
Algebra

Initialization

In[1]:= ClearAllA"Global`*"E;
Off@General::spell, General::spell1D

In[3]:= NeedsA"Notation`"E

Manipulation of algebraic expressions

Rational expressions

Together collects terms over a common denominator and cancels 
common factors.

In[4]:=
a

b + c
-

d

e - f
êê Together

Out[4]=
-b d - c d + a e - a f

Hb + cL He - fL

Apart separates an expression into a sum of terms with simpler 
denominators.



In[5]:= % êê Apart

Out[5]=
a

b + c
+

d

-e + f

Cancel cancels common factors between the numerator and denom-
inator of a rational expression.

In[6]:=
2 a2 b

Hb + cL a
êê Cancel

Out[6]=
2 a b

b + c

The Numerator or Denominator of a rational function of polynomi-
als can be extracted using functions of the same name.  Note that 
the numerator is considered the part of the expression which does 
not have a "superficially" negative power.  

In[7]:= expr =
a b-2 g-n

Hc - dL He - fL-1
;

8Numerator@exprD, Denominator@exprD<

Out[8]= 9a He - fL, b2 Hc - dL gn=

Note that the option Trig→True is needed for use with trigonomet-

ric expressions to avoid automatic conversions of expressions of 
the type 1 êCos@xDØSec@xD.
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In[9]:= expr =
SinAx2E
CosAx3E

;

8Numerator@exprD, Denominator@exprD,
Denominator@expr, Trig Ø TrueD<

Out[10]=

9SecAx3E SinAx2E, 1, CosAx3E=

Combine: x
1-x2 - 1

1+x

Expanding products

ExpandNumerator expands numerators while ExpandDenominator 
expands denominators.  (Duh!)

In[11]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê ExpandNumerator

Out[11]=

-2 a2 - a b + b2

a Ha - bL

In[12]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê ExpandDenominator

Out[12]=

H-2 a + bL Ha + bL
a2 - a b

Expand expands numerators leaving denominators in factored 
form, cancelling common factors where possible.

Algebra_I.nb 3



In[13]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê Expand

Out[13]=

-
2 a

a - b
-

b

a - b
+

b2

a Ha - bL

ExpandAll expands both numerators and denominators.  Note that 
common factors are not cancelled.

In[14]:=

Ha + bL Hb - 2 aL
Ha - bL a

êê ExpandAll

Out[14]=

-
2 a2

a2 - a b
-

a b

a2 - a b
+

b2

a2 - a b

Cancel common factors from the expression above.

Factoring sums

Factor reduces an expression to a product of factors.
In[15]:=

Ha + bL H2 a - bL Hc - aL Hd + bL êê Expand

Out[15]=

-2 a3 b - a2 b2 + a b3 + 2 a2 b c + a b2 c - b3 c -

2 a3 d - a2 b d + a b2 d + 2 a2 c d + a b c d - b2 c d
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In[16]:=

% êê Factor

Out[16]=

-H2 a - bL Ha + bL Ha - cL Hb + dL

In[17]:=

Ha + bL H2 a - bL
Hc - aL Hd + bL

êê ExpandAll

Out[17]=

2 a2

-a b + b c - a d + c d
+

a b

-a b + b c - a d + c d
-

b2

-a b + b c - a d + c d

In[18]:=

% êê Factor

Out[18]=

-
H2 a - bL Ha + bL
Ha - cL Hb + dL

By default, Factor is limited to integers and thus will not factor
In[19]:=

x2 + 1 êê Factor

Out[19]=

1 + x2

The option GaussianIntegers→True can be used to extend 

Factor to complex numbers.
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In[20]:=

FactorAx2 + 1, GaussianIntegers Ø TrueE
Out[20]=

H-Â + xL HÂ + xL

In[21]:=

Options@FactorD
Out[21]=

8Extension Ø None, GaussianIntegers Ø False,

Modulus Ø 0, Trig Ø False<

Similarly, with the option Trig→True multiple-angle formulae are 

used to factor expressions involving trigonometric and hyperbolic 
functions.

In[22]:=

Factor@Sin@xD Sin@3 xD, Trig Ø TrueD
Out[22]=

H1 + 2 Cos@2 xDL Sin@xD2

In[23]:=

Factor@Sinh@2 xD Cosh@2 xD, Trig Ø TrueD
Out[23]=

2 Cosh@xD Cosh@2 xD Sinh@xD

Factor : -24 x + 12 x2 - 24 y + 4 x y + 10 x2 y -
3 x3 y - 8 y2 + 10 x y2 - x2 y2 - x3 y2 + 2 x y3 - x2 y3

Factor: 
a) Cos[x]+Cos[y] b) Cosh[x]+Cosh[y] 
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Collecting terms

Collect[expr,x] collects terms involving the same powers of x.  
In[24]:=

Ha + b xL Ic x - d x2M êê Collect@Ò, xD &

Out[24]=

a c x + Hb c - a dL x2 - b d x3

Collect[expr,x,f] applies the function f  to each coefficient sepa-

rately. Thus, Collect[expr,x,Simplify] can be used to simplify 

the coefficients or Collect[expr,x,Factor] to factor them.
In[25]:=

Ha + b xL Ia c x - d x2M êê Collect@Ò, x, FactorD &

Out[25]=

a2 c x + a Hb c - dL x2 - b d x3

Collect[expr,{x1,x2}] collects terms involving the same powers 

from a list of objects.
In[26]:=

Ha y + b x + fL Ic y2 - d x2 - gM êê Collect@Ò, 8x, y<D &

Out[26]=

-f g - b d x3 - a g y + c f y2 +

a c y3 + x2 H-d f - a d yL + x I-b g + b c y2M
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In[27]:=

Ha y + b x + fL Ic y2 - d x2 - gM êê Collect@Ò, 8y, x<D &

Out[27]=

-f g - b g x - d f x2 - b d x3 +

I-a g - a d x2M y + Hc f + b c xL y2 + a c y3

Note that collection priority is ordered according to the listed order 
of the variables.

FactorTerms[expr,x] extracts any that are independent of x.  
In[28]:=

-a d x - b d y + a c x y + b c y2 êê FactorTerms@Ò, xD &

Out[28]=

-Ha x + b yL Hd - c yL

In[29]:=

-a d x - b d y + a c x y + b c y2 êê FactorTerms@Ò, 8x, y<D &

Out[29]=

Ha x + b yL H-d + c yL

With only one argument an overall rational factor is pulled out of a 
polynomial.

In[30]:=

2 x +
1

2
+

x2

3
êê FactorTerms

Out[30]=

1

6
I3 + 12 x + 2 x2M
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Coefficients are obtained using Coefficient or CoefficientList.  
Coefficient[expr,x] reports the coefficient of x found in expres-

sion expr; note that for this purpose x2 is considered distinct from 

x, such that the coefficient returned will not contain any power of 
x.  Coefficient[expr,x,n] returns the coefficient of xn.  

In[31]:=

expr = a + 3 x y +
b

x

15

;

9CoefficientAexpr, x7E,
CoefficientAexpr, x2, 7E, Coefficient@expr, x, -3D=

Out[32]=

914073345 a8 y7 + 295540245 a6 b y8 +

1477701225 a4 b2 y9 + 1773241470 a2 b3 y10 +

241805655 b4 y11, 71744535 a y14,

455 a12 b3 + 45045 a10 b4 y + 1216215 a8 b5 y2 +

11351340 a6 b6 y3 + 36486450 a4 b7 y4 +

32837805 a2 b8 y5 + 3648645 b9 y6=

CoefficientList[expr,x] returns a list of coefficients beginning 

with x0.  Coefficient[expr,{x1,x2,...}] returns a rectangular 

array.  Note that since both Coefficient and CoefficientList 

are both intended for use primarily with polynomials, functions 
other than powers may appear in the coefficients.  Also, 
CoefficientList does not handle negative powers.

Algebra_I.nb 9



In[33]:=

expr = Hx + y Cos@yDL5;
CoefficientList@expr, xD

Out[34]=

9y5 Cos@yD5, 5 y4 Cos@yD4,
10 y3 Cos@yD3, 10 y2 Cos@yD2, 5 y Cos@yD, 1=

In[35]:=

CoefficientListAHx + yL5, 8x, y<E êê MatrixForm

Out[35]//MatrixForm=

0 0 0 0 0 1
0 0 0 0 5 0
0 0 0 10 0 0
0 0 10 0 0 0
0 5 0 0 0 0
1 0 0 0 0 0

Let expr = Nest[m #(1-#)&,x,4].
a) Use Collect to produce an explicit polynomial in m and to factor 
the coefficients.
b) Alternatively, use CoefficientList to list the coefficients of mn and 
then factor those coefficients.

Deduce the linear transformation x Ø a z + b that takes an arbitrary 
quadratic function a x2 + b x + g to the simpler form z2 + c by 
determining 8a, b, c< in terms of 8a, b, g<.

Using the AlgebraicManipulation palette

There exists an AlgebraicManipulation palette which can be 

used to perform many of the operations by point-and-click rather 
than by entering commands directly.  If you are unsure of whether 
that palette is active, use the Window submenu of the main tool-
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bar to display a list of the active windows.  If 
AlgebraicManipulation is present, clicking on it will bring it to 

the fore; otherwise use File # Palettes to activate it.  The palette 
contains a list of operations that can be applied to a highlighted 
expression or subexpression.  Highlight the following expression or 
a portion thereof. Then apply one of the transformations, such as 
Expand, by clicking on the palette.  That operation is performed in 

situ, leaving the result highlighted.  Clicking on Factor undoes the 

previous the operation.  Expand followed by Simplify produces 

another variation.  Experimenting with various transformation 
sequences can produce the desired result more quickly than typing 
and editing commands.  Of course, if you expect to repeat these 
evaluations later, you should record the best sequence of transfor-
mations in the notebook itself.

In[36]:=

-H2 a - bL Ha + bL Ha - cL Hb + dL
Out[36]=

H-2 a + bL Ha + bL Ha - cL Hb + dL

This method can be applied to parts of expressions also.  To get 
some familiarity with this technique, perform the following opera-
tions on a copy of the expression below.

1) put the first term in the numerator over a common 
denominator

2) factor the second term of the numerator

3) simplify the numerator

4) try simplifying the denominator — the result is not likely 
to be satisfactory

5) try other sequences on the whole or parts of the 
denominator
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In[37]:=

Ia + b x
c-d

M Ic2 - d2M
a + b

c+ d
x-d

+ 1
c x -d c+d

Out[37]=

Ic2 - d2M Ia + b x
c-d

M
a + 1

d-c d+c x
+ b

c+ d
-d+x

Manipulation of trigonometric expressions

Many functions are also available for manipulation of expressions 
involving trigonometric functions, often appearing as counterparts 
to functions that transform algebraic expressions in similar ways.  
Both circular and hyperbolic trigonometry are handled by these 
functions.  In addition, there are functions which transform 
between trigonometric and exponential representations.

TrigExpand expands products of trigonometric functions into a 
sum of terms and applies multiple-angle formulas to reduce the 
arguments to their most basic form.

In[38]:=

Cos@2 xD Sin@2 xD êê TrigExpand

Out[38]=

2 Cos@xD3 Sin@xD - 2 Cos@xD Sin@xD3

In[39]:=

Cosh@2 xD Sinh@2 xD êê TrigExpand

Out[39]=

2 Cosh@xD3 Sinh@xD + 2 Cosh@xD Sinh@xD3
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TrigFactor factors expressions into products of terms.
In[40]:=

2 Cosh@xD3 Sinh@xD + 2 Cosh@xD Sinh@xD3 êê TrigFactor

Out[40]=

2 Cosh@xD HCosh@xD - Â Sinh@xDL HCosh@xD + Â Sinh@xDL Sinh@xD

TrigReduce uses trigonometric identities to simplify expressions, 
generally attempting to reduce the number of trigonometric func-
tions involved, often using multiple-angle formulas.

In[41]:=

Sin@xD2 + Cos@xD2

Out[41]=

Cos@xD2 + Sin@xD2

In[42]:=

Sin@xD2 + Cos@xD2 êê TrigReduce

Out[42]=

1

In[43]:=

2 Cos@xD3 Sin@xD - 2 Cos@xD Sin@xD3 êê TrigReduce

Out[43]=

1

2
Sin@4 xD

TrigToExp converts trigonometric functions to exponential form.
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In[44]:=

stuff = Cosh@2 xD2 - Sinh@xD êê TrigToExp

Out[44]=

1

2
+

‰-4 x

4
+

‰-x

2
-

‰x

2
+

‰4 x

4

ExpToTrig converts from exponential to trigonometric functions.
In[45]:=

stuff êê ExpToTrig

Out[45]=

1

2
+

1

2
Cosh@4 xD - Sinh@xD

Often several transformations can be profitably combined.
In[46]:=

‚
m=-j

j

ExpBm y

j
F êê ExpToTrig êê TrigFactor

Out[46]=

CschB y

2 j
F SinhBy +

y

2 j
F

Identities can also be checked, but it will often be necessary to 
use Simplify to obtain comparable expressions in both arguments 

of Equal.
In[47]:=

Cos@x + yD2 ã
1

2
H1 + Cos@2 x + 2 yDL êê Simplify

Out[47]=

True
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Expand:
a) Cos[4x] b) Tanh[2x]

Simplify using TrigReduce: 2 coshHxL3 sinhHxL + 2 coshHxL sinhHxL3.
Expand and place over common denominator: 
a) cosHx + yL b) tanhHx - yL
Expand the following product and use TrigReduce to simplify the 
result: HcosHxL cosHyL - sinHxL sinHyLL2.
Use ExpToTrig and TrigFactor to simplify 1+‰x

1-‰x .  Compare with the 

effect of Simplify.

Watch out for that branch!

Mathematica tends to be more careful about its algebra than the 
average user.  For example, many new users are puzzled by the 
"failure" of Simplify to reduce the following expression 

In[48]:=

a2 êê Simplify

Out[48]=

a2

or Expand to alter
In[49]:=

Log@a bD êê Expand

Out[49]=

Log@a bD

but Mathematica does not automatically assume that the positive 
branch of the square root is desired or that variables are positive 
or even that they are real.  If you are confident that all relevant 
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quantities are positive, PowerExpand can be used to simplify pow-
ers and products, expand logarithms, and perform related transfor-
mations that are valid for positive quantities.  Thus,

In[50]:=

a2 êê PowerExpand

Out[50]=

a

gives the positive branch of the square root and
In[51]:=

LogAa2 b3E êê PowerExpand

Out[51]=

2 Log@aD + 3 Log@bD

separates the log of a product into the sum of their logs assuming 
that both factors are positive and extracts their exponents prop-
erly.  However, although PowerExpand can be very useful, you 

must ensure that all affected expressions satisfy its assumptions.  
Thus, if a > b and c > 0 and all are real, then

In[52]:=

Log@Ha - bL cD êê PowerExpand

Out[52]=

Log@a - bD + Log@cD

is handled correctly, but otherwise you must determine the appro-
priate branch of the complex logarithm function.

Similarly, ComplexExpand assumes that all variables are real, but 
not necessarily positive.  Thus, 
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In[53]:=

-a2 êê ComplexExpand

Out[53]=

Â a2

still cannot alter this expression because a2 , though real, could 

still be ≤a.  Similarly,
In[54]:=

Log@a bD êê ComplexExpand

Out[54]=

Â Arg@a bD + LogB a2 b2 F

involves the argument function Arg because the sign of a b is not 

known a priori.  Nevertheless, ComplexExpand is helpful for expres-

sions like
In[55]:=

Sin@x + Â yD êê ComplexExpand

Out[55]=

Cosh@yD Sin@xD + Â Cos@xD Sinh@yD

where explicit real and imaginary parts are expressed in terms of 
real variables.  ComplexExpand[expr,{x1,x2,∫}] assumes that 

{x1,x2,∫} are complex but that all other variables are real.
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In[56]:=

ExpAz2 Hx + Â yLE êê ComplexExpand@Ò, 8z<D &

Out[56]=

‰-2 y Im@zD Re@zD+x I-Im@zD2+Re@zD2M

CosA2 x Im@zD Re@zD + y I-Im@zD2 + Re@zD2ME +

Â ‰-2 y Im@zD Re@zD+x I-Im@zD2+Re@zD2M

SinA2 x Im@zD Re@zD + y I-Im@zD2 + Re@zD2ME

Caveat emptor: use PowerExpand and ComplexExpand cautiously! 
You are responsible for ensuring that all affected expressions 
satisfy the assumptions made by these functions.

Expand and simplify cothHx + Â yL assuming that x and y are real.

Simplicity is in the eye of the beholder

Perhaps the most useful, but often the most frustrating, Mathemat-
ica function for manipulation of symbolic expressions is Simplify, 
which attempts to reduce an expression to a simpler form.  
Simplify includes expansion, factorization, and many other alge-

braic transformations.  With the option Trig→True, which is the 

default, it applies trigonometric identities also.  Thus, because 
Simplify includes all of the functions described above, plus oth-

ers, the first step in simplifying an expression is usually to append 
a simplification command in postfix notation, namely 
expr//Simplify, and seeing what you get.  

In the contrived example below this simple operation produces 
immediate gratification
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In[57]:=

I4 ICosh@xD6 Sinh@xD2 + 2 Cosh@xD4 Sinh@xD4 +

Cosh@xD2 Sinh@xD6MM ë I8 + 12 x + 6 x2 + x3M êê Simplify

Out[57]=

Sinh@4 xD2

4 H2 + xL3

whereas for this next expression it is useful to convert from expo-
nential to trig before simplifying: 

In[58]:=

y2 ‰y

I1 + ‰yM2
êê ExpToTrig êê Simplify

Out[58]=

1

4
y2 SechBy

2
F
2

Sometimes when Simplify is stumped, FullSimplify can help.  

FullSimplify tries a much wider range of transformations and 

includes rules for many special functions.  Thus, FullSimplify is 

useful for the next expression where Simplify is not.
In[59]:=

2 n BesselJ@n, xD - x BesselJ@n + 1, xD êê FullSimplify

Out[59]=

x BesselJ@-1 + n, xD

However, because FullSimplify must test a broader range of pos-

sibilities, it can become extremely time consuming and can 
exhaust the memory of your computer.  If you hear the hard disk 
churning, your expression is probably too complicated to handle 
without human guidance.  It is a good idea to save your work 
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before attempting to apply FullSimplify to an unwieldy expres-

sion in case it becomes necessary to abort the evaluation, which is 
not always without risk!

Use FullSimplify sparingly and do not abuse Simplify either.
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Furthermore, one often has an aesthetic sense of the form that is 
desired and there is no guarantee that Simplify shares your 

notion of simplicity or aesthetics.  You can then attempt to guide 
the simplification process by applying transformation functions, or 
explicit replacement rules, in the order you believe will lead to the 
desired form.  Such a calculation is generally developed by accre-
tion, adding transformations sequentially in postfix form until the 
goal is reached.  Sometimes the same transformation has to be 
applied several times at different stages of the calculation, per-
haps interspersed with simplification commands, with intermediate 
stages organized using parentheses.  Unfortunately, the appropri-
ate order for these steps can be difficult to work out and  some-
times changes from one release of Mathematica to the next.  
There are few general rules we can impart — simplification guided 
by aesthetics is a fine art acquired only by experience.  On the 
other hand, unless you have a good reason to insist upon the sim-
plest possible expressions, simplification is often superfluous.  One 
can calculate and plot functions or investigate many of their proper-
ties without getting bogged down in unnecessary manipulations.

Applications on Simplify[expr], Expand[expr], Factor[expr]
Apart[expr], Together[expr]

Mathematica can work with expressions as well as numerical 
input.  You can factor, combine like terms, and expand 
expressions.  

In[60]:=

4 x2 - 3 x + 7 - 8 x2 + 6 x3 + 11 x - 9

Out[60]=

-2 + 8 x - 4 x2 + 6 x3
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In[61]:=

SimplifyAI7 x2 + 3 x - 8M - I6 x2 - 5 x - 24ME
Out[61]=

H4 + xL2

In[62]:=

ExpandBI2 x2 - 3 x + 4M4F

Out[62]=

256 - 768 x + 1376 x2 - 1584 x3 +

1329 x4 - 792 x5 + 344 x6 - 96 x7 + 16 x8

In[63]:=

Factor A2 x3 + 13 x2 - 7 xE
Out[63]=

x H7 + xL H-1 + 2 xL

In[64]:=

ApartB 5 x + 2

x2 + 5 x + 4
F

Out[64]=

-
1

1 + x
+

6

4 + x
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In[65]:=

TogetherB 1

2 x + 3
-

5 x

x2 - 1
F

Out[65]=

-1 - 15 x - 9 x2

H3 + 2 xL I-1 + x2M

A nice utility in Mathematica is the % expression, which represents 
the last output.  

In[66]:=

4 x2 - 5

2 x2 - 5 x + 2

Out[66]=

-5 + 4 x2

2 - 5 x + 2 x2

In[67]:=

Apart@%D
Out[67]=

2 +
11

3 H-2 + xL
+

8

3 H-1 + 2 xL

In[68]:=

Together@%D
Out[68]=

-5 + 4 x2

H-2 + xL H-1 + 2 xL
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In[69]:=

Expand@%D
Out[69]=

-
5

H-2 + xL H-1 + 2 xL
+

4 x2

H-2 + xL H-1 + 2 xL

In[70]:=

ExpandAll@%D
Out[70]=

-
5

2 - 5 x + 2 x2
+

4 x2

2 - 5 x + 2 x2

In[71]:=

Simplify@%D
Out[71]=

-5 + 4 x2

2 - 5 x + 2 x2

Simplify: 

a) 3 sinHxL - sinH3 xL b) cosIsin-1HxLM c) 3 tanhHxL+tanh3HxL
1+3 tanh2HxL

For the expression 2 cosh3(x) sinh(x) + 2 cosh(x) sinh3HxL, 
compare the following transformations:
a) Factor b) Factor[expr,TrigØTrue] c) TrigFactor
d) TrigReduce e) Simplify f) Simplify[expr,TrigØFalse]

Express lnI x+1
x-1

M in terms of hyperbolic trigonometric functions.  

[Hint: you might need the substitution x Ø E2 y and several steps.]   
I leave it to you to judge which form is simplest — most statistical 
physics textbooks express this formula in terms of hyperbolic 
trigonometric functions, but rational expressions are pretty simple 
also.  Often one's preference depends upon context.
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Example

The entropy for a system is proportional to the logarithm of the 
total number of states with the same energy.  Suppose that a sys-
tem is described by a multiplicity function of the form

In[72]:=

multiplicity =
n!

m! Hn - mL!

2

;

where n and m are very large positive integers, of order 1023, with 
m` n.  Under those circumstances it is useful to apply the Stirling 
approximation for Log@n!D in the form

In[73]:=

StirlingApprox = 8Log@x_ !D Ø x Log@xD - x<;

First, note that Simplify is ineffective because it does not recog-

nize that the variables in this expression are positive and that the 
logarithm can be reduced without specifying the appropriate 
branch, but PowerExpand does help.

In[74]:=

Log@multiplicityD êê Simplify

Out[74]=

LogB Hn!L2

Hm!L2 HH-m + nL!L2
F

In[75]:=

Log@multiplicityD êê PowerExpand

Out[75]=

-2 Log@m!D + 2 Log@n!D - 2 Log@H-m + nL!D

Next we apply the Stirling approximation.  Note that parentheses 
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are included to ensure that PowerExpand is executed first.  (Try to 

do without the parentheses.)
In[76]:=

HLog@multiplicityD êê PowerExpandL ê. StirlingApprox

Out[76]=

-2 H-m + m Log@mDL + 2 H-n + n Log@nDL -

2 Hm - n + H-m + nL Log@-m + nDL

Because we know that m < n, it is convenient to make the substitu-
tion m Ø x n where 0 § x § 1 is the ratio between m and n.  (The 
physics would also be discussed in terms of x if this were a course 
in statistical physics.)  Therefore, we append this replacement rule 
and another simplification step.

In[77]:=

HLog@multiplicityD êê PowerExpandL ê. StirlingApprox ê.
m Ø x n êê Simplify

Out[77]=

2 n HLog@nD - x Log@n xD + H-1 + xL Log@n - n xDL

Finally, although we probably could use built-in functions, it is eas-
ier to simplify these logarithms with explicit rules, using cut-and-
paste editing.  It is again necessary to use parentheses to ensure 
proper order of operations.

In[78]:=

HHLog@multiplicityD êê PowerExpandL ê. StirlingApprox ê.
m Ø x n êê SimplifyL ê. 8Log@n xD Ø Log@nD + Log@xD,

Log@n - n xD Ø Log@nD + Log@1 - xD< êê Simplify

Out[78]=

2 n HH-1 + xL Log@1 - xD - x Log@xDL
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We have now obtained a tidy expression, and could transform it in 
other ways if desired.  Rather than retaining each step of such a 
calculation, usually only the last pair of input/output cells would be 
kept in a notebook.  Although the fairly complicated input cell 
above would then appear to have sprung from the author's fore-
head fully armed in Athenian splendor, it would actually have been 
assembled like an oyster's shell one layer at a time.

FunctionExpand

Expressions involving special functions with complicated argu-
ments can often be simplified using FunctionExpand.

In[79]:=

FunctionExpandBSinhBArcCosh@xD
2

FF

Out[79]=

-1 + x

2

In[80]:=

FunctionExpand@Cos@4 ArcTan@xDDD êê Simplify

Out[80]=

1 - 6 x2 + x4

I1 + x2M2

Simplify: Tan[ArcCos@xD
2

]
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Simplification with assumptions

A powerful new feature of simplification became available in Ver-
sion 4.0.  It is often possible to simplify symbolic expressions 
much further when the properties of the various symbols, such as 
their numerical ranges, are known in advance.  The syntax 
Simplify[expression,assumptions] permits a list of 

assumptions to be employed during the simplification of 

expression.  The assumptions are specified either as a list, 

{assumption1,assumption2,∫} or as a logical expression, such 

as assumption1&&assumption2&&assumption3.  Assumptions can 

specify the type (domain) for various variables, allowed ranges for 
values, or relationships between variables.  Assumptions can be 
employed with Simplify, FullSimplify, FunctionExpand, 

Refine, Limit, or Integrate.

Consider the following expression.
In[81]:=

expr = Log@a - bD + Log@a + bD;

In[82]:=

Simplify@exprD
Out[82]=

Log@a - bD + Log@a + bD

Simplification is ineffective without further information about a and 
b, but if we know that a > b
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In[83]:=

Simplify@expr, 8a > b<D
Out[83]=

LogAa2 - b2E

then the two functions can be combined.  Note that the assump-
tion a > b implicitly contains the additional assumption that both a 
and b are real numbers, so that their magnitudes can be com-
pared directly.  Similarly, the following expressions can be simpli-
fied by employing inequalities to define ranges.

In[84]:=

:SimplifyB Hx - yL2 F, SimplifyB Hx - yL2 , x > yF>

Out[84]=

: Hx - yL2 , x - y>

In[85]:=

SimplifyB2 x y § x + y, 8x ¥ 0, y ¥ 0<F

Out[85]=

True

In[86]:=

Limit@Exp@x yD, y Ø ¶, Assumptions Ø 8x < 0<D
Out[86]=

0

Often it is sufficient to specify a domain (Integers, Rationals, 

Reals, Algebraics, Complexes, Booleans, Primes) for one or 

more variables.  The function Element[x,domain] specifies that x∈

domain is an element of the specified domain.  The element opera-
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tor ∈ can be entered with the keystroke sequence ÂelemÂ.  The 

variations {x,y,z}∈domain or (x|y|z)∈domain assign each mem-

ber of a list to the specified domain.  Domains can also be speci-
fied for patterns according to patt∈domain. 

In[87]:=

8Simplify@Cos@n pDD, Simplify@Cos@n pD, 8n œ Integers<D<
Out[87]=

9Cos@n pD, H-1Ln=

In[88]:=

SimplifyBCos@n pD, :n + 1

2
œ Integers>F

Out[88]=

-1

A related function is Refine, which uses assumptions to produce 
output that more closely approximates the form that you might 
use when its symbols satisfy explicit numerical assumptions.  The 
result is often better than produced by Simplify, or at least more 

specific.
In[89]:=

8Simplify@Abs@xD, x < 0D, Refine@Abs@xD, x < 0D<
Out[89]=

8Abs@xD, -x<

In[90]:=

8Simplify@Log@xD, x < 0D, Refine@Log@xD, x < 0D<
Out[90]=

8Log@xD, Â p + Log@-xD<
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In[91]:=

8Simplify@Cos@x + p yD, y œ IntegersD,
Refine@Cos@x + p yD, y œ IntegersD<

Out[91]=

9Cos@x + p yD, H-1Ly Cos@xD=

If one is performing a long derivation involving many symbols, it 
can become cumbersome to specify a long list of assumptions 
many times.  The following example illustrates a useful technique 
for performing such calculations.  First we create a list a assump-
tions that apply to the variables of interest.  Then we define our 
own versions of the simplification functions using these assump-
tions.  Two examples using these functions follow.

In[92]:=

MyAssumptions =

80 < qe < p, w > 0, q > Q, Q > 0, 0 < e < 1, ¶f > 0, ¶i > ¶f<;
MySimplify = Simplify@Ò, MyAssumptionsD &;

MyFullSimplify = FullSimplify@Ò, MyAssumptionsD &;

In[95]:=

sol1 = SolveBe ã 1 + 2
q2

Q2
 TanB qe

2
F
2 -1

, qeFP2T êê MySimplify

Solve::ifun :  

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[95]=

:qe Ø -2 ArcTanB
Q -1 + 1

e

2 q
F>
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In[96]:=

SolveBQ2 ã 4 ¶i H¶i - wL SinB qe

2
F
2

, ¶iFP2T ê. w Ø q2 - Q2 ê. sol1 êê

MyFullSimplify

Out[96]=

:¶i Ø
1

2
q2 - Q2 +

q H1 + eL

1 - e2
>

Although the formatting procedure used by Mathematica still has 
some peculiarities (e.g., too many minus signs), these results 
were simplified fairly completely with relatively little effort, 
whereas much more complicated expressions would have been 
produced had we not told Mathematica what assumptions it could 
employ  (Try it!).  In a real problem we would probably use our 
simplification routines many more times, perhaps adding addi-
tional assumptions as the solution is developed.

Under what assumptions will IxmMn reduce to xm n?  Verify.  List a 

few examples which show that uncritical use of the proposed 
replacement rule leads to incorrect results.

Prove an - bn = Ha - bL Ian-1 + an-2 b + ∫ + bn-1M for any positive 

integer n and real a, b.

Symbolic solution of equations

Basic syntax

The basic tools for symbolic solution of algebraic equations are 
Solve, Reduce, and Eliminate.  Solve[eqs,vars] attempts to 

solve an equation or list of equations, eqs, for the variable or list 
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of variables, vars.  Equations must be expressed in the form 

lhs ä rhs.
In[97]:=

eq1 = a x2 + b x + c ã 0;

In[98]:=

sol1 = Solve@eq1, xD
Out[98]=

::x Ø
-b - b2 - 4 a c

2 a
>, :x Ø

-b + b2 - 4 a c

2 a
>>

Solutions are returned as sets of replacement rules.  In this case 
there are two possible solutions, each containing a single replace-
ment rule for the only independent variable.  A particular solution 
can then be selected by using the replacement rule of your choice 
to make an assignment

In[99]:=

x1 = x ê. sol1P1T
x2 = x ê. sol1P2T

Out[99]=

-b - b2 - 4 a c

2 a

Out[100]=

-b + b2 - 4 a c

2 a

Caution: if you use assignments of the form x=x/.solution you 

will contaminate the symbol x and may have difficulty revising 

your equation later.

Algebra_I.nb 33



Sometimes it is useful to verify that solutions are correct by substi-
tution into the original equations.  It is usually necessary to per-
form some simplification steps before the veracity of the equations 
becomes manifest.

In[101]:=

eq1 ê. sol1 êê Simplify

Out[101]=

8True, True<

A system of equations is expressed in the form of a list of equa-
tions, 8lhs1 ã rhs1, lhs2 ã rhs2, ∫< or as an expression in which 
equations are combined using And (&&) in the form lhs1ã rhs1 && 

lhs2ã rhs2 ∫.
In[102]:=

SolveA93 x2 - 2 y2 ã 1, x2 + 4 y2 ã 3=, 8x, y<E
Out[102]=

::x Ø -
5

7
, y Ø -

2

7
>, :x Ø -

5

7
, y Ø

2

7
>,

:x Ø
5

7
, y Ø -

2

7
>, :x Ø

5

7
, y Ø

2

7
>>

Now Solve returns four solutions, each consisting of two replace-

ment rules.  In other cases, degenerate solutions are duplicated.
In[103]:=

SolveA36 + 12 x - 11 x2 - 2 x3 + x4 ã 0, xE
Out[103]=

88x Ø -2<, 8x Ø -2<, 8x Ø 3<, 8x Ø 3<<

Solve does not check for special cases that might arise for some 
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choices of parameters.  For example, the solution proposed for the 
following equation

In[104]:=

SolveAa x2 + b x ã 1, xE
Out[104]=

::x Ø
-b - 4 a + b2

2 a
>, :x Ø

-b + 4 a + b2

2 a
>>

does not accommodate the special case a Ø 0.  More complete solu-
tions are provided by Reduce, which checks special cases and 
returns solutions in the form of logical conditions upon both vari-
ables and parameters.

In[105]:=

ReduceAa x2 + b x ã 1, xE
Out[105]=

a ∫ 0 && x ã
-b - 4 a + b2

2 a
»» x ã

-b + 4 a + b2

2 a
»»

a ã 0 && b ∫ 0 && x ã
1

b

Thus, we recover the original solutions when a ∫ 0, but in addition 
find a solution for the special case of a = 0 also.  (Actually, the solu-
tion for a Ø 0 can be obtained by Taylor expansion of the general 
case but Reduce requires less work.)

Eliminate eliminates a variable or set of variables from a system of 
equations and returns a smaller system combined with logical oper-
ators.  Often this is useful when it is convenient to formulate a sys-
tem of equations in terms of one or more intermediate quantities 
that help clarify the relationships between the independent vari-
ables.  Sometimes it is useful for transformation of variables.  For 

Algebra_I.nb 35



example, the following expression transforms a hyperbola and a 
line from Cartesian to polar coordinates.

In[106]:=

EliminateA
9x2 - y2 ã a2, x + y ã b, x ã r Cos@qD, y ã r Sin@qD=, 8x, y<E

Out[106]=

b ã r HCos@qD + Sin@qDL && r2 Cos@qD2 ã a2 + r2 Sin@qD2

Solve[eqs,vars,elims] first eliminates variables in elims and 

then solves the resulting equations for vars, thereby combining 

the functionality of Solve and Eliminate in a single expression.

Solve the preceding system of equations for {r,q} and simplify 
assuming that {a,b,r,q} are all positive.  

Find the roots of LegendreP[6,x] symbolically and verify that these 
roots are, in fact, real.

A parabola is the locus of all points in a plane that are equidistant 
from a fixed point, called the focus, and a fixed line, called the 
directrix.  Construct the parabola whose focus is given by 
focus={a,b} and whose directrix is the x-axis.  Then determine 
the coordinates of the vertex, which is the point closest to the 
directrix.

High-order polynomial equations

Solve produces symbolic or exact numerical solutions to polyno-
mial equations of degree 4 or less, but will also return symbolic 
roots to higher-order polynomials as well.  Suppose that we wish 
to determine the fixed points for the 4th iteration of the logistic 
map, which are defined by the following equation.
Nest@ f , expr, nDgives an expression with f  applied n times to expr. 
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In[107]:=

eq1 = x ã HNest@m Ò H1 - ÒL &, x, 4DL
Out[107]=

x ã H1 - xL x m4 H1 - H1 - xL x mL
I1 - H1 - xL x m2 H1 - H1 - xL x mLM I1 - H1 - xL x m3

H1 - H1 - xL x mL I1 - H1 - xL x m2 H1 - H1 - xL x mLMM

In[108]:=

eq2 = x ã HNest@m Ò H1 - ÒL &, x, 4D êê ExpandL
Out[108]=

x ã x m4 - x2 m4 - x2 m5 + 2 x3 m5 - x4 m5 - x2 m6 + 2 x3 m6 -

x4 m6 - x2 m7 + 4 x3 m7 - 7 x4 m7 + 6 x5 m7 - 2 x6 m7 +

2 x3 m8 - 7 x4 m8 + 10 x5 m8 - 8 x6 m8 + 4 x7 m8 - x8 m8 +

2 x3 m9 - 7 x4 m9 + 10 x5 m9 - 8 x6 m9 + 4 x7 m9 - x8 m9 -

6 x4 m10 + 24 x5 m10 - 36 x6 m10 + 24 x7 m10 - 6 x8 m10 -

x4 m11 + 10 x5 m11 - 36 x6 m11 + 64 x7 m11 - 61 x8 m11 +

30 x9 m11 - 6 x10 m11 + 4 x5 m12 - 22 x6 m12 + 52 x7 m12 -

70 x8 m12 + 60 x9 m12 - 34 x10 m12 + 12 x11 m12 - 2 x12 m12 -

6 x6 m13 + 36 x7 m13 - 90 x8 m13 + 120 x9 m13 - 90 x10 m13 +

36 x11 m13 - 6 x12 m13 + 4 x7 m14 - 28 x8 m14 + 84 x9 m14 -

140 x10 m14 + 140 x11 m14 - 84 x12 m14 + 28 x13 m14 -

4 x14 m14 - x8 m15 + 8 x9 m15 - 28 x10 m15 + 56 x11 m15 -

70 x12 m15 + 56 x13 m15 - 28 x14 m15 + 8 x15 m15 - x16 m15

Although there exist no general methods for solving equations of 
order 16, Solve will nonetheless return Root objects which can be 

evaluated numerically.  (Open to view)
In[109]:=

fixedpoints = Solve@eq2, xD
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Out[109]=

:8x Ø 0<, :x Ø
-1 + m

m
>, :x Ø

m + m2 - m -3 - 2 m + m2

2 m2
>,

:x Ø
m + m2 + m -3 - 2 m + m2

2 m2
>,

9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 1E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 2E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +
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m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 3E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 4E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +
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m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 5E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 6E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 7E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +
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m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 8E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 +

m11 H3 + 15 mL Ò110 - 6 m12 Ò111 + m12 Ò112 &, 9E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 + m11 H3 + 15 mL Ò110 -

6 m12 Ò111 + m12 Ò112 &, 10E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +
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m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 + m11 H3 + 15 mL Ò110 -

6 m12 Ò111 + m12 Ò112 &, 11E=,
9x Ø RootA1 + m2 + m2 I-1 - m - m2 - m3M Ò1 +

m3 I2 + m + 4 m2 + m3 + 2 m4M Ò12 +

m3 I-1 - 5 m2 - 4 m3 - 5 m4 - 4 m5 - m6M Ò13 +

m5 I2 + 6 m + 4 m2 + 14 m3 + 5 m4 + 3 m5M Ò14 +

m6 I-4 - m - 18 m2 - 12 m3 - 12 m4 - 3 m5M Ò15 +

m6 I1 + 10 m2 + 17 m3 + 18 m4 + 15 m5 + m6M Ò16 +

m8 I-2 - 14 m - 12 m2 - 30 m3 - 6 m4M Ò17 +

m9 I6 + 3 m + 30 m2 + 15 m3M Ò18 +

m9 I-1 - 15 m2 - 20 m3M Ò19 + m11 H3 + 15 mL Ò110 -

6 m12 Ò111 + m12 Ò112 &, 12E=>

If you want to know the number of elements in fixedpoints, you  
use 
Length@exprDgives the number of elements in expr. 

In[110]:=

Length@fixedpointsD
Out[110]=

16

The list begins with roots that can be obtained by factoring and is 
followed by Root objects representing the roots of the remaining 

irreducible polynomial.  Each Root object has two arguments: a 
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pure function represents the irreducible part of the polynomial and 
an index identifies a particular root.  These roots can be displayed 
for a range of m using Plot.
NumberMarks

is an option for InputForm and related functions that specifies 
whether ` marks should be included in the printed forms of approxi-
mate numbers.

In[111]:=

PlotAEvaluate@x ê. fixedpointsD, 9m, 2.5`, 5=E
Out[111]=

3.0 3.5 4.0 4.5 5.0

0.2

0.4

0.6

0.8

1.0

The error messages are generated for roots that are complex for 
some range of m and are no cause for alarm.  As m increases more 
of these roots become real and gradually assemble the pitchfork 
bifurcation pattern for the logistic map.  More detail about the 
nature of period doubling and the onset of chaos within determinis-
tic systems can be found in cobweb.nb.

Solve the following equation for the quantity r=y/x and plot the 
real solutions for {a,-1,1}:

2
y4 == 1

x4 + a
Hx+yL4

[Hint: substitute yØr x first and then simplify the equation as 
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much as possible.  (You may need to use Map to perform the 
same transformations to both sides of the equation.)]

Algebraic equations in transcendental disguise

Solve is designed to handle polynomial equations, but will often 
attempt to find solutions for more general equations.  For exam-
ple, in the trivial example

In[112]:=

Solve@Cos@xD ã Sin@xD, xD

Solve::ifun :  

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[112]=

::x Ø -
3 p

4
>, :x Ø

p

4
>>

two solutions are reported, but the 2p periodicity is overlooked 
when only the principal branches of inverse trigonometric func-
tions are used.  However, in other cases inverse functions do not 
any provide solutions at all and numerical solutions must be 
sought (see below).

In[113]:=

Solve@x ã Tan@xD, xD

Solve::tdep :  

The equations appear to involve the variables to be

solved for in an essentially non-algebraic way. à
Out[113]=

Solve@x ã Tan@xD, xD
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Examples

Example: y-scaling for quasielastic scattering

Suppose that a high-energy electron scatters from one of the nucle-
ons in a nucleus with mass mA, delivering energy transfer w and 
momentum transfer q, such that a nucleon of mass mN is ejected 
leaving a residual nucleus of mass mB.  In the spectator model, 
the target nucleus is represented at the time of the interaction as 
the struck nucleon with initial momentum y plus spectator mB with 
momentum -y, such that the ejectile emerges with final momen-
tum y + q.  Conservation of energy (relativistic) then requires

In[114]:=

eq1 = w + mA ã mN
2 + Hy + qL2 + mB

2 + y2 ;

Don't worry if you are unfamiliar with the physics behind this equa-
tion — we only pose it as an example of a nontrivial algebraic equa-
tion which we would rather solve using Mathematica than by hand.
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In[115]:=

sol1 = Solve@eq1, yD êê Simplify

Out[115]=

::y Ø -
1

2 I-q2 + w2 + 2 w mA + mA
2M

K-q3 + q w2 + 2 q w mA + q mA
2 + q mB

2 -

q mN
2 + -KHw + mAL2 K4 w mA

3 + mA
4 + mB

4 +

2 mB
2 Iq2 - w2 - mN

2 M + Iq2 - w2 + mN
2 M2 -

2 mA
2 Iq2 - 3 w2 + mB

2 + mN
2 M -

4 w mA Iq2 - w2 + mB
2 + mN

2 MOOO>,

:y Ø -
1

2 I-q2 + w2 + 2 w mA + mA
2M

K-q3 + q w2 +

2 q w mA + q mA
2 + q mB

2 - q mN
2 -

-KHw + mAL2 K4 w mA
3 + mA

4 + mB
4 +

2 mB
2 Iq2 - w2 - mN

2 M + Iq2 - w2 + mN
2 M2 -

2 mA
2 Iq2 - 3 w2 + mB

2 + mN
2 M -

4 w mA Iq2 - w2 + mB
2 + mN

2 MOOO>>

Mathematica produces two solutions, but the ordering of these solu-
tions is to some degree arbitrary and varies from version to ver-
sion.  We must select the appropriate solution using additional infor-
mation, such as a physical interpretation or constraint.  For this 
problem, it is useful to specialize to a target which consists only of 
a single nucleon without any residual spectator.  Furthermore, we 
know that the momentum transfer must be greater than or equal 
to the energy transfer.  Hence, it is useful to solve for w in terms 
of q for this special case.  
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We use Thread to produce new equations for this special case 

from the list of possible solutions for the general case.  
In[116]:=

newEqs = Thread@0 ã y ê. sol1 ê. 8mA Ø mN, mB Ø 0<D
Out[116]=

:0 ã -K-q3 + q w2 + 2 q w mN + -KHw + mNL2

K4 w mN
3 + mN

4 - 2 mN
2 Iq2 - 3 w2 + mN

2 M - 4 w

mN Iq2 - w2 + mN
2 M + Iq2 - w2 + mN

2 M2OOOì

I2 I-q2 + w2 + 2 w mN + mN
2 MM, 0 ã

-K-q3 + q w2 + 2 q w mN - -KHw + mNL2

K4 w mN
3 + mN

4 - 2 mN
2 Iq2 - 3 w2 + mN

2 M - 4 w

mN Iq2 - w2 + mN
2 M + Iq2 - w2 + mN

2 M2OOOì

I2 I-q2 + w2 + 2 w mN + mN
2 MM>

Nested expansion and simplification steps are needed to print 
attractive versions of these equations, but that does not affect 
their solution.

In[117]:=

newEqs = HnewEqs êê Simplify êê PowerExpandL êê Simplify

Out[117]=

:q2 - w2 - 2 w mN

q - w - mN
ã 0,

-q2 + w2 + 2 w mN

q + w + mN
ã 0>
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In[118]:=

Solve@newEqs, wD
Out[118]=

::w Ø -mN - q2 + mN
2 >, :w Ø -mN + q2 + mN

2 >>

It is now clear that the second solution is the one that we want.

Example: nonrelativistic binary collisions

A nonrelativistic binary collision is described by a mass-balance 
equation of the form m1 + m2 ã m3 + m4, where we consider m1 
to be the projectile, m2 the target, m3 the scattered particle, and 
m4 the scattered target, but it is also possible that the reactants 
exchange mass during the collision.  The kinematics of the reac-
tion are governed by conservation of momentum and of energy, 
which are expressed by the following equations.

In[119]:=

collisionEqs = :m1 + m2 ã m3 + m4, p1 + p2 ã p3 + p4,

p1.p1

2 m1
+

p2.p2

2 m2
+ qvalue ã

p3.p3

2 m3
+

p4.p4

2 m4
>;

Here the qvalue measures the inelasticity of the reaction and van-
ishes for elastic scattering.  Note that we use Dot, with operator 
notation ., to indicate the scalar product of two vectors.  The 
momenta are defined using a set of replacement rules.  Note that 
the since the reaction is confined to a plane, we can omit the z-
components and work with vectors in two dimensions.
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In[120]:=

momentumComponentRules =

8p1 Ø 8p1x, p1y<, p2 Ø 8p2x, p2y<, p3 Ø 8p3x, p3y<,
p4 Ø 8p4x, p4y<, p1x Ø p1r Cos@q1D, p1y Ø p1r Sin@q1D,
p2x Ø p2r Cos@q2D, p2y Ø p2r Sin@q2D,
p3x Ø p3r Cos@q3D, p3y Ø p3r Sin@q3D<;

Because there are 4 independent equations, we can solve this sys-
tem for 4 variables.  It is convenient to specify three masses 
{m1,m2,m3}, the projectile momentum {p1x,p1y} in terms of 
magnitude p1r and angle theta1, the target momentum {p2x,p2y} 
in terms of magnitude p2r and angle theta2, and the projectile 
scattering angle theta3.  Mathematica will then happily report a 
general solution for the remaining mass m4, the momentum p3r 
for the scattered particle, and the momentum {p4x,p4y} of the 
recoil particle.  Although we could use Simplify, the minimal 

return is not worth the considerable investment of time required to 
simplify expressions of this complexity!

In[121]:=

gensol = Solve@collisionEqs êê. momentumComponentRules,

8m4, p3r, p4x, p4y<D
Out[121]=

99p4x Ø p1r Cos@q1D + p2r Cos@q2D -

Im1 m2 m3 p1r Cos@q1D Cos@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Cos@q2D Cos@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Hm1 m2 m3 p1r Cos@q3D Sin@q1D Sin@q3DL ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +
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m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Hm1 m2 m3 p2r Cos@q3D Sin@q2D Sin@q3DL ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

ICos@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2

Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p4y Ø p1r Sin@q1D + p2r Sin@q2D -

Hm1 m2 m3 p1r Cos@q1D
Cos@q3D Sin@q3DL ë

Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -
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Hm1 m2 m3 p2r Cos@q2D Cos@q3D Sin@q3DL ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Im1 m2 m3 p1r Sin@q1D Sin@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Sin@q2D Sin@q3D2M ë
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2M -

ISin@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2

Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p3r Ø I2 m1 m2 m3 p1r Cos@q1D Cos@q3D +
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2 m1 m2 m3 p2r

Cos@q2D Cos@q3D +

2 m1 m2 m3 p1r Sin@q1D Sin@q3D +

2 m1 m2 m3 p2r

Sin@q2D Sin@q3D +
,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22

m3 qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 +

m2 m32 p1r2 Cos@q1D2 +

2 m1 m2 m3 p1r p2r Cos@q1D Cos@q2D -

m12 m3 p2r2 Cos@q2D2 +

m1 m32 p2r2 Cos@q2D2 - m22 m3 p1r2

Sin@q1D2 + m2 m32 p1r2 Sin@q1D2 +

2 m1 m2 m3 p1r p2r Sin@q1D Sin@q2D -

m12 m3 p2r2 Sin@q2D2 +

m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
m4 Ø m1 + m2 - m3=,

9p4x Ø

p1r

Cos@
q1D + p2r Cos@
q2D -
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Im1 m2 m3 p1r Cos@q1D Cos@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Cos@q2D Cos@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Hm1 m2 m3 p1r Cos@q3D Sin@q1D Sin@q3DL ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Hm1 m2 m3 p2r Cos@q3D Sin@q2D Sin@q3DL ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M +

ICos@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2
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Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p4y Ø p1r Sin@q1D + p2r Sin@q2D -

Hm1 m2 m3 p1r Cos@q1D
Cos@q3D Sin@q3DL ë

Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Hm1 m2 m3 p2r Cos@q2D Cos@q3D Sin@q3DL ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Im1 m2 m3 p1r Sin@q1D Sin@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M -

Im1 m2 m3 p2r Sin@q2D Sin@q3D2M ë
Im12 m2 Cos@q3D2 +

m1 m22 Cos@q3D2 +
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m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2M +

ISin@q3D ,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -

2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22 m3

qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 + m2 m32

p1r2 Cos@q1D2 + 2 m1 m2 m3 p1r

p2r Cos@q1D Cos@q2D - m12 m3 p2r2

Cos@q2D2 + m1 m32 p2r2 Cos@q2D2 -

m22 m3 p1r2 Sin@q1D2 + m2 m32

p1r2 Sin@q1D2 + 2 m1 m2 m3 p1r

p2r Sin@q1D Sin@q2D - m12 m3 p2r2

Sin@q2D2 + m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 +

m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
p3r Ø I2 m1 m2 m3 p1r Cos@q1D Cos@q3D +

2 m1 m2 m3 p2r

Cos@q2D Cos@q3D +

2 m1 m2 m3 p1r Sin@q1D Sin@q3D +

2 m1 m2 m3 p2r

Sin@q2D Sin@q3D -
,IH-2 m1 m2 m3 p1r Cos@q1D Cos@q3D -

2 m1 m2 m3 p2r Cos@q2D Cos@q3D -

2 m1 m2 m3 p1r Sin@q1D Sin@q3D -
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2 m1 m2 m3 p2r Sin@q2D Sin@q3DL2 -

4 I-2 m12 m2 m3 qvalue - 2 m1 m22

m3 qvalue + 2 m1 m2 m32 qvalue -

m22 m3 p1r2 Cos@q1D2 +

m2 m32 p1r2 Cos@q1D2 +

2 m1 m2 m3 p1r p2r Cos@q1D Cos@q2D -

m12 m3 p2r2 Cos@q2D2 +

m1 m32 p2r2 Cos@q2D2 - m22 m3 p1r2

Sin@q1D2 + m2 m32 p1r2 Sin@q1D2 +

2 m1 m2 m3 p1r p2r Sin@q1D Sin@q2D -

m12 m3 p2r2 Sin@q2D2 +

m1 m32 p2r2 Sin@q2D2M
Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MMM ë
I2 Im12 m2 Cos@q3D2 + m1 m22 Cos@q3D2 +

m12 m2 Sin@q3D2 + m1 m22 Sin@q3D2MM,
m4 Ø m1 + m2 - m3==

Familiar special cases can be examined by choosing appropriate 
parameters.  For example, consider the elastic scattering of two 
particles of equal mass assuming that the target is at rest.

In[122]:=

Hgensol ê. 8m1 Ø m, m2 Ø m, m3 Ø m, qvalue Ø 0, theta1 Ø 0,

p2r Ø 0< êê Simplify êê PowerExpandL êê Simplify

Out[122]=

88p4x Ø -p1r Sin@q1 - q3D Sin@q3D,
p4y Ø p1r Cos@q3D Sin@q1 - q3D,
p3r Ø p1r Cos@q1 - q3D, m4 Ø m<,

8p4x Ø p1r Cos@q1D, p4y Ø p1r Sin@q1D, p3r Ø 0, m4 Ø m<<
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Clearly the first solution is the one we seek while the second solu-
tion is degenerate, describing only the special case of a head-on 
collision in which the projectile transfers all of its momentum to 
the struck particle.  More general situations can now be investi-
gated by varying the parameters in the first solution. 

Numerical solution of equations

Polynomial equations

An equation or system of equations involving only polynomials can 
be solved numerically using NSolve[eqs,vars,n] where eqs is an 

equation or list of equations, vars is the variable or list of vari-

ables, and n is an optional parameter specifying the precision 

sought in terms of number of decimal digits.  The result is 
returned as a list of sets of replacement rules.

In[123]:=

NSolveAx7 - 3 x3 ã x - 2, xE
Out[123]=

88x Ø -1.42937<, 8x Ø -0.425843 - 0.812252 Â<,
8x Ø -0.425843 + 0.812252 Â<, 8x Ø 0.115351 - 1.29244 Â<,
8x Ø 0.115351 + 1.29244 Â<, 8x Ø 0.774278<, 8x Ø 1.27608<<
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In[124]:=

NSolveA9x2 y - x ã 1, y2 + x y ã -2=, 8x, y<E
Out[124]=

88x Ø 0.40198 - 0.835793 Â, y Ø -0.25844 + 1.87993 Â<,
8x Ø 0.40198 + 0.835793 Â, y Ø -0.25844 - 1.87993 Â<,
8x Ø -0.568647 + 0.253329 Â, y Ø 0.25844 + 1.26469 Â<,
8x Ø -0.568647 - 0.253329 Â, y Ø 0.25844 - 1.26469 Â<<

NSolve will also handle equations which are really polynomials in 

disguise
In[125]:=

NSolveB: x2 y - y2 x ã 1 + x y4 , x x - y ã 2>, 8x, y<F

Out[125]=

88x Ø 3.69376, y Ø 3.40059<, 8x Ø 1.86251, y Ø 0.709423<<

and many others for which inverse functions are available
In[126]:=

NSolveACos@xD2 - Sin@xD2 ã 0.5, xE

Solve::ifun :  

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[126]=

88x Ø -2.61799<, 8x Ø -0.523599<,
8x Ø 0.523599<, 8x Ø 2.61799<<

Algebra_I.nb 58



In[127]:=

NSolveA‰2 x - ‰x ã 1, xE

Solve::ifun :  

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. à
Out[127]=

88x Ø -0.481212 + 3.14159 Â<, 8x Ø 0.481212<<

The warning message about inverse functions is usually nothing to 
worry about, and can be disabled using Off, but after solving a 

problem one should go back and determine whether alternative 
solutions have been overlooked.

However, NSolve is unable to solve equations which involve tran-

scendental functions in an essentially nonalgebraic manner that 
makes transformation to polynomial form impossible.

In[128]:=

lhs =
x

1 - x2
; rhs = Cot@xD;

eq1 = lhs ã rhs;

In[130]:=

NSolve@eq1, xD

Solve::tdep :  

The equations appear to involve the variables to be

solved for in an essentially non-algebraic way. à
Out[130]=

NSolveB x

1 - x2
ã Cot@xD, xF
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Write a function using NSolve and Cases which returns the real 
solutions to  the following equation in terms of the parameter a :

2 == r4 + a r4

H1+rL4

Plot these solutions for {a,-1,1}.  [Hint: it is probably easiest to 
use ListPlot for this purpose.]

Transcendental equations

The more general function FindRoot can be used to find numerical 
solutions to equations or systems of equations given appropriate 
starting conditions.  For a single equation, FindRoot[eq,8x,x0<] 

uses a variant of the secant method to search for a solution in the 
vicinity of x0 while FindRoot[eq,8x,8x0,x1<<] uses Newton's method 

based upon two starting values 8x0, x1<.  The secant method can 

be used when symbolic derivatives are possible, but Newton's 
method must be used otherwise.  Also note that 

FindRoot[expr,8x,x0<] where expr is an expression rather than an 

equation is equivalent to FindRoot[expr 0,8x,x0<]. 

For the simple equation below we recognize by inspection that 
there is only one root for y > 0 and, hence, need not be too careful 
in selecting the starting value for the secant method.

In[131]:=

eq1 = y Tanh@yD ã 1;

In[132]:=

sol1 = FindRoot@eq1, 8y, 0.1<D
Out[132]=

8y Ø 1.19968<

To test the accuracy of the solution, we change the equation to a 
difference between its two sides and then substitute the solution.
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In[133]:=

eq1 ê. Equal Ø Subtract ê. sol1

Out[133]=

-1.11022 μ 10-16

Even though our starting value is poor, the accuracy of the solu-
tion is quite good; note that the solution contains more significant 
figures than are routinely printed.  

For more complicated equations with several roots, we should com-
pare the left-hand and right-hand sides graphically to choose the 
appropriate starting conditions.

In[134]:=

lhs =
x

16 - x2

rhs = Cot@xD
eq1 = lhs ã rhs

Out[134]=

x

16 - x2

Out[135]=

Cot@xD

Out[136]=

x

16 - x2
ã Cot@xD
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In[137]:=

Plot@Evaluate@8lhs, rhs<D, 8x, 0, 4<D
Out[137]=

1 2 3 4

-2

2

4

Here we find two positive roots by supplying two sets of starting 
conditions based upon the figure.

In[138]:=

FindRoot@eq1, 8x, Ò<D & êü 81, 3.5<
Out[138]=

88x Ø 1.25235<, 8x Ø 3.5953<<

Find the first 3 positive roots of tanHxL = 1 ê x.

Find the first 3 positive roots of BesselJ[2,x].  Then explore the 
sensitivity to starting values; for example, compare results for 
starting points of 6.8, 7.0, 7.2.

Find all real solutions to the pair of equations x4 + y4 = 1 and 
ex - ey = 1.  [Hint: use ImplicitPlot to display the two equations 
and to locate appropriate starting values.]
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Linear algebra

Matrix manipulation

A matrix is represented as a list of sublists in which each sublist 
has the same size.  Mathematica provides many built-in functions 
with obvious names for manipulating and analyzing matrices.  The 
most important matrix functions are summarized in the accompany-
ing table.

function output

Array@mat, 8m, n<D m μ n matrix with elements mat@i, jD
DiagonalMatrix@listD diagonal matrix using elements from list

IdentityMatrix@mD m - dimensional unit matrix

MatrixForm print matrix in traditional form

Transpose interchange rows and columns

Inverse@AD inverse matrix A-1

Dot@A, BD product A.B for compatible matrices

Det determinant of square matrix

Eigenvalues@AD list of eigenvalues l, such that A.x = l x

Eigenvectors@AD list of eigenvectors x, such that A.x = l x

Eigensystem list containing both list of eigenvalues and
list of eigenvectors

LinearSolve@A, rhsD solution vector x toA.x == rhs
NullSpace@AD list of vectors x for which A.x == 0

MatrixPower@A, bD Ab = matrix A raised to power b
MatrixExp@AD ExpBAF as defined by power series

A few examples of some of these functions are given below.
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In[139]:=

matrix = Array@m, 83, 3<D
Out[139]=

88m@1, 1D, m@1, 2D, m@1, 3D<,
8m@2, 1D, m@2, 2D, m@2, 3D<, 8m@3, 1D, m@3, 2D, m@3, 3D<<

In[140]:=

matrix êê MatrixForm

Out[140]//MatrixForm=

m@1, 1D m@1, 2D m@1, 3D
m@2, 1D m@2, 2D m@2, 3D
m@3, 1D m@3, 2D m@3, 3D

In[141]:=

matrix êê Transpose êê MatrixForm

Out[141]//MatrixForm=

m@1, 1D m@2, 1D m@3, 1D
m@1, 2D m@2, 2D m@3, 2D
m@1, 3D m@2, 3D m@3, 3D

The product of two matrices with compatible dimensions is formed 
by Dot with operator form (.).

In[142]:=

var = Array@v, 83<D;
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In[143]:=

matrix.var

Out[143]=

8m@1, 1D v@1D + m@1, 2D v@2D + m@1, 3D v@3D,
m@2, 1D v@1D + m@2, 2D v@2D + m@2, 3D v@3D,
m@3, 1D v@1D + m@3, 2D v@2D + m@3, 3D v@3D<

Evaluate MatrixExp[{{0,q},{-q,0}}] and interpret the result.

Matrix form of linear equations

A system of equations of the form A.x ã b can be formed using 
Thread to move the function Equal through the head List.  (What 

happens if Thread is omitted?)
In[144]:=

matrix = Array@A, 83, 3<D;
var = Array@x, 83<D;
rhs = Array@b, 83<D;

In[147]:=

Thread@matrix.var ã rhsD
Out[147]=

8A@1, 1D x@1D + A@1, 2D x@2D + A@1, 3D x@3D ã b@1D,
A@2, 1D x@1D + A@2, 2D x@2D + A@2, 3D x@3D ã b@2D,
A@3, 1D x@1D + A@3, 2D x@2D + A@3, 3D x@3D ã b@3D<

The result is then a form suitable for Solve.  Alternatively, 

LogicalExpand 
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In[148]:=

LogicalExpand@matrix.var ã rhsD
Out[148]=

A@1, 1D x@1D + A@1, 2D x@2D + A@1, 3D x@3D ã b@1D &&

A@2, 1D x@1D + A@2, 2D x@2D + A@2, 3D x@3D ã b@2D &&

A@3, 1D x@1D + A@3, 2D x@2D + A@3, 3D x@3D ã b@3D

also produces an expression suitable for input to Solve.  Although 

these methods are most often used for systems of linear equa-
tions, they can be employed for more general problems if the coeffi-
cient matrix and variable vector are constructed properly.

Alternatively, LinearSolve[coeff,rhs] is a specialized version for 

linear equations of the form coeff.x rhs.  The solution is a vec-

tor x which is returned as a simple list, rather than as a set of 

replacement rules; note that it is not necessary to supply variable 
names.  LinearSolve works with either symbolic or numerical 

expressions.  For underdetermined systems LinearSolve returns 

only one of the possible solutions, whereas Solve returns the gen-

eral solution.  Also note that for sparse matrices it is usually more 
efficient to use Solve.

In[149]:=

coeff = : :1, -2,
3

8
>, 82, 2, -3<, :1

2
, -1, 4>>;

rhs = 8-1, 3, 0<;
LinearSolve@coeff, rhsD

Out[151]=

:143

183
,

335

366
,

8

61
>

The null space of a matrix is defined by a linear combination of 
basis vectors satisfying matrix.m 0 and is obtained using Null-
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Space[matrix].
In[152]:=

a = 881, 1, 0<, 8-1, 0, 0<, 81, 1, 0<<;
b = NullSpace@aD

Out[153]=

880, 0, 1<<

In[154]:=

a.bP1T
Out[154]=

80, 0, 0<

Note that LinearSolve and NullSpace can be used for rectangular 

as well as square matrices, as illustrated by the following exercise.

Let a={{1,2,1},{-1,-1,2}} and b={2,3}.  Determine vectors x 
and c such that a.(x+l c)==b for any value of l.  [Hint: use both 
LinearSolve and NullSpace.]

Eigensystems

The determinant of a square matrix is given by Det.  Eigenvalues 
finds the eigenvalues and Eigenvectors the eigenvectors of a 
matrix, either symbolically or numerically.  Repeated eigenvalues 
appear with the requisite multiplicity.  Eigensystem returns both in 
the form of a list with two sublists, the first being the eigenvalues 
and the second the corresponding eigenvectors.  Eigenvectors are 
not normalized automatically.  The package 
LinearAlgebra`Orthogonalization` provides tools to create 

orthonormal bases.  Rather than attempt to describe all available 
functions in general terms we prefer to use an example.

Example: linear triatomic molecule
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m1 m2 m3

k1,2 k2,3

Suppose that three masses move along a line subject to pairwise 
forces represented by springs.  The figure above displays the inter-
actions between neighboring masses, but omits a possible interac-
tion between the outer masses with spring constant k1,3.  One can 

assume, without loss of generality, that the resting lengths of both 
interior springs are equal to b.  For simplicity we begin by assum-
ing that the two outer masses are equal, m3 = m1, but not necessar-

ily equal to the central mass m2, and that k1,2 = k2,3 while k1,3 = 0.  

With these simplifications we can obtain simple but nontrivial sym-
bolic expressions for the frequencies and normal modes of vibra-
tion; two different methods are used to illustrate several Mathemat-
ica functions.  Numerical results can also be obtained easily for 
more general systems, but symbolic expressions become unwieldy.

In[155]:=

ClearAllA"Global`*"E;
NeedsA"Notation`"E;

The equations of motion for the general system, assuming that the 
spring force is proportional to its length change, are obtained from 
Newton's second law as follows.

In[157]:=

equations = 8

m1 x– 1 ã k1,2 Hx2 - x1 - bL + k1,3 Hx3 - x1 - 2 bL,
m2 x– 2 ã k2,3 Hx3 - x2 - bL - k1,2 Hx2 - x1 - bL,
m3 x– 3 ã k2,3 Hx2 - x3 + bL - k1,3 Hx3 - x1 - 2 bL <;

For our initial special case, these equations reduce to: 
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In[158]:=

eq1 = equations ê. 8m3 Ø m1, k1,2 Ø k, k2,3 Ø k, k1,3 Ø 0<
Out[158]=

8m1 x– 1 ã k H-b - x1 + x2L,
m2 x– 2 ã -k H-b - x1 + x2L + k H-b - x2 + x3L,
m1 x– 3 ã k Hb + x2 - x3L<

It is useful to eliminate the resting length with the following 
change of variables.

In[159]:=

eq2 = eq1 ê.
9x1 Ø h1 - b, x2 Ø h2, x3 Ø h3 + b, x– 1 Ø h–1, x– 2 Ø h–2, x– 3 Ø h–3=

Out[159]=

9m1 h–1 ã k H-h1 + h2L,
m2 h–2 ã -k H-h1 + h2L + k H-h2 + h3L, m1 h–3 ã k Hh2 - h3L=

Normal modes are defined to be solution vectors of the form 
hHtL = hH0L Exp@-Â w tD.  Thus, if we make the substitution h– Ø -w2 h 

for each coordinate, the time dependence divides out.  It is also 
convenient to replace the equations by differences so that we can 
extract the coefficient matrix using Coefficient.

In[160]:=

eq3 = eq2 ê. 9h–1 Ø -w2 h1, h–2 Ø -w2 h2, h–3 Ø -w2 h3=

Out[160]=

9-w2 m1 h1 ã k H-h1 + h2L,
-w2 m2 h2 ã -k H-h1 + h2L + k H-h2 + h3L, -w2 m1 h3 ã k Hh2 - h3L=
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In[161]:=

matrix =

Coefficient@Ò, 8h1, h2, h3<D & êü Heq3 ê. Equal Ø SubtractL;
matrix êê MatrixForm

Out[162]//MatrixForm=

k - w2 m1 -k 0

-k 2 k - w2 m2 -k

0 -k k - w2 m1

Therefore, the vibrational frequencies for the normal modes are 
solutions to the equations matrix.η 0, which is equivalent to the 

condition Det[matrix] 0.  For an n-dimensional system, this condi-

tion yields an nth degree polynomial equation known as the secular 
or characteristic equation for the system.  To avoid negative fre-
quencies in the present problem, it is easiest to solve for w2 
instead of w itself and to take the positive root later.

In[163]:=

freqRule2 = SolveADetAmatrix ê. w2 Ø w2E ã 0, w2E êê Simplify

Out[163]=

:8w2 Ø 0<, :w2 Ø
k

m1
>, :w2 Ø k

1

m1
+

2

m2
>>

In[164]:=

freqRule = w Ø w2 ê. freqRule2

Out[164]=

:w Ø 0, w Ø
k

m1
, w Ø k

1

m1
+

2

m2
>

The modes are then found by substituting the frequencies back 
into the equations of motion and solving for the amplitudes.  
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Because the overall amplitude is arbitrary for linear systems, it is 
useful to set one of the amplitudes to unity (but not the central 
one because of the symmetry of the problem).

In[165]:=

Table@freqRule@@iDD ê. h1 Ø 1, 8i, 1, 3<D
Out[165]=

:w Ø 0, w Ø
k

m1
, w Ø k

1

m1
+

2

m2
>

In[166]:=

Table@Solve@eq3 ê. freqRule@@DD ê. h1 Ø 1, 8h2, h3<D, 8i, 1, 3<D
Out[166]=

888h3 Ø 1, h2 Ø 1<<, 88h3 Ø 1, h2 Ø 1<<, 88h3 Ø 1, h2 Ø 1<<<

The nature of these solutions should now be obvious.  The zero-
frequency mode represents the motion of the entire system 
together without any internal vibration.  In the second mode the 
central mass remains stationary while the two outer mass vibrate 
in opposite directions symmetrically.  For the third mode the two 
outer masses move together while the central mass moves in the 
opposite direction, with the relative amplitudes proportional to the 
ratio of masses.

There is a more elegant way to obtain the eigenvalues and eigen-
vectors.  We can transform the system of equations to the form 
h.h ã -w2 h and then use Eigensystem to obtain both the eigenval-

ues l = -w2 and the corresponding eigenvectors directly.  First we 
extract the right-hand sides of eq2 and divide out the masses.
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In[167]:=

rhs = ÒP2T & êü eq2 ê 8m1, m2, m1< êê Simplify

Out[167]=

:k H-h1 + h2L
m1

,
k Hh1 - 2 h2 + h3L

m2
,

k Hh2 - h3L
m1

>

Then we construct the coefficient matrix.  
In[168]:=

h = Coefficient@Ò, 8h1, h2, h3<D & êü rhs;

In[169]:=

h êê MatrixForm

Out[169]//MatrixForm=

- k
m1

k
m1

0

k
m2

- 2 k
m2

k
m2

0 k
m1

- k
m1

Finally, we evaluate the eigenvalues and eigenvectors
In[170]:=

8l, vectors< = Eigensystem@hD
Out[170]=

::0, -
k

m1
,

-2 k m1 - k m2

m1 m2
>,

:81, 1, 1<, 8-1, 0, 1<, :1, -
2 m1

m2
, 1>>>

and compute the frequencies.
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In[171]:=

frequencies = Sqrt@-lD
Out[171]=

:0,
k

m1
, -

-2 k m1 - k m2

m1 m2
>

Note that Eigensystem does not normalize the eigenvectors.  It is 

often useful to construct a matrix containing the normalized eigen-
vectors in column form.

In[172]:=

modes = vectors ê HSqrt@Ò.ÒD & êü vectorsL
Out[172]=

:: 1

3
,

1

3
,

1

3
>, :-

1

2
, 0,

1

2
>,

: 1

2 +
4 m1

2

m2
2

, -
2 m1

2 +
4 m1

2

m2
2 m2

,
1

2 +
4 m1

2

m2
2

>>

In[173]:=

Transpose@modesD êê MatrixForm

Out[173]//MatrixForm=

1
3

- 1
2

1

2+
4 m1

2

m2
2

1
3

0 - 2 m1

2+
4 m1

2

m2
2

m2

1
3

1
2

1

2+
4 m1

2

m2
2
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 Exercises 

Write a function which returns the eigenfrequencies and normal 
modes given a coupling matrix, h, for which h.h == m.h– == -w2 m.h  
where h is a coordinate vector and m is a diagonal matrix carrying 
the masses. 

Find the eigenfrequencies and normal modes assuming 
{k1,2 = k2,3 = k, k1,3=0, m1 = m3}.  Verify that the previous results 
are recovered.  Plot the frequency and ratio of amplitudes for the 
mode in which the central mass vibrates against the outer masses 
as a function of the ratio of masses.

Find the eigenfrequencies and normal modes assuming 
{k1,2 = k2,3 = k1, m1 = m3} and including the interaction k1,3 = k2 
between the outer masses.  Verify that the previous results are 
recovered when the spring constant for the new force is set to 
zero.  What is the effect of k2?  

Generalize to the case of three arbitrary masses.  You will 
probably find that symbolic expressions for the eigenvalues are 
too lengthy to display comfortably and are difficult to simplify.  
Nevertheless, you can still plot interesting quantities.  For 
example, plot the two nonzero frequencies together as functions 
of the mass ratios (either in 3D or in 2D as functions of one ratio 
for several values of the other).  
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