can be applied to a highlighted
expression or subexpression. Highlight the following expression or
a portion thereof. Then apply one of the transformations, such as
Expand, by clicking on the palette. That operation is performed in

situ, leaving the result highlighted. Clicking on Factor undoes the

previous the operation. Expand followed by Simplify produces

another variation. Experimenting with various transformation
sequences can produce the desired result more quickly than typing
and editing commands. Of course, if you expect to repeat these
evaluations later, you should record the best sequence of transfor-
mations in the notebook itself.

In[36]:=

-H2 a - bL Ha + bL Ha - cL Hb + dL
Out[36]=

H-2 a + bL Ha + bL Ha - cL Hb + dL

This method can be applied to parts of expressions also. To get
some familiarity with this technique, perform the following opera-
tions on a copy of the expression below.

1) put the first term in the numerator over a common
denominator

2) factor the second term of the numerator

3) simplify the numerator

4) try simplifying the denominator — the result is not likely
to be satisfactory

5) try other sequences on the whole or parts of the
denominator

Algebra_I.nb 11

In[37]:=

Ia + b x
c-d

M Ic2 - d2M
a + b

c+ d
x-d

+ 1
c x -d c+d

Out[37]=

Ic2 - d2M Ia + b x
c-d

M
a + 1

d-c d+c x
+ b

c+ d
-d+x

Manipulation of trigonometric expressions

Many functions are also available for manipulation of expressions
involving trigonometric functions, often appearing as counterparts
to functions that transform algebraic expressions in similar ways.
Both circular and hyperbolic trigonometry are handled by these
functions. In addition, there are functions which transform
between trigonometric and exponential representations.

TrigExpand expands products of trigonometric functions into a
sum of terms and applies multiple-angle formulas to reduce the
arguments to their most basic form.

In[38]:=

Cos@2 xD Sin@2 xD êê TrigExpand

Out[38]=

2 Cos@xD3 Sin@xD - 2 Cos@xD Sin@xD3

In[39]:=

Cosh@2 xD Sinh@2 xD êê TrigExpand

Out[39]=

2 Cosh@xD3 Sinh@xD + 2 Cosh@xD Sinh@xD3

Algebra_I.nb 12

TrigFactor factors expressions into products of terms.
In[40]:=

2 Cosh@xD3 Sinh@xD + 2 Cosh@xD Sinh@xD3 êê TrigFactor

Out[40]=

2 Cosh@xD HCosh@xD - Â Sinh@xDL HCosh@xD + Â Sinh@xDL Sinh@xD

TrigReduce uses trigonometric identities to simplify expressions,
generally attempting to reduce the number of trigonometric func-
tions involved, often using multiple-angle formulas.

In[41]:=

Sin@xD2 + Cos@xD2

Out[41]=

Cos@xD2 + Sin@xD2

In[42]:=

Sin@xD2 + Cos@xD2 êê TrigReduce

Out[42]=

1

In[43]:=

2 Cos@xD3 Sin@xD - 2 Cos@xD Sin@xD3 êê TrigReduce

Out[43]=

1

2
Sin@4 xD

TrigToExp converts trigonometric functions to exponential form.

Algebra_I.nb 13

In[44]:=

stuff = Cosh@2 xD2 - Sinh@xD êê TrigToExp

Out[44]=

1

2
+

‰-4 x

4
+

‰-x

2
-

‰x

2
+

‰4 x

4

ExpToTrig converts from exponential to trigonometric functions.
In[45]:=

stuff êê ExpToTrig

Out[45]=

1

2
+

1

2
Cosh@4 xD - Sinh@xD

Often several transformations can be profitably combined.
In[46]:=

‚
m=-j

j

ExpBm y

j
F êê ExpToTrig êê TrigFactor

Out[46]=

CschB y

2 j
F SinhBy +

y

2 j
F

Identities can also be checked, but it will often be necessary to
use Simplify to obtain comparable expressions in both arguments

of Equal.
In[47]:=

Cos@x + yD2 ã
1

2
H1 + Cos@2 x + 2 yDL êê Simplify

Out[47]=

True

Algebra_I.nb 14

Expand:
a) Cos[4x] b) Tanh[2x]

Simplify using TrigReduce: 2 coshHxL3 sinhHxL + 2 coshHxL sinhHxL3.
Expand and place over common denominator:
a) cosHx + yL b) tanhHx - yL
Expand the following product and use TrigReduce to simplify the
result: HcosHxL cosHyL - sinHxL sinHyLL2.
Use ExpToTrig and TrigFactor to simplify 1+‰x

1-‰x . Compare with the

effect of Simplify.

Watch out for that branch!

Mathematica tends to be more careful about its algebra than the
average user. For example, many new users are puzzled by the
"failure" of Simplify to reduce the following expression

In[48]:=

a2 êê Simplify

Out[48]=

a2

or Expand to alter
In[49]:=

Log@a bD êê Expand

Out[49]=

Log@a bD

but Mathematica does not automatically assume that the positive
branch of the square root is desired or that variables are positive
or even that they are real. If you are confident that all relevant

Algebra_I.nb 15

quantities are positive, PowerExpand can be used to simplify pow-
ers and products, expand logarithms, and perform related transfor-
mations that are valid for positive quantities. Thus,

In[50]:=

a2 êê PowerExpand

Out[50]=

a

gives the positive branch of the square root and
In[51]:=

LogAa2 b3E êê PowerExpand

Out[51]=

2 Log@aD + 3 Log@bD

separates the log of a product into the sum of their logs assuming
that both factors are positive and extracts their exponents prop-
erly. However, although PowerExpand can be very useful, you

must ensure that all affected expressions satisfy its assumptions.
Thus, if a > b and c > 0 and all are real, then

In[52]:=

Log@Ha - bL cD êê PowerExpand

Out[52]=

Log@a - bD + Log@cD

is handled correctly, but otherwise you must determine the appro-
priate branch of the complex logarithm function.

Similarly, ComplexExpand assumes that all variables are real, but
not necessarily positive. Thus,

Algebra_I.nb 16

In[53]:=

-a2 êê ComplexExpand

Out[53]=

Â a2

still cannot alter this expression because a2 , though real, could

still be ≤a. Similarly,
In[54]:=

Log@a bD êê ComplexExpand

Out[54]=

Â Arg@a bD + LogB a2 b2 F

involves the argument function Arg because the sign of a b is not

known a priori. Nevertheless, ComplexExpand is helpful for expres-

sions like
In[55]:=

Sin@x + Â yD êê ComplexExpand

Out[55]=

Cosh@yD Sin@xD + Â Cos@xD Sinh@yD

where explicit real and imaginary parts are expressed in terms of
real variables. ComplexExpand[expr,{x1,x2,∫}] assumes that

{x1,x2,∫} are complex but that all other variables are real.

Algebra_I.nb 17

In[56]:=

ExpAz2 Hx + Â yLE êê ComplexExpand@Ò, 8z<D &

Out[56]=

‰-2 y Im@zD Re@zD+x I-Im@zD2+Re@zD2M

CosA2 x Im@zD Re@zD + y I-Im@zD2 + Re@zD2ME +

Â ‰-2 y Im@zD Re@zD+x I-Im@zD2+Re@zD2M

SinA2 x Im@zD Re@zD + y I-Im@zD2 + Re@zD2ME

Caveat emptor: use PowerExpand and ComplexExpand cautiously!
You are responsible for ensuring that all affected expressions
satisfy the assumptions made by these functions.

Expand and simplify cothHx + Â yL assuming that x and y are real.

Simplicity is in the eye of the beholder

Perhaps the most useful, but often the most frustrating, Mathemat-
ica function for manipulation of symbolic expressions is Simplify,
which attempts to reduce an expression to a simpler form.
Simplify includes expansion, factorization, and many other alge-

braic transformations. With the option Trig→True, which is the

default, it applies trigonometric identities also. Thus, because
Simplify includes all of the functions described above, plus oth-

ers, the first step in simplifying an expression is usually to append
a simplification command in postfix notation, namely
expr//Simplify, and seeing what you get.

In the contrived example below this simple operation produces
immediate gratification

Algebra_I.nb 18

In[57]:=

I4 ICosh@xD6 Sinh@xD2 + 2 Cosh@xD4 Sinh@xD4 +

Cosh@xD2 Sinh@xD6MM ë I8 + 12 x + 6 x2 + x3M êê Simplify

Out[57]=

Sinh@4 xD2

4 H2 + xL3

whereas for this next expression it is useful to convert from expo-
nential to trig before simplifying:

In[58]:=

y2 ‰y

I1 + ‰yM2
êê ExpToTrig êê Simplify

Out[58]=

1

4
y2 SechBy

2
F
2

Sometimes when Simplify is stumped, FullSimplify can help.

FullSimplify tries a much wider range of transformations and

includes rules for many special functions. Thus, FullSimplify is

useful for the next expression where Simplify is not.
In[59]:=

2 n BesselJ@n, xD - x BesselJ@n + 1, xD êê FullSimplify

Out[59]=

x BesselJ@-1 + n, xD

However, because FullSimplify must test a broader range of pos-

sibilities, it can become extremely time consuming and can
exhaust the memory of your computer. If you hear the hard disk
churning, your expression is probably too complicated to handle
without human guidance. It is a good idea to save your work

Algebra_I.nb 19

before attempting to apply FullSimplify to an unwieldy expres-

sion in case it becomes necessary to abort the evaluation, which is
not always without risk!

Use FullSimplify sparingly and do not abuse Simplify either.

Algebra_I.nb 20

Furthermore, one often has an aesthetic sense of the form that is
desired and there is no guarantee that Simplify shares your

notion of simplicity or aesthetics. You can then attempt to guide
the simplification process by applying transformation functions, or
explicit replacement rules, in the order you believe will lead to the
desired form. Such a calculation is generally developed by accre-
tion, adding transformations sequentially in postfix form until the
goal is reached. Sometimes the same transformation has to be
applied several times at different stages of the calculation, per-
haps interspersed with simplification commands, with intermediate
stages organized using parentheses. Unfortunately, the appropri-
ate order for these steps can be difficult to work out and some-
times changes from one release of Mathematica to the next.
There are few general rules we can impart — simplification guided
by aesthetics is a fine art acquired only by experience. On the
other hand, unless you have a good reason to insist upon the sim-
plest possible expressions, simplification is often superfluous. One
can calculate and plot functions or investigate many of their proper-
ties without getting bogged down in unnecessary manipulations.

Applications on Simplify[expr], Expand[expr], Factor[expr]
Apart[expr], Together[expr]

Mathematica can work with expressions as well as numerical
input. You can factor, combine like terms, and expand
expressions.

In[60]:=

4 x2 - 3 x + 7 - 8 x2 + 6 x3 + 11 x - 9

Out[60]=

-2 + 8 x - 4 x2 + 6 x3

Algebra_I.nb 21

In[61]:=

SimplifyAI7 x2 + 3 x - 8M - I6 x2 - 5 x - 24ME
Out[61]=

H4 + xL2

In[62]:=

ExpandBI2 x2 - 3 x + 4M4F

Out[62]=

256 - 768 x + 1376 x2 - 1584 x3 +

1329 x4 - 792 x5 + 344 x6 - 96 x7 + 16 x8

In[63]:=

Factor A2 x3 + 13 x2 - 7 xE
Out[63]=

x H7 + xL H-1 + 2 xL

In[64]:=

ApartB 5 x + 2

x2 + 5 x + 4
F

Out[64]=

-
1

1 + x
+

6

4 + x

Algebra_I.nb 22

In[65]:=

TogetherB 1

2 x + 3
-

5 x

x2 - 1
F

Out[65]=

-1 - 15 x - 9 x2

H3 + 2 xL I-1 + x2M

A nice utility in Mathematica is the % expression, which represents
the last output.

In[66]:=

4 x2 - 5

2 x2 - 5 x + 2

Out[66]=

-5 + 4 x2

2 - 5 x + 2 x2

In[67]:=

Apart@%D
Out[67]=

2 +
11

3 H-2 + xL
+

8

3 H-1 + 2 xL

In[68]:=

Together@%D
Out[68]=

-5 + 4 x2

H-2 + xL H-1 + 2 xL

Algebra_I.nb 23

In[69]:=

Expand@%D
Out[69]=

-
5

H-2 + xL H-1 + 2 xL
+

4 x2

H-2 + xL H-1 + 2 xL

In[70]:=

ExpandAll@%D
Out[70]=

-
5

2 - 5 x + 2 x2
+

4 x2

2 - 5 x + 2 x2

In[71]:=

Simplify@%D
Out[71]=

-5 + 4 x2

2 - 5 x + 2 x2

Simplify:

a) 3 sinHxL - sinH3 xL b) cosIsin-1HxLM c) 3 tanhHxL+tanh3HxL
1+3 tanh2HxL

For the expression 2 cosh3(x) sinh(x) + 2 cosh(x) sinh3HxL,
compare the following transformations:
a) Factor b) Factor[expr,TrigØTrue] c) TrigFactor
d) TrigReduce e) Simplify f) Simplify[expr,TrigØFalse]

Express lnI x+1
x-1

M in terms of hyperbolic trigonometric functions.

[Hint: you might need the substitution x Ø E2 y and several steps.]
I leave it to you to judge which form is simplest — most statistical
physics textbooks express this formula in terms of hyperbolic
trigonometric functions, but rational expressions are pretty simple
also. Often one's preference depends upon context.

Algebra_I.nb 24

Example

The entropy for a system is proportional to the logarithm of the
total number of states with the same energy. Suppose that a sys-
tem is described by a multiplicity function of the form

In[72]:=

multiplicity =
n!

m! Hn - mL!

2

;

where n and m are very large positive integers, of order 1023, with
m` n. Under those circumstances it is useful to apply the Stirling
approximation for Log@n!D in the form

In[73]:=

StirlingApprox = 8Log@x_ !D Ø x Log@xD - x<;

First, note that Simplify is ineffective because it does not recog-

nize that the variables in this expression are positive and that the
logarithm can be reduced without specifying the appropriate
branch, but PowerExpand does help.

In[74]:=

Log@multiplicityD êê Simplify

Out[74]=

LogB Hn!L2

Hm!L2 HH-m + nL!L2
F

In[75]:=

Log@multiplicityD êê PowerExpand

Out[75]=

-2 Log@m!D + 2 Log@n!D - 2 Log@H-m + nL!D

Next we apply the Stirling approximation. Note that parentheses

Algebra_I.nb 25

are included to ensure that PowerExpand is executed first. (Try to

do without the parentheses.)
In[76]:=

HLog@multiplicityD êê PowerExpandL ê. StirlingApprox

Out[76]=

-2 H-m + m Log@mDL + 2 H-n + n Log@nDL -

2 Hm - n + H-m + nL Log@-m + nDL

Because we know that m < n, it is convenient to make the substitu-
tion m Ø x n where 0 § x § 1 is the ratio between m and n. (The
physics would also be discussed in terms of x if this were a course
in statistical physics.) Therefore, we append this replacement rule
and another simplification step.

In[77]:=

HLog@multiplicityD êê PowerExpandL ê. StirlingApprox ê.
m Ø x n êê Simplify

Out[77]=

2 n HLog@nD - x Log@n xD + H-1 + xL Log@n - n xDL

Finally, although we probably could use built-in functions, it is eas-
ier to simplify these logarithms with explicit rules, using cut-and-
paste editing. It is again necessary to use parentheses to ensure
proper order of operations.

In[78]:=

HHLog@multiplicityD êê PowerExpandL ê. StirlingApprox ê.
m Ø x n êê SimplifyL ê. 8Log@n xD Ø Log@nD + Log@xD,

Log@n - n xD Ø Log@nD + Log@1 - xD< êê Simplify

Out[78]=

2 n HH-1 + xL Log@1 - xD - x Log@xDL

Algebra_I.nb 26

We have now obtained a tidy expression, and could transform it in
other ways if desired. Rather than retaining each step of such a
calculation, usually only the last pair of input/output cells would be
kept in a notebook. Although the fairly complicated input cell
above would then appear to have sprung from the author's fore-
head fully armed in Athenian splendor, it would actually have been
assembled like an oyster's shell one layer at a time.

FunctionExpand

Expressions involving special functions with complicated argu-
ments can often be simplified using FunctionExpand.

In[79]:=

FunctionExpandBSinhBArcCosh@xD
2

FF

Out[79]=

-1 + x

2

In[80]:=

FunctionExpand@Cos@4 ArcTan@xDDD êê Simplify

Out[80]=

1 - 6 x2 + x4

I1 + x2M2

Simplify: Tan[ArcCos@xD
2

]

Algebra_I.nb 27

Simplification with assumptions

A powerful new feature of simplification became available in Ver-
sion 4.0. It is often possible to simplify symbolic expressions
much further when the properties of the various symbols, such as
their numerical ranges, are known in advance. The syntax
Simplify[expression,assumptions] permits a list of

assumptions to be employed during the simplification of

expression. The assumptions are specified either as a list,

{assumption1,assumption2,∫} or as a logical expression, such

as assumption1&&assumption2&&assumption3. Assumptions can

specify the type (domain) for various variables, allowed ranges for
values, or relationships between variables. Assumptions can be
employed with Simplify, FullSimplify, FunctionExpand,

Refine, Limit, or Integrate.

Consider the following expression.
In[81]:=

expr = Log@a - bD + Log@a + bD;

In[82]:=

Simplify@exprD
Out[82]=

Log@a - bD + Log@a + bD

Simplification is ineffective without further information about a and
b, but if we know that a > b

Algebra_I.nb 28

In[83]:=

Simplify@expr, 8a > b<D
Out[83]=

LogAa2 - b2E

then the two functions can be combined. Note that the assump-
tion a > b implicitly contains the additional assumption that both a
and b are real numbers, so that their magnitudes can be com-
pared directly. Similarly, the following expressions can be simpli-
fied by employing inequalities to define ranges.

In[84]:=

:SimplifyB Hx - yL2 F, SimplifyB Hx - yL2 , x > yF>

Out[84]=

: Hx - yL2 , x - y>

In[85]:=

SimplifyB2 x y § x + y, 8x ¥ 0, y ¥ 0<F

Out[85]=

True

In[86]:=

Limit@Exp@x yD, y Ø ¶, Assumptions Ø 8x < 0<D
Out[86]=

0

Often it is sufficient to specify a domain (Integers, Rationals,

Reals, Algebraics, Complexes, Booleans, Primes) for one or

more variables. The function Element[x,domain] specifies that x∈

domain is an element of the specified domain. The element opera-

Algebra_I.nb 29

tor ∈ can be entered with the keystroke sequence ÂelemÂ. The

variations {x,y,z}∈domain or (x|y|z)∈domain assign each mem-

ber of a list to the specified domain. Domains can also be speci-
fied for patterns according to patt∈domain.

In[87]:=

8Simplify@Cos@n pDD, Simplify@Cos@n pD, 8n œ Integers<D<
Out[87]=

9Cos@n pD, H-1Ln=

In[88]:=

SimplifyBCos@n pD, :n + 1

2
œ Integers>F

Out[88]=

-1

A related function is Refine, which uses assumptions to produce
output that more closely approximates the form that you might
use when its symbols satisfy explicit numerical assumptions. The
result is often better than produced by Simplify, or at least more

specific.
In[89]:=

8Simplify@Abs@xD, x < 0D, Refine@Abs@xD, x < 0D<
Out[89]=

8Abs@xD, -x<

In[90]:=

8Simplify@Log@xD, x < 0D, Refine@Log@xD, x < 0D<
Out[90]=

8Log@xD, Â p + Log@-xD<

Algebra_I.nb 30

In[91]:=

8Simplify@Cos@x + p yD, y œ IntegersD,
Refine@Cos@x + p yD, y œ IntegersD<

Out[91]=

9Cos@x + p yD, H-1Ly Cos@xD=

If one is performing a long derivation involving many symbols, it
can become cumbersome to specify a long list of assumptions
many times. The following example illustrates a useful technique
for performing such calculations. First we create a list a assump-
tions that apply to the variables of interest. Then we define our
own versions of the simplification functions using these assump-
tions. Two examples using these functions follow.

In[92]:=

MyAssumptions =

80 < qe < p, w > 0, q > Q, Q > 0, 0 < e < 1, ¶f > 0, ¶i > ¶f<;
MySimplify = Simplify@Ò, MyAssumptionsD &;

MyFullSimplify = FullSimplify@Ò, MyAssumptionsD &;

In[95]:=

sol1 = SolveBe ã 1 + 2
q2

Q2
 TanB qe

2
F
2 -1

, qeFP2T êê MySimplify

Solve::ifun :

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[95]=

:qe Ø -2 ArcTanB
Q -1 + 1

e

2 q
F>

Algebra_I.nb 31

In[96]:=

SolveBQ2 ã 4 ¶i H¶i - wL SinB qe

2
F
2

, ¶iFP2T ê. w Ø q2 - Q2 ê. sol1 êê

MyFullSimplify

Out[96]=

:¶i Ø
1

2
q2 - Q2 +

q H1 + eL

1 - e2
>

Although the formatting procedure used by Mathematica still has
some peculiarities (e.g., too many minus signs), these results
were simplified fairly completely with relatively little effort,
whereas much more complicated expressions would have been
produced had we not told Mathematica what assumptions it could
employ (Try it!). In a real problem we would probably use our
simplification routines many more times, perhaps adding addi-
tional assumptions as the solution is developed.

Under what assumptions will IxmMn reduce to xm n? Verify. List a

few examples which show that uncritical use of the proposed
replacement rule leads to incorrect results.

Prove an - bn = Ha - bL Ian-1 + an-2 b + ∫ + bn-1M for any positive

integer n and real a, b.

Symbolic solution of equations

Basic syntax

The basic tools for symbolic solution of algebraic equations are
Solve, Reduce, and Eliminate. Solve[eqs,vars] attempts to

solve an equation or list of equations, eqs, for the variable or list

Algebra_I.nb 32

of variables, vars. Equations must be expressed in the form

lhs ä rhs.
In[97]:=

eq1 = a x2 + b x + c ã 0;

In[98]:=

sol1 = Solve@eq1, xD
Out[98]=

::x Ø
-b - b2 - 4 a c

2 a
>, :x Ø

-b + b2 - 4 a c

2 a
>>

Solutions are returned as sets of replacement rules. In this case
there are two possible solutions, each containing a single replace-
ment rule for the only independent variable. A particular solution
can then be selected by using the replacement rule of your choice
to make an assignment

In[99]:=

x1 = x ê. sol1P1T
x2 = x ê. sol1P2T

Out[99]=

-b - b2 - 4 a c

2 a

Out[100]=

-b + b2 - 4 a c

2 a

Caution: if you use assignments of the form x=x/.solution you

will contaminate the symbol x and may have difficulty revising

your equation later.

Algebra_I.nb 33

Sometimes it is useful to verify that solutions are correct by substi-
tution into the original equations. It is usually necessary to per-
form some simplification steps before the veracity of the equations
becomes manifest.

In[101]:=

eq1 ê. sol1 êê Simplify

Out[101]=

8True, True<

A system of equations is expressed in the form of a list of equa-
tions, 8lhs1 ã rhs1, lhs2 ã rhs2, ∫< or as an expression in which
equations are combined using And (&&) in the form lhs1ã rhs1 &&

lhs2ã rhs2 ∫.
In[102]:=

SolveA93 x2 - 2 y2 ã 1, x2 + 4 y2 ã 3=, 8x, y<E
Out[102]=

::x Ø -
5

7
, y Ø -

2

7
>, :x Ø -

5

7
, y Ø

2

7
>,

:x Ø
5

7
, y Ø -

2

7
>, :x Ø

5

7
, y Ø

2

7
>>

Now Solve returns four solutions, each consisting of two replace-

ment rules. In other cases, degenerate solutions are duplicated.
In[103]:=

SolveA36 + 12 x - 11 x2 - 2 x3 + x4 ã 0, xE
Out[103]=

88x Ø -2<, 8x Ø -2<, 8x Ø 3<, 8x Ø 3<<

Solve does not check for special cases that might arise for some

Algebra_I.nb 34

choices of parameters. For example, the solution proposed for the
following equation

In[104]:=

SolveAa x2 + b x ã 1, xE
Out[104]=

::x Ø
-b - 4 a + b2

2 a
>, :x Ø

-b + 4 a + b2

2 a
>>

does not accommodate the special case a Ø 0. More complete solu-
tions are provided by Reduce, which checks special cases and
returns solutions in the form of logical conditions upon both vari-
ables and parameters.

In[105]:=

ReduceAa x2 + b x ã 1, xE
Out[105]=

a ∫ 0 && x ã
-b - 4 a + b2

2 a
»» x ã

-b + 4 a + b2

2 a
»»

a ã 0 && b ∫ 0 && x ã
1

b

Thus, we recover the original solutions when a ∫ 0, but in addition
find a solution for the special case of a = 0 also. (Actually, the solu-
tion for a Ø 0 can be obtained by Taylor expansion of the general
case but Reduce requires less work.)

Eliminate eliminates a variable or set of variables from a system of
equations and returns a smaller system combined with logical oper-
ators. Often this is useful when it is convenient to formulate a sys-
tem of equations in terms of one or more intermediate quantities
that help clarify the relationships between the independent vari-
ables. Sometimes it is useful for transformation of variables. For

Algebra_I.nb 35

example, the following expression transforms a hyperbola and a
line from Cartesian to polar coordinates.

In[106]:=

EliminateA
9x2 - y2 ã a2, x + y ã b, x ã r Cos@qD, y ã r Sin@qD=, 8x, y<E

Out[106]=

b ã r HCos@qD + Sin@qDL && r2 Cos@qD2 ã a2 + r2 Sin@qD2

Solve[eqs,vars,elims] first eliminates variables in elims and

then solves the resulting equations for vars, thereby combining

the functionality of Solve and Eliminate in a single expression.

Solve the preceding system of equations for {r,q} and simplify
assuming that {a,b,r,q} are all positive.

Find the roots of LegendreP[6,x] symbolically and verify that these
roots are, in fact, real.

A parabola is the locus of all points in a plane that are equidistant
from a fixed point, called the focus, and a fixed line, called the
directrix. Construct the parabola whose focus is given by
focus={a,b} and whose directrix is the x-axis. Then determine
the coordinates of the vertex, which is the point closest to the
directrix.

High-order polynomial equations

Solve produces symbolic or exact numerical solutions to polyno-
mial equations of degree 4 or less, but will also return symbolic
roots to higher-order polynomials as well. Suppose that we wish
to determine the fixed points for the 4th iteration of the logistic
map, which are defined by the following equation.
Nest@ f , expr, nDgives an expression with f applied n times to expr.

Algebra_I.nb 36

In[107]:=

eq1 = x ã HNest@m Ò H1 - ÒL &, x, 4DL
Out[107]=

x ã H1 - xL x m4 H1 - H1 - xL x mL
I1 - H1 - xL x m2 H1 - H1 - xL x mLM I1 - H1 - xL x m3

H1 - H1 - xL x mL I1 - H1 - xL x m2 H1 - H1 - xL x mLMM

In[108]:=

eq2 = x ã HNest@m Ò H1 - ÒL &, x, 4D êê ExpandL
Out[108]=

x ã x m4 - x2 m4 - x2 m5 + 2 x3 m5 - x4 m5 - x2 m6 + 2 x3 m6 -

x4 m6 - x2 m7 + 4 x3 m7 - 7 x4 m7 + 6 x5 m7 - 2 x6 m7 +

2 x3 m8 - 7 x4 m8 + 10 x5 m8 - 8 x6 m8 + 4 x7 m8 - x8 m8 +

2 x3 m9 - 7 x4 m9 + 10 x5 m9 - 8 x6 m9 + 4 x7 m9 - x8 m9 -

6 x4 m10 + 24 x5 m10 - 36 x6 m10 + 24 x7 m10 - 6 x8 m10 -

x4 m11 + 10 x5 m11 - 36 x6 m11 + 64 x7 m11 - 61 x8 m11 +

30 x9 m11 - 6 x10 m11 + 4 x5 m12 - 22 x6 m12 + 52 x7 m12 -

70 x8 m12 + 60 x9 m12 - 34 x10 m12 + 12 x11 m12 - 2 x12 m12 -

6 x6 m13 + 36 x7 m13 - 90 x8 m13 + 120 x9 m13 - 90 x10 m13 +

36 x11 m13 - 6 x12 m13 + 4 x7 m14 - 28 x8 m14 + 84 x9 m14 -

140 x10 m14 + 140 x11 m14 - 84 x12 m14 + 28 x13 m14 -

4 x14 m14 - x8 m15 + 8 x9 m15 - 28 x10 m15 + 56 x11 m15 -

70 x12 m15 + 56 x13 m15 - 28 x14 m15 + 8 x15 m15 - x16 m15

Although there exist no general methods for solving equations of
order 16, Solve will nonetheless return Root objects which can be

evaluated numerically. (Open to view)
In[109]:=

fixedpoints = Solve@eq2, xD

Algebra_I.nb 37

Out[109]=

:8x Ø 0<, :x Ø
-1 + m

m
>, :x Ø

m + m2 - m -3 - 2 m + m2

2 m2
>,

:x Ø
m + m2 + m -3 - 2 m + m2

2 m2
>,

9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 1E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 2E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

Algebra_I.nb 38

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 3E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 4E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

Algebra_I.nb 39

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 5E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 6E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 7E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

Algebra_I.nb 40

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 8E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 9E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 + m11 H3 + 15 mL Ò110 -

6 m12 Ò111 + m12 Ò112 &, 10E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

Algebra_I.nb 41

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 + m11 H3 + 15 mL Ò110 -

6 m12 Ò111 + m12 Ò112 &, 11E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 + m11 H3 + 15 mL Ò110 -

6 m12 Ò111 + m12 Ò112 &, 12E=>

If you want to know the number of elements in fixedpoints, you
use
Length@exprDgives the number of elements in expr.

In[110]:=

Length@fixedpointsD
Out[110]=

16

The list begins with roots that can be obtained by factoring and is
followed by Root objects representing the roots of the remaining

irreducible polynomial. Each Root object has two arguments: a

Algebra_I.nb 42

pure function represents the irreducible part of the polynomial and
an index identifies a particular root. These roots can be displayed
for a range of m using Plot.
NumberMarks

is an option for InputForm and related functions that specifies
whether ` marks should be included in the printed forms of approxi-
mate numbers.

In[111]:=

PlotAEvaluate@x ê. fixedpointsD, 9m, 2.5`, 5=E
Out[111]=

3.0 3.5 4.0 4.5 5.0

0.2

0.4

0.6

0.8

1.0

The error messages are generated for roots that are complex for
some range of m and are no cause for alarm. As m increases more
of these roots become real and gradually assemble the pitchfork
bifurcation pattern for the logistic map. More detail about the
nature of period doubling and the onset of chaos within determinis-
tic systems can be found in cobweb.nb.

Solve the following equation for the quantity r=y/x and plot the
real solutions for {a,-1,1}:

2
y4 == 1

x4 + a
Hx+yL4

[Hint: substitute yØr x first and then simplify the equation as

Algebra_I.nb 43

much as possible. (You may need to use Map to perform the
same transformations to both sides of the equation.)]

Algebraic equations in transcendental disguise

Solve is designed to handle polynomial equations, but will often
attempt to find solutions for more general equations. For exam-
ple, in the trivial example

In[112]:=

Solve@Cos@xD ã Sin@xD, xD

Solve::ifun :

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[112]=

::x Ø -
3 p

4
>, :x Ø

p

4
>>

two solutions are reported, but the 2p periodicity is overlooked
when only the principal branches of inverse trigonometric func-
tions are used. However, in other cases inverse functions do not
any provide solutions at all and numerical solutions must be
sought (see below).

In[113]:=

Solve@x ã Tan@xD, xD

Solve::tdep :

The equations appear to involve the variables to be

solved for in an essentially non-algebraic way. à
Out[113]=

Solve@x ã Tan@xD, xD

Algebra_I.nb 44

Examples

Example: y-scaling for quasielastic scattering

Suppose that a high-energy electron scatters from one of the nucle-
ons in a nucleus with mass mA, delivering energy transfer w and
momentum transfer q, such that a nucleon of mass mN is ejected
leaving a residual nucleus of mass mB. In the spectator model,
the target nucleus is represented at the time of the interaction as
the struck nucleon with initial momentum y plus spectator mB with
momentum -y, such that the ejectile emerges with final momen-
tum y + q. Conservation of energy (relativistic) then requires

In[114]:=

eq1 = w + mA ã mN
2 + Hy + qL2 + mB

2 + y2 ;

Don't worry if you are unfamiliar with the physics behind this equa-
tion — we only pose it as an example of a nontrivial algebraic equa-
tion which we would rather solve using Mathematica than by hand.

Algebra_I.nb 45

In[115]:=

sol1 = Solve@eq1, yD êê Simplify

Out[115]=

::y Ø -
1

2 I-q2 + w2 + 2 w mA + mA
2M

K-q3 + q w2 + 2 q w mA + q mA
2 + q mB

2 -

q mN
2 + -KHw + mAL2 K4 w mA

3 + mA
4 + mB

4 +

2 mB
2 Iq2 - w2 - mN

2 M + Iq2 - w2 + mN
2 M2 -

2 mA
2 Iq2 - 3 w2 + mB

2 + mN
2 M -

4 w mA Iq2 - w2 + mB
2 + mN

2 MOOO>,

:y Ø -
1

2 I-q2 + w2 + 2 w mA + mA
2M

K-q3 + q w2 +

2 q w mA + q mA
2 + q mB

2 - q mN
2 -

-KHw + mAL2 K4 w mA
3 + mA

4 + mB
4 +

2 mB
2 Iq2 - w2 - mN

2 M + Iq2 - w2 + mN
2 M2 -

2 mA
2 Iq2 - 3 w2 + mB

2 + mN
2 M -

4 w mA Iq2 - w2 + mB
2 + mN

2 MOOO>>

Mathematica produces two solutions, but the ordering of these solu-
tions is to some degree arbitrary and varies from version to ver-
sion. We must select the appropriate solution using additional infor-
mation, such as a physical interpretation or constraint. For this
problem, it is useful to specialize to a target which consists only of
a single nucleon without any residual spectator. Furthermore, we
know that the momentum transfer must be greater than or equal
to the energy transfer. Hence, it is useful to solve for w in terms
of q for this special case.

Algebra_I.nb 46

We use Thread to produce new equations for this special case

from the list of possible solutions for the general case.
In[116]:=

newEqs = Thread@0 ã y ê. sol1 ê. 8mA Ø mN, mB Ø 0<D
Out[116]=

:0 ã -K-q3 + q w2 + 2 q w mN + -KHw + mNL2

K4 w mN
3 + mN

4 - 2 mN
2 Iq2 - 3 w2 + mN

2 M - 4 w

mN Iq2 - w2 + mN
2 M + Iq2 - w2 + mN

2 M2OOOì

I2 I-q2 + w2 + 2 w mN + mN
2 MM, 0 ã

-K-q3 + q w2 + 2 q w mN - -KHw + mNL2

K4 w mN
3 + mN

4 - 2 mN
2 Iq2 - 3 w2 + mN

2 M - 4 w

mN Iq2 - w2 + mN
2 M + Iq2 - w2 + mN

2 M2OOOì

I2 I-q2 + w2 + 2 w mN + mN
2 MM>

Nested expansion and simplification steps are needed to print
attractive versions of these equations, but that does not affect
their solution.

In[117]:=

newEqs = HnewEqs êê Simplify êê PowerExpandL êê Simplify

Out[117]=

:q2 - w2 - 2 w mN

q - w - mN
ã 0,

-q2 + w2 + 2 w mN

q + w + mN
ã 0>

Algebra_I.nb 47

In[118]:=

Solve@newEqs, wD
Out[118]=

::w Ø -mN - q2 + mN
2 >, :w Ø -mN + q2 + mN

2 >>

It is now clear that the second solution is the one that we want.

Example: nonrelativistic binary collisions

A nonrelativistic binary collision is described by a mass-balance
equation of the form m1 + m2 ã m3 + m4, where we consider m1
to be the projectile, m2 the target, m3 the scattered particle, and
m4 the scattered target, but it is also possible that the reactants
exchange mass during the collision. The kinematics of the reac-
tion are governed by conservation of momentum and of energy,
which are expressed by the following equations.

In[119]:=

collisionEqs = :m1 + m2 ã m3 + m4, p1 + p2 ã p3 + p4,

p1.p1

2 m1
+

p2.p2

2 m2
+ qvalue ã

p3.p3

2 m3
+

p4.p4

2 m4
>;

Here the qvalue measures the inelasticity of the reaction and van-
ishes for elastic scattering. Note that we use Dot, with operator
notation ., to indicate the scalar product of two vectors. The
momenta are defined using a set of replacement rules. Note that
the since the reaction is confined to a plane, we can omit the z-
components and work with vectors in two dimensions.

Algebra_I.nb 48

In[120]:=

momentumComponentRules =

8p1 Ø 8p1x, p1y<, p2 Ø 8p2x, p2y<, p3 Ø 8p3x, p3y<,
p4 Ø 8p4x, p4y<, p1x Ø p1r Cos@q1D, p1y Ø p1r Sin@q1D,
p2x Ø p2r Cos@q2D, p2y Ø p2r Sin@q2D,
p3x Ø p3r Cos@q3D, p3y Ø p3r Sin@q3D<;

Because there are 4 independent equations, we can solve this sys-
tem for 4 variables. It is convenient to specify three masses
{m1,m2,m3}, the projectile momentum {p1x,p1y} in terms of
magnitude p1r and angle theta1, the target momentum {p2x,p2y}
in terms of magnitude p2r and angle theta2, and the projectile
scattering angle theta3. Mathematica will then happily report a
general solution for the remaining mass m4, the momentum p3r
for the scattered particle, and the momentum {p4x,p4y} of the
recoil particle. Although we could use Simplify, the minimal

return is not worth the considerable investment of time required to
simplify expressions of this complexity!

In[121]:=

gensol = Solve@collisionEqs êê. momentumComponentRules,

8m4, p3r, p4x, p4y<D
Out[121]=

99p4x Ø p1r Cos@q1D + p2r Cos@q2D -

Im1 m2 m3 p1r Cos@q1D Cos@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Cos@q2D Cos@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Hm1 m2 m3 p1r Cos@q3D Sin@q1D Sin@q3DL ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

Algebra_I.nb 49

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Hm1 m2 m3 p2r Cos@q3D Sin@q2D Sin@q3DL ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

ICos@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2

Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p4y Ø p1r Sin@q1D + p2r Sin@q2D -

Hm1 m2 m3 p1r Cos@q1D
Cos@q3D Sin@q3DL ë

Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Algebra_I.nb 50

Hm1 m2 m3 p2r Cos@q2D Cos@q3D Sin@q3DL ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Im1 m2 m3 p1r Sin@q1D Sin@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Sin@q2D Sin@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

ISin@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2

Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p3r Ø I2 m1 m2 m3 p1r Cos@q1D Cos@q3D +

Algebra_I.nb 51

2 m1 m2 m3 p2r

Cos@q2D Cos@q3D +

2 m1 m2 m3 p1r Sin@q1D Sin@q3D +

2 m1 m2 m3 p2r

Sin@q2D Sin@q3D +
,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22

m3 qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 +

m2 m32 p1r2 Cos@q1D2 +

2 m1 m2 m3 p1r p2r Cos@q1D Cos@q2D -

m12 m3 p2r2 Cos@q2D2 +

m1 m32 p2r2 Cos@q2D2 - m22 m3 p1r2

Sin@q1D2 + m2 m32 p1r2 Sin@q1D2 +

2 m1 m2 m3 p1r p2r Sin@q1D Sin@q2D -

m12 m3 p2r2 Sin@q2D2 +

m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
m4 Ø m1 + m2 - m3=,

9p4x Ø

p1r

Cos@
q1D + p2r Cos@
q2D -

Algebra_I.nb 52

Im1 m2 m3 p1r Cos@q1D Cos@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Cos@q2D Cos@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Hm1 m2 m3 p1r Cos@q3D Sin@q1D Sin@q3DL ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Hm1 m2 m3 p2r Cos@q3D Sin@q2D Sin@q3DL ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M +

ICos@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2

Algebra_I.nb 53

Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p4y Ø p1r Sin@q1D + p2r Sin@q2D -

Hm1 m2 m3 p1r Cos@q1D
Cos@q3D Sin@q3DL ë

Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Hm1 m2 m3 p2r Cos@q2D Cos@q3D Sin@q3DL ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Im1 m2 m3 p1r Sin@q1D Sin@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Sin@q2D Sin@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

Algebra_I.nb 54

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M +

ISin@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2

Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p3r Ø I2 m1 m2 m3 p1r Cos@q1D Cos@q3D +

2 m1 m2 m3 p2r

Cos@q2D Cos@q3D +

2 m1 m2 m3 p1r Sin@q1D Sin@q3D +

2 m1 m2 m3 p2r

Sin@q2D Sin@q3D -
,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

Algebra_I.nb 55

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22

m3 qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 +

m2 m32 p1r2 Cos@q1D2 +

2 m1 m2 m3 p1r p2r Cos@q1D Cos@q2D -

m12 m3 p2r2 Cos@q2D2 +

m1 m32 p2r2 Cos@q2D2 - m22 m3 p1r2

Sin@q1D2 + m2 m32 p1r2 Sin@q1D2 +

2 m1 m2 m3 p1r p2r Sin@q1D Sin@q2D -

m12 m3 p2r2 Sin@q2D2 +

m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
m4 Ø m1 + m2 - m3==

Familiar special cases can be examined by choosing appropriate
parameters. For example, consider the elastic scattering of two
particles of equal mass assuming that the target is at rest.

In[122]:=

Hgensol ê. 8m1 Ø m, m2 Ø m, m3 Ø m, qvalue Ø 0, theta1 Ø 0,

p2r Ø 0< êê Simplify êê PowerExpandL êê Simplify

Out[122]=

88p4x Ø -p1r Sin@q1 - q3D Sin@q3D,
p4y Ø p1r Cos@q3D Sin@q1 - q3D,
p3r Ø p1r Cos@q1 - q3D, m4 Ø m<,

8p4x Ø p1r Cos@q1D, p4y Ø p1r Sin@q1D, p3r Ø 0, m4 Ø m<<

Algebra_I.nb 56

Clearly the first solution is the one we seek while the second solu-
tion is degenerate, describing only the special case of a head-on
collision in which the projectile transfers all of its momentum to
the struck particle. More general situations can now be investi-
gated by varying the parameters in the first solution.

Numerical solution of equations

Polynomial equations

An equation or system of equations involving only polynomials can
be solved numerically using NSolve[eqs,vars,n] where eqs is an

equation or list of equations, vars is the variable or list of vari-

ables, and n is an optional parameter specifying the precision

sought in terms of number of decimal digits. The result is
returned as a list of sets of replacement rules.

In[123]:=

NSolveAx7 - 3 x3 ã x - 2, xE
Out[123]=

88x Ø -1.42937<, 8x Ø -0.425843 - 0.812252 Â<,
8x Ø -0.425843 + 0.812252 Â<, 8x Ø 0.115351 - 1.29244 Â<,
8x Ø 0.115351 + 1.29244 Â<, 8x Ø 0.774278<, 8x Ø 1.27608<<

Algebra_I.nb 57

In[124]:=

NSolveA9x2 y - x ã 1, y2 + x y ã -2=, 8x, y<E
Out[124]=

88x Ø 0.40198 - 0.835793 Â, y Ø -0.25844 + 1.87993 Â<,
8x Ø 0.40198 + 0.835793 Â, y Ø -0.25844 - 1.87993 Â<,
8x Ø -0.568647 + 0.253329 Â, y Ø 0.25844 + 1.26469 Â<,
8x Ø -0.568647 - 0.253329 Â, y Ø 0.25844 - 1.26469 Â<<

NSolve will also handle equations which are really polynomials in

disguise
In[125]:=

NSolveB: x2 y - y2 x ã 1 + x y4 , x x - y ã 2>, 8x, y<F

Out[125]=

88x Ø 3.69376, y Ø 3.40059<, 8x Ø 1.86251, y Ø 0.709423<<

and many others for which inverse functions are available
In[126]:=

NSolveACos@xD2 - Sin@xD2 ã 0.5, xE

Solve::ifun :

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[126]=

88x Ø -2.61799<, 8x Ø -0.523599<,
8x Ø 0.523599<, 8x Ø 2.61799<<

Algebra_I.nb 58

In[127]:=

NSolveA‰2 x - ‰x ã 1, xE

Solve::ifun :

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[127]=

88x Ø -0.481212 + 3.14159 Â<, 8x Ø 0.481212<<

The warning message about inverse functions is usually nothing to
worry about, and can be disabled using Off, but after solving a

problem one should go back and determine whether alternative
solutions have been overlooked.

However, NSolve is unable to solve equations which involve tran-

scendental functions in an essentially nonalgebraic manner that
makes transformation to polynomial form impossible.

In[128]:=

lhs =
x

1 - x2
; rhs = Cot@xD;

eq1 = lhs ã rhs;

In[130]:=

NSolve@eq1, xD

Solve::tdep :

The equations appear to involve the variables to be

solved for in an essentially non-algebraic way. à
Out[130]=

NSolveB x

1 - x2
ã Cot@xD, xF

Algebra_I.nb 59

Write a function using NSolve and Cases which returns the real
solutions to the following equation in terms of the parameter a :

2 == r4 + a r4

H1+rL4

Plot these solutions for {a,-1,1}. [Hint: it is probably easiest to
use ListPlot for this purpose.]

Transcendental equations

The more general function FindRoot can be used to find numerical
solutions to equations or systems of equations given appropriate
starting conditions. For a single equation, FindRoot[eq,8x,x0<]

uses a variant of the secant method to search for a solution in the
vicinity of x0 while FindRoot[eq,8x,8x0,x1<<] uses Newton's method

based upon two starting values 8x0, x1<. The secant method can

be used when symbolic derivatives are possible, but Newton's
method must be used otherwise. Also note that

FindRoot[expr,8x,x0<] where expr is an expression rather than an

equation is equivalent to FindRoot[expr 0,8x,x0<].

For the simple equation below we recognize by inspection that
there is only one root for y > 0 and, hence, need not be too careful
in selecting the starting value for the secant method.

In[131]:=

eq1 = y Tanh@yD ã 1;

In[132]:=

sol1 = FindRoot@eq1, 8y, 0.1<D
Out[132]=

8y Ø 1.19968<

To test the accuracy of the solution, we change the equation to a
difference between its two sides and then substitute the solution.

Algebra_I.nb 60

In[133]:=

eq1 ê. Equal Ø Subtract ê. sol1

Out[133]=

-1.11022 μ 10-16

Even though our starting value is poor, the accuracy of the solu-
tion is quite good; note that the solution contains more significant
figures than are routinely printed.

For more complicated equations with several roots, we should com-
pare the left-hand and right-hand sides graphically to choose the
appropriate starting conditions.

In[134]:=

lhs =
x

16 - x2

rhs = Cot@xD
eq1 = lhs ã rhs

Out[134]=

x

16 - x2

Out[135]=

Cot@xD

Out[136]=

x

16 - x2
ã Cot@xD

Algebra_I.nb 61

In[137]:=

Plot@Evaluate@8lhs, rhs<D, 8x, 0, 4<D
Out[137]=

1 2 3 4

-2

2

4

Here we find two positive roots by supplying two sets of starting
conditions based upon the figure.

In[138]:=

FindRoot@eq1, 8x, Ò<D & êü 81, 3.5<
Out[138]=

88x Ø 1.25235<, 8x Ø 3.5953<<

Find the first 3 positive roots of tanHxL = 1 ê x.

Find the first 3 positive roots of BesselJ[2,x]. Then explore the
sensitivity to starting values; for example, compare results for
starting points of 6.8, 7.0, 7.2.

Find all real solutions to the pair of equations x4 + y4 = 1 and
ex - ey = 1. [Hint: use ImplicitPlot to display the two equations
and to locate appropriate starting values.]

Algebra_I.nb 62

Linear algebra

Matrix manipulation

A matrix is represented as a list of sublists in which each sublist
has the same size. Mathematica provides many built-in functions
with obvious names for manipulating and analyzing matrices. The
most important matrix functions are summarized in the accompany-
ing table.

function output

Array@mat, 8m, n<D m μ n matrix with elements mat@i, jD
DiagonalMatrix@listD diagonal matrix using elements from list

IdentityMatrix@mD m - dimensional unit matrix

MatrixForm print matrix in traditional form

Transpose interchange rows and columns

Inverse@AD inverse matrix A-1

Dot@A, BD product A.B for compatible matrices

Det determinant of square matrix

Eigenvalues@AD list of eigenvalues l, such that A.x = l x

Eigenvectors@AD list of eigenvectors x, such that A.x = l x

Eigensystem list containing both list of eigenvalues and
list of eigenvectors

LinearSolve@A, rhsD solution vector x toA.x == rhs
NullSpace@AD list of vectors x for which A.x == 0

MatrixPower@A, bD Ab = matrix A raised to power b
MatrixExp@AD ExpBAF as defined by power series

A few examples of some of these functions are given below.

Algebra_I.nb 63

In[139]:=

matrix = Array@m, 83, 3<D
Out[139]=

88m@1, 1D, m@1, 2D, m@1, 3D<,
8m@2, 1D, m@2, 2D, m@2, 3D<, 8m@3, 1D, m@3, 2D, m@3, 3D<<

In[140]:=

matrix êê MatrixForm

Out[140]//MatrixForm=

m@1, 1D m@1, 2D m@1, 3D
m@2, 1D m@2, 2D m@2, 3D
m@3, 1D m@3, 2D m@3, 3D

In[141]:=

matrix êê Transpose êê MatrixForm

Out[141]//MatrixForm=

m@1, 1D m@2, 1D m@3, 1D
m@1, 2D m@2, 2D m@3, 2D
m@1, 3D m@2, 3D m@3, 3D

The product of two matrices with compatible dimensions is formed
by Dot with operator form (.).

In[142]:=

var = Array@v, 83<D;

Algebra_I.nb 64

In[143]:=

matrix.var

Out[143]=

8m@1, 1D v@1D + m@1, 2D v@2D + m@1, 3D v@3D,
m@2, 1D v@1D + m@2, 2D v@2D + m@2, 3D v@3D,
m@3, 1D v@1D + m@3, 2D v@2D + m@3, 3D v@3D<

Evaluate MatrixExp[{{0,q},{-q,0}}] and interpret the result.

Matrix form of linear equations

A system of equations of the form A.x ã b can be formed using
Thread to move the function Equal through the head List. (What

happens if Thread is omitted?)
In[144]:=

matrix = Array@A, 83, 3<D;
var = Array@x, 83<D;
rhs = Array@b, 83<D;

In[147]:=

Thread@matrix.var ã rhsD
Out[147]=

8A@1, 1D x@1D + A@1, 2D x@2D + A@1, 3D x@3D ã b@1D,
A@2, 1D x@1D + A@2, 2D x@2D + A@2, 3D x@3D ã b@2D,
A@3, 1D x@1D + A@3, 2D x@2D + A@3, 3D x@3D ã b@3D<

The result is then a form suitable for Solve. Alternatively,

LogicalExpand

Algebra_I.nb 65

In[148]:=

LogicalExpand@matrix.var ã rhsD
Out[148]=

A@1, 1D x@1D + A@1, 2D x@2D + A@1, 3D x@3D ã b@1D &&

A@2, 1D x@1D + A@2, 2D x@2D + A@2, 3D x@3D ã b@2D &&

A@3, 1D x@1D + A@3, 2D x@2D + A@3, 3D x@3D ã b@3D

also produces an expression suitable for input to Solve. Although

these methods are most often used for systems of linear equa-
tions, they can be employed for more general problems if the coeffi-
cient matrix and variable vector are constructed properly.

Alternatively, LinearSolve[coeff,rhs] is a specialized version for

linear equations of the form coeff.x rhs. The solution is a vec-

tor x which is returned as a simple list, rather than as a set of

replacement rules; note that it is not necessary to supply variable
names. LinearSolve works with either symbolic or numerical

expressions. For underdetermined systems LinearSolve returns

only one of the possible solutions, whereas Solve returns the gen-

eral solution. Also note that for sparse matrices it is usually more
efficient to use Solve.

In[149]:=

coeff = : :1, -2,
3

8
>, 82, 2, -3<, :1

2
, -1, 4>>;

rhs = 8-1, 3, 0<;
LinearSolve@coeff, rhsD

Out[151]=

:143

183
,

335

366
,

8

61
>

The null space of a matrix is defined by a linear combination of
basis vectors satisfying matrix.m 0 and is obtained using Null-

Algebra_I.nb 66

Space[matrix].
In[152]:=

a = 881, 1, 0<, 8-1, 0, 0<, 81, 1, 0<<;
b = NullSpace@aD

Out[153]=

880, 0, 1<<

In[154]:=

a.bP1T
Out[154]=

80, 0, 0<

Note that LinearSolve and NullSpace can be used for rectangular

as well as square matrices, as illustrated by the following exercise.

Let a={{1,2,1},{-1,-1,2}} and b={2,3}. Determine vectors x
and c such that a.(x+l c)==b for any value of l. [Hint: use both
LinearSolve and NullSpace.]

Eigensystems

The determinant of a square matrix is given by Det. Eigenvalues
finds the eigenvalues and Eigenvectors the eigenvectors of a
matrix, either symbolically or numerically. Repeated eigenvalues
appear with the requisite multiplicity. Eigensystem returns both in
the form of a list with two sublists, the first being the eigenvalues
and the second the corresponding eigenvectors. Eigenvectors are
not normalized automatically. The package
LinearAlgebra`Orthogonalization` provides tools to create

orthonormal bases. Rather than attempt to describe all available
functions in general terms we prefer to use an example.

Example: linear triatomic molecule

Algebra_I.nb 67

m1 m2 m3

k1,2 k2,3

Suppose that three masses move along a line subject to pairwise
forces represented by springs. The figure above displays the inter-
actions between neighboring masses, but omits a possible interac-
tion between the outer masses with spring constant k1,3. One can

assume, without loss of generality, that the resting lengths of both
interior springs are equal to b. For simplicity we begin by assum-
ing that the two outer masses are equal, m3 = m1, but not necessar-

ily equal to the central mass m2, and that k1,2 = k2,3 while k1,3 = 0.

With these simplifications we can obtain simple but nontrivial sym-
bolic expressions for the frequencies and normal modes of vibra-
tion; two different methods are used to illustrate several Mathemat-
ica functions. Numerical results can also be obtained easily for
more general systems, but symbolic expressions become unwieldy.

In[155]:=

ClearAllA"Global`*"E;
NeedsA"Notation`"E;

The equations of motion for the general system, assuming that the
spring force is proportional to its length change, are obtained from
Newton's second law as follows.

In[157]:=

equations = 8

m1 x– 1 ã k1,2 Hx2 - x1 - bL + k1,3 Hx3 - x1 - 2 bL,
m2 x– 2 ã k2,3 Hx3 - x2 - bL - k1,2 Hx2 - x1 - bL,
m3 x– 3 ã k2,3 Hx2 - x3 + bL - k1,3 Hx3 - x1 - 2 bL <;

For our initial special case, these equations reduce to:

Algebra_I.nb 68

In[158]:=

eq1 = equations ê. 8m3 Ø m1, k1,2 Ø k, k2,3 Ø k, k1,3 Ø 0<
Out[158]=

8m1 x– 1 ã k H-b - x1 + x2L,
m2 x– 2 ã -k H-b - x1 + x2L + k H-b - x2 + x3L,
m1 x– 3 ã k Hb + x2 - x3L<

It is useful to eliminate the resting length with the following
change of variables.

In[159]:=

eq2 = eq1 ê.
9x1 Ø h1 - b, x2 Ø h2, x3 Ø h3 + b, x– 1 Ø h–1, x– 2 Ø h–2, x– 3 Ø h–3=

Out[159]=

9m1 h–1 ã k H-h1 + h2L,
m2 h–2 ã -k H-h1 + h2L + k H-h2 + h3L, m1 h–3 ã k Hh2 - h3L=

Normal modes are defined to be solution vectors of the form
hHtL = hH0L Exp@-Â w tD. Thus, if we make the substitution h– Ø -w2 h

for each coordinate, the time dependence divides out. It is also
convenient to replace the equations by differences so that we can
extract the coefficient matrix using Coefficient.

In[160]:=

eq3 = eq2 ê. 9h–1 Ø -w2 h1, h–2 Ø -w2 h2, h–3 Ø -w2 h3=

Out[160]=

9-w2 m1 h1 ã k H-h1 + h2L,
-w2 m2 h2 ã -k H-h1 + h2L + k H-h2 + h3L, -w2 m1 h3 ã k Hh2 - h3L=

Algebra_I.nb 69

In[161]:=

matrix =

Coefficient@Ò, 8h1, h2, h3<D & êü Heq3 ê. Equal Ø SubtractL;
matrix êê MatrixForm

Out[162]//MatrixForm=

k - w2 m1 -k 0

-k 2 k - w2 m2 -k

0 -k k - w2 m1

Therefore, the vibrational frequencies for the normal modes are
solutions to the equations matrix.η 0, which is equivalent to the

condition Det[matrix] 0. For an n-dimensional system, this condi-

tion yields an nth degree polynomial equation known as the secular
or characteristic equation for the system. To avoid negative fre-
quencies in the present problem, it is easiest to solve for w2
instead of w itself and to take the positive root later.

In[163]:=

freqRule2 = SolveADetAmatrix ê. w2 Ø w2E ã 0, w2E êê Simplify

Out[163]=

:8w2 Ø 0<, :w2 Ø
k

m1
>, :w2 Ø k

1

m1
+

2

m2
>>

In[164]:=

freqRule = w Ø w2 ê. freqRule2

Out[164]=

:w Ø 0, w Ø
k

m1
, w Ø k

1

m1
+

2

m2
>

The modes are then found by substituting the frequencies back
into the equations of motion and solving for the amplitudes.

Algebra_I.nb 70

Because the overall amplitude is arbitrary for linear systems, it is
useful to set one of the amplitudes to unity (but not the central
one because of the symmetry of the problem).

In[165]:=

Table@freqRule@@iDD ê. h1 Ø 1, 8i, 1, 3<D
Out[165]=

:w Ø 0, w Ø
k

m1
, w Ø k

1

m1
+

2

m2
>

In[166]:=

Table@Solve@eq3 ê. freqRule@@DD ê. h1 Ø 1, 8h2, h3<D, 8i, 1, 3<D
Out[166]=

888h3 Ø 1, h2 Ø 1<<, 88h3 Ø 1, h2 Ø 1<<, 88h3 Ø 1, h2 Ø 1<<<

The nature of these solutions should now be obvious. The zero-
frequency mode represents the motion of the entire system
together without any internal vibration. In the second mode the
central mass remains stationary while the two outer mass vibrate
in opposite directions symmetrically. For the third mode the two
outer masses move together while the central mass moves in the
opposite direction, with the relative amplitudes proportional to the
ratio of masses.

There is a more elegant way to obtain the eigenvalues and eigen-
vectors. We can transform the system of equations to the form
h.h ã -w2 h and then use Eigensystem to obtain both the eigenval-

ues l = -w2 and the corresponding eigenvectors directly. First we
extract the right-hand sides of eq2 and divide out the masses.

Algebra_I.nb 71

In[167]:=

rhs = ÒP2T & êü eq2 ê 8m1, m2, m1< êê Simplify

Out[167]=

:k H-h1 + h2L
m1

,
k Hh1 - 2 h2 + h3L

m2
,

k Hh2 - h3L
m1

>

Then we construct the coefficient matrix.
In[168]:=

h = Coefficient@Ò, 8h1, h2, h3<D & êü rhs;

In[169]:=

h êê MatrixForm

Out[169]//MatrixForm=

- k
m1

k
m1

0

k
m2

- 2 k
m2

k
m2

0 k
m1

- k
m1

Finally, we evaluate the eigenvalues and eigenvectors
In[170]:=

8l, vectors< = Eigensystem@hD
Out[170]=

::0, -
k

m1
,

-2 k m1 - k m2

m1 m2
>,

:81, 1, 1<, 8-1, 0, 1<, :1, -
2 m1

m2
, 1>>>

and compute the frequencies.

Algebra_I.nb 72

In[171]:=

frequencies = Sqrt@-lD
Out[171]=

:0,
k

m1
, -

-2 k m1 - k m2

m1 m2
>

Note that Eigensystem does not normalize the eigenvectors. It is

often useful to construct a matrix containing the normalized eigen-
vectors in column form.

In[172]:=

modes = vectors ê HSqrt@Ò.ÒD & êü vectorsL
Out[172]=

:: 1

3
,

1

3
,

1

3
>, :-

1

2
, 0,

1

2
>,

: 1

2 +
4 m1

2

m2
2

, -
2 m1

2 +
4 m1

2

m2
2 m2

,
1

2 +
4 m1

2

m2
2

>>

In[173]:=

Transpose@modesD êê MatrixForm

Out[173]//MatrixForm=

1
3

- 1
2

1

2+
4 m1

2

m2
2

1
3

0 - 2 m1

2+
4 m1

2

m2
2

m2

1
3

1
2

1

2+
4 m1

2

m2
2

Algebra_I.nb 73

 Exercises

Write a function which returns the eigenfrequencies and normal
modes given a coupling matrix, h, for which h.h == m.h– == -w2 m.h
where h is a coordinate vector and m is a diagonal matrix carrying
the masses.

Find the eigenfrequencies and normal modes assuming
{k1,2 = k2,3 = k, k1,3=0, m1 = m3}. Verify that the previous results
are recovered. Plot the frequency and ratio of amplitudes for the
mode in which the central mass vibrates against the outer masses
as a function of the ratio of masses.

Find the eigenfrequencies and normal modes assuming
{k1,2 = k2,3 = k1, m1 = m3} and including the interaction k1,3 = k2
between the outer masses. Verify that the previous results are
recovered when the spring constant for the new force is set to
zero. What is the effect of k2?

Generalize to the case of three arbitrary masses. You will
probably find that symbolic expressions for the eigenvalues are
too lengthy to display comfortably and are difficult to simplify.
Nevertheless, you can still plot interesting quantities. For
example, plot the two nonzero frequencies together as functions
of the mass ratios (either in 3D or in 2D as functions of one ratio
for several values of the other).

Algebra_I.nb 74

